SE0X-NB/NS -- NB-IoT Soil Moisture & EC Sensor Transmitter User Manual

Version 135.2 by Mengting Qiu on 2025/01/17 19:42

                              

image-20241226140636-3.png

Table of Contents :

1. Introduction

1.1 What is SE0X-NB/NS NB-IoT Soil Moisture & EC Sensor

The Dragino SE0X-NB/NS is a NB-IoT Soil Moisture & EC Sensor for Agri-IoT with up to 4 sensor probes. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.

It detects Soil Moisture, Soil Temperature and Soil Conductivity, and then upload to IoT server via NB-IoT network*.

SE0X-NB/NS supports different uplink methods include TCP, MQTT, UDP, MQTTs or CoAP for different application requirement. and Support Uplinks to various IoT Servers.

SE0X-NB/NS supports BLE configure and wireless OTA update which make user easy to use.

SE0X-NB/NS is powered by 8500mAh Li-SOCI2 battery or solar powered + Li-ion battery, it is designed for long-term use up to several years.

image-20240524144002-3.png

1.2 ​Features

  • NB-IoT Bands: B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B25/B28/B66/B70/B85 @H-FDD
  • Ultra-low power consumption
  • Up to 4 external sensor probes, probe length: 2.5 meters
  • Monitor Soil Moisture
  • Monitor Soil Temperature
  • Monitor Soil Conductivity
  • IP66 Waterproof Enclosure
  • Multiply Sampling and one uplink
  • Support Bluetooth v5.1 remote configure and update firmware
  • Uplink on periodically
  • AT Commands to change parameters
  • Downlink to change configure
  • 8500mAh Li/SOCl2 Battery (SE0X-NB)
  • Solar panel + 3000mAh Li-ion battery (CSE0X-NS)
  • Nano SIM card slot for NB-IoT SIM

Common DC Characteristics:

  • Supply Voltage: Built-in Battery , 2.5v ~ 3.6v
  • Operating Temperature: -40 ~ 85°C

Soil Moisture:

  • Range: 0-100.00 V/V %
  • Resolution: 0.01 V/V %
  • Accuracy: ±3% (0-53%)V/V %, ±5% (>53%) V/V %
  • Measure Method: FDR , with temperature &EC compensate 

Soil Temperature

  • Range: -40.00℃~85.00℃
  • Resolution: 0.01℃
  • Accuracy: -10℃~50℃:<0.3℃ ,All other: <0.6℃
  • Measure Method: RTD, and calibrate

Soil Conductivity

  • Range: 0-20000 uS/cm(25℃)(0-20.0EC)
  • Resolution: 1 uS/cm
  • Accuracy: 2%FS
  • Measure Method: Conductivity , with temperature compensate

NB-IoT Spec:

NB-IoT Module: BC660K-GL

Support Bands:

  • B1 @H-FDD: 2100MHz
  • B2 @H-FDD: 1900MHz
  • B3 @H-FDD: 1800MHz
  • B4 @H-FDD: 2100MHz
  • B5 @H-FDD: 860MHz
  • B8 @H-FDD: 900MHz
  • B12 @H-FDD: 720MHz
  • B13 @H-FDD: 740MHz
  • B17 @H-FDD: 730MHz
  • B18 @H-FDD: 870MHz
  • B19 @H-FDD: 870MHz
  • B20 @H-FDD: 790MHz
  • B25 @H-FDD: 1900MHz
  • B28 @H-FDD: 750MHz
  • B66 @H-FDD: 2000MHz
  • B70 @H-FDD: 2000MHz
  • B85 @H-FDD: 700MHz

Battery:

  • Li/SOCI2 un-chargeable battery
  • Capacity: 8500mAh
  • Self-Discharge: <1% / Year @ 25°C
  • Max continuously current: 130mA
  • Max boost current: 2A, 1 second

Power Consumption

  • Sleep Mode: 5uA @ 3.3v
  • LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm

1.4 Applications

  • Smart Agriculture

1.5 Sleep mode and working mode

Deep Sleep Mode: Sensor doesn't have any NB-IoT activate. This mode is used for storage and shipping to save battery life.

Working Mode: In this mode, Sensor will work as NB-IoT Sensor to Join NB-IoT network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.

1.6 Button & LEDs

1675071855856-879.png

Behavior on ACTFunctionAction
Pressing ACT between 1s < time < 3sSend an uplink

If sensor has already attached to NB-IoT network, sensor will send an uplink packet, blue led will blink once.
Meanwhile, BLE module will be active and user can connect via BLE to configure device.

Pressing ACT for more than 3sActive Device

Green led will fast blink 5 times, device will enter  OTA mode for 3 seconds. And then start to  attach NB-IoT network.
Green led will solidly turn on for 5 seconds after joined in network.
Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device attach NB-IoT network or not.

Fast press ACT 5 times.Deactivate DeviceRed led will solid on for 5 seconds. Means device is in Deep Sleep Mode.

Note: When the device is executing a program, the buttons may become invalid. It is best to press the buttons after the device has completed the program execution.

1.7 BLE connection

SE0X-NB/NS support BLE remote configure and firmware update.

BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:

  • Press button to send an uplink
  • Press button to active device.
  • Device Power on or reset.

If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.

1.8 Pin Definitions

image-20231103172153-1.png

1.8.1 Jumper JP2

Power on Device when put this jumper.

1.8.2 BOOT MODE / SW1

1) ISP: upgrade mode, device won't have any signal in this mode. but ready for upgrade firmware. LED won't work. Firmware won't run.

2) Flash: work mode, device starts to work and send out console output for further debug

1.8.3 Reset Button

Press to reboot the device.

1.8.4 SIM Card Direction

See this link. How to insert SIM Card.

1.9 Mechanical

Main Device Dimension:

1675143884058-338.png

1675143899218-599.png

1675143909447-639.png

Probe Dimension:

image-20221008135912-1.png

1.10 Installation in Soil

Measurement the soil surface

1654506634463-199.png ​

Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.

1654506665940-119.png

Dig a hole with diameter > 20CM.

Horizontal insert the probe to the soil and fill the hole for long term measurement. 

2. Use SE0X-NB/NS to communicate with IoT Server

2.1 Send data to IoT server via NB-IoT network

The SE0X-NB/NS is equipped with a NB-IoT module, the pre-loaded firmware in SE0X-NB/NS will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by SE0X-NB/NS.

Below shows the network structure:

  image-20240524143914-2.png

There are two version: -GE and -1T version of SE0X-NB/NS.

GE Version: This version doesn't include SIM card or point to any IoT server. User needs to use AT Commands to configure below two steps to set SE0X-NB/NS send data to IoT server.

  • Install NB-IoT SIM card and configure APN. See instruction of Attach Network.

Below shows result of different server as a glance.

ServersDash BoardComments
Node-Redimage-20230819113244-8.png

 

 
DataCakeimage-20230819113244-9.png

 

 
Tago.IO  
General UDPRaw Payload. Need Developer to design Dash Board 
General MQTTRaw Payload. Need Developer to design Dash Board 
ThingSpeakimage-20230819113244-10.png

 

 
ThingsBoardimage-20230819113244-11.png

 

1T Version: This version has 1NCE SIM card pre-installed and configure to send value to ThingsEye. User Just need to select the sensor type in ThingsEyeand Activate SE0X-NB/NS and user will be able to see data in ThingsEye. See here for ThingsEye Config Instruction.

2.2 ​Payload Types

To meet different server requirement, SE0X-NB/NS supports different payload type.

Includes:

User can specify the payload type when choose the connection protocol. Example:

AT+PRO=2,0            // Use UDP Connection & hex Payload

AT+PRO=2,5            // Use UDP Connection & Json Payload

AT+PRO=3,5            // Use MQTT Connection & Json Payload

2.2.1 General Json Format(Type=5)

This is the General Json Format. As below:

{"IMEI":"863663062798914","IMSI":"460083513507314","Model":"SE02-NB","tem":21.0,"hum":19.4,"ec":7465,"tem2":20.8,"hum2":21.2,"ec2":8147,"interrupt":0,"interrupt_level":0,"battery":3.27,"signal":17,"time":"2024/11/23 01:06:52","1":[0.0,0.0,0,0.0,0.0,0,"2024/11/23 00:53:30"],"2":[0.0,0.0,0,0.0,0.0,0,"2024/11/23 00:38:30"],"3":[0.0,0.0,0,0.0,0.0,0,"2024/11/23 00:23:30"],"4":[0.0,0.0,0,0.0,0.0,0,"2024/11/23 00:08:30"],"5":[0.0,0.0,0,0.0,0.0,0,"2024/11/22 23:53:30"],"6":[0.0,0.0,0,0.0,0.0,0,"2024/11/22 23:38:30"],"7":[0.0,0.0,0,0.0,0.0,0,"2024/11/22 23:23:30"],"8":[0.0,0.0,0,0.0,0.0,0,"2024/11/22 23:08:30"]}

image-20241123090826-1.png

Notice, from above payload:

  • Temperature, Humidity, Soil conductivity, Temperature 2,  Humidity 2, Soil conductivity 2, Interrupt, Interrupt_level, Battery, Signal & time are the value at uplink time.
  • Json entry 1 ~ 8 are the last 1 ~ 8 sampling data as specify by AT+CLOCKLOG=1,65535,15,8 Command. Each entry includes (from left to right): Soil Temperature, Soil Moisture, Soil Conductivity(EC), Soil Temperature 2, Soil Moisture 2, Soil Conductivity 2(EC) & Sampling time. 

2.2.2 HEX format Payload(Type=0)

This is the HEX Format. As below:

f863663062798914f460083513507314366e0cd811010000079f08311da7084d081e1f9067412b770000000000000000000000006741278a000000000000000000000000674124060000000000000000000000006741208200000000000000000000000067411cfe0000000000000000000000006741197a000000000000000000000000674115f60000000000000000000000006741127200000000000000000000000067410eee

image-20241204101833-1.png

If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NB sensor uplink data.

image-20241123091112-2.png

Version:

These bytes include the hardware and software version.

Higher byte: Specify Sensor Model: 0x36 for SE0X-NB/NS

Lower byte: Specify the software version: 0x82=130, means firmware version 1.3.0

BAT (Battery Info):

Ex1: 0x0CD1 = 3281mV

Signal Strength:

NB-IoT Network signal Strength.

Ex1: 0x16 = 22

0        -113dBm or less

1        -111dBm

2...30 -109dBm... -53dBm

31      -51dBm or greater

99      Not known or not detectable

Soil Moisture 

Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.

For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 05DC(H) = 1500(D) /100 = 15%.

Soil Temperature 

Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is

Example:

If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C

If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C

Soil Conductivity (EC) 

Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).

For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.

Generally, the EC value of irrigation water is less than 800uS / cm.

TimeStamp:   

Unit TimeStamp Example: 665eb834(H) = 1717483572(D)

Put the decimal value into this link(https://www.epochconverter.com)) to get the time.

2.2.3 ThingsBoard Payload(Type=3)

Type3 payload special design for ThingsBoard, it will also configure other default server to ThingsBoard.

 {
    "topic": "2276492",
    "payload": {
        "IMEI": "863663062798930",
        "Model": "SE02-NB",
        "tem": 26.0,
        "hum": 47.6,
        "ec": 8806,
        "tem2": 26.0,
        "hum2": 55.0,
        "ec2": 8973,
        "interrupt": 0,
        "interrupt_level": 0,
        "battery": 3.29,
        "signal": 22,
        "1": [26.0, 47.6, 8915, 26.0, 55.0, 8918, "2024/06/04 07:08:13"],
        "2": [26.0, 47.6, 8933, 26.0, 55.0, 9028, "2024/06/04 07:06:13"],
        "3": [26.0, 47.6, 8907, 26.0, 55.1, 8907, "2024/06/04 07:04:13"],
        "4": [26.0, 47.6, 8845, 26.0, 55.0, 9044, "2024/06/04 07:02:13"],
        "5": [26.0, 47.6, 8917, 26.0, 55.1, 8985, "2024/06/04 07:00:13"],
        "6": [26.0, 47.5, 8883, 26.0, 55.0, 9041, "2024/06/04 06:58:13"],
        "7": [26.0, 47.6, 8965, 26.0, 55.0, 8952, "2024/06/04 06:56:13"],
        "8": [26.0, 47.6, 8844, 26.0, 55.0, 8994, "2024/06/04 06:54:13"]
    }
}

image-20240604151141-3.png

2.2.4 ThingSpeak Payload(Type=1)

This payload meets ThingSpeak platform requirement. It includes six fields. Form 1~8 are:

Temperature, Humidity, Conduct soil, Temperature 2, Humidity 2, Conduct soil 2, Battery & Signal. This payload type only valid for ThingsSpeak Platform.

As below:

field1=Temperature value&field2=Humidity value&field3=Conduct soil value&field4=Temperature 2 value&field5=Humidity 2 value&field6=Conduct soil 2 value&field7=Battery value&field8=Signal value

image-20240604155822-4.png

image-20240604155827-5.png

2.3 Test Uplink and Change Update Interval

By default, Sensor will send uplinks every 2 hours 

User can use below commands to change the uplink interval.

AT+TDC=7200        // Set Update Interval to 7200s

User can also push the button for more than 1 seconds to activate an uplink.

2.4 Trggier an uplink by external interrupt

SE0X-NB/NS has an external trigger interrupt function. Users can use the GPIO_EXIT pin to trigger the upload of data packets.

AT command:

  • AT+INTMOD         // Set the trigger interrupt mode
  • AT+INTMOD=0    // Disable Interrupt
  • AT+INTMOD=1    // Trigger by rising and falling edge
  • AT+INTMOD=2    // Trigger by falling edge
  • AT+INTMOD=3    // Trigger by rising edge

2.5 Clock logging (Since firmware version v1.2.1)

Sometimes when we deploy lots of end nodes in field. We want all sensors sample data at the same time, and upload these data together for analyze. In such case, we can use clock loging feature.

We can use this command to set the start time of data recording and the time interval to meet the requirements of the specific collection time of data.

  • AT command: AT+CLOCKLOG=a,b,c,d

a: 0: Disable Clock logging.   1: Enable Clock Logging

b: Specify First sampling start second: range (0 ~ 3599, 65535)         // Note: If parameter b is set to 65535, the log period starts after the node accesses the network and sends packets.

c: Specify the sampling interval: range (0 ~ 255 minutes)

d: How many entries should be uplink on every TDC (max 32)

Note: To disable clock recording, set the following parameters: AT+CLOCKLOG=1,65535,0,0

image-20240315141254-1.png

Example:

AT+CLOCKLOG=1,65535,1,5

After the node sends the first packet, data is recorded to the memory at intervals of 1 minute. For each TDC uplink, the uplink load will include: battery information + the last 5 memory records (payload + timestamp).

image-20240315160632-1.png

Note: Users need to synchronize the server time before configuring this command. If the server time is not synchronized before this command is configured, the command takes effect only after the node is reset.

  • Downlink command: 0x0A

Format: Command Code (0x0A) followed by 5 bytes.

  • Example 1: Downlink Payload: 0A01FFFF0F08             // Set SHT record time: AT+CLOCKLOG=1,65535,15,8
  • Example 1: Downlink Payload: 0A0104B00F08             // Set SHT record time: AT+CLOCKLOG=1,1200,15,8

Note: When entering the downlink payload, there must be no Spaces between bytes.

2.6 Example Query saved historical records

  • AT command: AT+CDP

This command can be used to search the saved history, recording up to 32 groups of data, each group of historical data contains a maximum of 100 bytes.

image-20240605085514-1.png

2.7 Uplink log query

  • AT command: AT+GETLOG

This command can be used to query upstream logs of data packets.

image-20240605085603-2.png

2.8 Scheduled domain name resolution

This command is used to set up scheduled domain name resolution

AT command:

  • AT+DNSTOMER=XX  // Unit: hour

After setting this command, domain name resolution will be performed regularly.

2.9 Set the QoS level

This command is used to set the QoS level of MQTT.

AT command:

  • AT+MQOS=xx   // 0~2

Downlink command: 0x07

Format: Command Code (0x07) followed by 1 byte.

Ex1: Downlink payload: 0x0700   // AT+MQOS=0

Ex2: Downlink payload: 0x0701   // AT+MQOS=1

2.10 Set the downlink debugging mode(Since firmware v1.1.0)

Feature: Set the conversion between the standard version and 1T version downlinks.

AT command: AT+DOWNTE

Command ExampleFunction/ParametersResponse/Explanation
AT+DOWNTE=?Get current Settings

0,0   (default)
OK

 

AT+DOWNTE=a,b

a: Set the conversion between the downlink of the standard version and 1T version

0: Set the downlink of the standard version.
1: Set the downlink of the 1T version(ThingsEye platform) 

b: Enable/Disable downlink debugging

0: Disable downlink debugging mode.
1: Enable downlink debugging mode, users can see the original downlink reception.

Example:

  • AT+DOWNTE=0,1  // Set to standard version downlink, and enable downlink debugging.
  • AT+DOWNTE=1,1  // Set to 1T version downlink, and enable downlink debugging.

Downlink Command:  

No downlink commands for feature

2.11 Domain name resolution settings(Since firmware v1.1.0)

Feature: Set dynamic domain name resolution IP.

AT command: AT+BKDNS

Command ExampleFunction/ParametersResponse/Explanation

AT+BKDNS=?

Get current Settings

0,0,NULL  (default)
OK

 

AT+BKDNS=a,b,c

a: Enable/Disable dynamic domain name resolution.

1: Disable dynamic domain name update. The ip address will be saved after the domain name is resolved, if the next domain name resolution fails, the last saved ip address will be used.
2: Enable dynamic domain name update. The ip address will be saved after domain name resolution, if the next domain name resolution fails, the last saved ip address will be used, and the domain name resolution will be updated regularly according to the time set by the customer.
b: Set the time to update the domain name resolution at regular intervals.

Unit: hour

c: Set the IP address manually.

The format is the same as AT+SERVADDR.
If domain name resolution fails, this ip address will be used directly, if domain name resolution succeeds, parameter c will be updated to the successfully resolved IP address.

Example:

  • AT+BKDNS=1,0        // Dynamic domain name resolution is disabled.
  • AT+BKDNS=2,1        // The dynamic domain name resolution function is enabled and the automatic update time is set to 1 hour.
  • AT+BKDNS=2,4,3.69.98.183,1883      // The dynamic domain name resolution function is enabled and the automatic update time is set to 4 hour, and manually set the ip address, if the domain name failed to resolve, it will directly use this ip to communicate. When the next domain name resolution is successful, it will be updated to the ip address of the successful resolution.

Downlink Command:  

No downlink commands for feature

3. Configure SE0X-NB/NS

3.1 Configure Methods

SE0X-NB/NS supports below configure method:

3.2  Serial Access Password

After the Bluetooth or UART connection is successful, use the Serial Access Password to enter the AT command window.

The label on the box of the node will print the initial password: AT+PIN=xxxxxx, and directly use the six-digit password to access the AT instruction window.

image-20240826170129-1.png

If you need to change the password, use AT+PWORD=xxxxxx (6 characters), NB nodes only support lowercase letters.

image-20240826170135-2.png

Note: After entering the command, you need to add a line break, and you can also set automatic line breaks in the Bluetooth tool or UART connection tool.

image-20240826170142-3.png

3.3 AT Commands Set

AT+<CMD>?           : Help on <CMD>

AT+<CMD>                      : Run <CMD>

AT+<CMD>=<value>      : Set the value

AT+<CMD>=?          : Get the value

General Commands       

AT                    : Attention        

AT?                  : Short Help      

ATZ                 : MCU Reset     

AT+TDC          : Application Data Transmission Interval

AT+CFG          : Print all configurations

AT+CFGMOD           : Working mode selection

AT+DEUI                  : Get or set the Device ID

AT+INTMOD            : Set the trigger interrupt mode

AT+5VT           : Set extend the time of 5V power   

AT+PRO          : Choose agreement

AT+RXDL        : Extend the sending and receiving time

AT+DNSCFG   : Get or Set DNS Server

AT+GETSENSORVALUE   : Returns the current sensor measurement

AT+NOUD  : Get or Set the number of data to be uploaded

AT+CDP     : Read or Clear cached data

AT+SERVADDR :   Server Address

MQTT Management

AT+CLIENT               : Get or Set MQTT client

AT+UNAME              : Get or Set MQTT Username

AT+PWD                  : Get or Set MQTT password

AT+PUBTOPIC          : Get or Set MQTT publish topic

AT+SUBTOPIC          : Get or Set MQTT subscription topic

Information           

AT+FDR              : Factory Data Reset

AT+PWORD        : Serial Access Password

AT+LDATA           : Get the last upload data

AT+CDP               : Read or Clear cached data

4. Battery & Power Consumption

SE0X-NB/NS use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.

Battery Info & Power Consumption Analyze .

5. Firmware update

User can change device firmware to::

  • Update with new features.
  • Fix bugs. 

Firmware and changelog can be downloaded from : Firmware download link

Methods to Update Firmware:

  • (Recommended way) OTA firmware update via BLE: Instruction.

 

3. Configure SE0X-NB/NS

3.1 Configure Methods

SE0X-NB/NS supports below configure method:

3.2 General Commands

These commands are to configure:

  • General system settings like: uplink interval.
  • LoRaWAN protocol & radio related command.

They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:

http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/

3.3 Commands special design for SE0X-NB/NS

These commands only valid for SE0X-NB/NS, as below:

3.3.1 Set Transmit Interval Time

Feature: Change LoRaWAN End Node Transmit Interval.

AT Command: AT+TDC

Command ExampleFunctionResponse
AT+TDC=?Show current transmit Interval

30000
OK
the interval is 30000ms = 30s

AT+TDC=60000Set Transmit Interval

OK
Set transmit interval to 60000ms = 60 seconds

Downlink Command: 0x01

Format: Command Code (0x01) followed by 3 bytes time value.

If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.

  • Example 1: Downlink Payload: 0100001E       // Set Transmit Interval (TDC) = 30 seconds

  • Example 2: Downlink Payload: 0100003C      // Set Transmit Interval (TDC) = 60 seconds

     

3.3.2 Quit AT Command

Feature: Quit AT Command mode, so user needs to input the password again before using AT Commands.

AT Command: AT+DISAT

Command ExampleFunctionResponse
AT+DISATQuit AT Commands modeOK

Downlink Command:

No downlink command for this feature.

3.3.3 Set Interrupt Mode

Feature, Set Interrupt mode for GPIO_EXTI of pin.

When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.

AT Command: AT+INTMOD

Command ExampleFunctionResponse
AT+INTMOD=?Show current interrupt mode

0
OK
the mode is 0 =Disable Interrupt

AT+INTMOD=2

Set Transmit Interval
0. (Disable Interrupt),
1. (Trigger by rising and falling edge)
2. (Trigger by falling edge)
3. (Trigger by rising edge)

OK

Downlink Command: 0x06

Format: Command Code (0x06) followed by 3 bytes.

This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.

  • Example 1: Downlink Payload: 06000000       //  Turn off interrupt mode
  • Example 2: Downlink Payload: 06000003      //   Set the interrupt mode to rising edge trigger

3.3.4 Set Power Output Duration

Control the output duration 5V . Before each sampling, device will

1. first enable the power output to external sensor,

2. keep it on as per duration, read sensor value and construct uplink payload

3. final, close the power output.

AT Command: AT+5VT

Command ExampleFunctionResponse
AT+5VT=?Show 5V open time.0 (default)
OK
AT+5VT=500Close after a delay of 1000 milliseconds.OK

Downlink Command: 0x07

Format: Command Code (0x07) followed by 2 bytes.

The first and second bytes are the time to turn on.

  • Example 1: Downlink Payload: 070000     --->   AT+5VT=0
  • Example 2: Downlink Payload: 0701F4      --->  AT+5VT=500

3.3.5 Setting the sensor address

Function:Change the sensor address to 0x01, 0x02, 0x03, 0x04

(Note:When setting the address of the sensor, you need to connect the device individually for each one, and when modifying the address, you can't connect more than one sensor at the same time, otherwise it will be impossible to modify it, and when modifying it, you need to connect the yellow wire to VDD, and after modifying it, you need to disconnect it.)

AT Command: AT+MADD

Command ExampleFunctionResponse
AT+MADD=1Set sensor address to 01

Successfully modified sensor address to 0x01

OK

AT+MADD=2Set sensor address to 02

Successfully modified sensor address to 0x02

OK

Downlink Command:

No downlink command for this feature.

3.3.6 Get or Set the sensor mode

Function: Set default mode or original mode

AT Command: AT+MOD

Command ExampleFunctionResponse
AT+MOD=0Set the operating mode to the default mode

OK

AT+MOD=1Setting the operating mode to the original mode

 

OK

Downlink Command: 0x07

Format: Command Code (0x0A) followed by 1 bytes.

The second byte is the mode selection.

  • Example 1: Downlink Payload: 0A00     --->   AT+MOD=0
  • Example 2: Downlink Payload: 0A01      --->  AT+MOD=1

4. Battery & Power Consumption

SE0X-NB/NS use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.

Battery Info & Power Consumption Analyze .

5. OTA Firmware update

User can change firmware SE0X-NB/NS to:

  • Change Frequency band/ region.
  • Update with new features.
  • Fix bugs. 

Firmware and changelog can be downloaded from : Firmware download link

Methods to Update Firmware:

6. FAQ

6.1 AT Commands input doesn't work

In the case if user can see the console output but can't type input to the device. Please check if you already include the ENTER while sending out the command. Some serial tool doesn't send ENTER while press the send key, user need to add ENTER in their string. 

6.2 Can I calibrate SE0X-NB/NS to different soil types?

SE0X-NB/NS can be used to measure EC/Moisture in different type of soil event concrete.

SE0X-NB/NS is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at this link.

6.3 ​Why I can't join TTN in US915 / AU915 bands?

It is due to channel mapping. Please see the Eight Channel Mode section above for details.

7. Order Info

Part Number: SE0X-NB/NS-XX 

XX: The default frequency band

  • AS923: LoRaWAN AS923 band
  • AU915: LoRaWAN AU915 band
  • EU433: LoRaWAN EU433 band
  • EU868: LoRaWAN EU868 band
  • KR920: LoRaWAN KR920 band
  • US915: LoRaWAN US915 band
  • IN865: LoRaWAN IN865 band
  • CN470: LoRaWAN CN470 band

8. ​Packing Info

Package Includes:

  • SE0X-NB/NS LoRaWAN Soil Moisture & EC Sensor Transmitter

Dimension and weight:

  • Device Size: cm
  • Device Weight: g
  • Package Size / pcs : cm
  • Weight / pcs : g

9. Support

  • Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
  • Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to Support@dragino.cc.