D2x.jpg

Table of Contents:

1. Introduction

1.1 What is D2x-CB NB-IoT/LTE-M Temperature Sensor

The Dragino D2x-CB is a NB-IoT/LTE-M Temperature Sensor for Internet of Things solution. D2x-CB has 1 ~ 3 temperature probes. D2x-CB will convert the Temperature reading to upload the sensor data send to IoT platform via NB-IoT/CAT-M1 network. 

The temperature sensor used in D2x-CB can measure -55°C ~ 125°C with accuracy ±0.5°C (max ±2.0 °C).

D2x-CB supports temperature alarm feature, user can set temperature alarm for instant notice. D2x-CB supports Datalog feature, it can save the data when there is no NB-IoT network and uplink when network recover.

D2x-CB has max 3 probes which measure maximum 3 temperature points.

D2x-CB supports different uplink methods including MQTT, MQTTs, UDP , TCP or CoAP for different application requirement, and support uplinks to various IoT Servers.

D2x-CB supports BLE configure and OTA update which make user easy to use.

D2x-CB is powered by 8500mAh Li-SOCI2 battery, it is designed for long-term use up to several years.

D2x-CB has optional built-in SIM card and default IoT server connection version. Which makes it works with simple configuration.

1.2 ​Features

  • For -NB Bands: B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B25/B28/B66/B70/B85
  • For -CB Bands: B1/B2/B3/B4/B5/B8/B12/B13//B18/B19/B20/B25/B28/B66/B71/B85
  • CAT-M1 / LTE-M Bands: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85
  • Ultra-low power consumption
  • 1 ~ 3 External Temperature Probes
  • Measure range -55°C ~ 125°C
  • Temperature alarm
  • Multiply Sampling and one uplink
  • Uplink via MQTT, MQTTs, TCP, UDP or CoAP
  • GNSS for Location Report
  • Support Bluetooth v5.1 remote configure and update firmware
  • Uplink on periodically
  • Downlink to change configure
  • 8500mAh Battery for long term use
  • Nano SIM card slot for NB-IoT SIM

1.3 Specification

Common DC Characteristics:

  • Supply Voltage: 2.6v ~ 3.6v
  • Operating Temperature: -40 ~ 85°C

Temperature Sensor:

  • Dallas DS18B20
  • Range: -55 to + 125°C
  • Accuracy ±0.5°C (max ±2.0 °C)

NB-IoT Spec:

NB-IoT Module: BG95-NGFF

Support Bands:

  • B1 @H-FDD: 2100MHz
  • B2 @H-FDD: 1900MHz
  • B3 @H-FDD: 1800MHz
  • B4 @H-FDD: 2100MHz
  • B5 @H-FDD: 860MHz
  • B8 @H-FDD: 900MHz
  • B12 @H-FDD: 720MHz
  • B13 @H-FDD: 740MHz
  • B17 @H-FDD: 730MHz
  • B18 @H-FDD: 870MHz
  • B19 @H-FDD: 870MHz
  • B20 @H-FDD: 790MHz
  • B25 @H-FDD: 1900MHz
  • B28 @H-FDD: 750MHz
  • B66 @H-FDD: 2000MHz
  • B70 @H-FDD: 2000MHz
  • B85 @H-FDD: 700MHz

Battery:

  • Li/SOCI2 un-chargeable battery
  • Capacity: 8500mAh
  • Self Discharge: <1% / Year @ 25°C
  • Max continuously current: 130mA
  • Max boost current: 2A, 1 second

Power Consumption

  • STOP Mode: 10uA @ 3.3v
  • Max transmit power: 350mA@3.3v

  

1.4 Applications

  • Smart Buildings & Home Automation
  • Logistics and Supply Chain Management
  • Smart Metering
  • Smart Agriculture
  • Smart Cities
  • Smart Factory

1.5 Sleep mode and working mode

Deep Sleep Mode: Sensor doesn't have any NB-IoT/CAT-M1 activate. This mode is used for storage and shipping to save battery life.

Working Mode: In this mode, Sensor will work as NB-IoT Sensor to Join NB-IoT network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.

1.6 Button & LEDs

1675071855856-879.png

Behavior on ACTFunctionAction
Pressing ACT between 1s < time < 3sSend an uplink

If sensor has already attached to NB-IoT/CAT-M1 network, sensor will send an uplink packet, blue led will blink once.
Meanwhile, BLE module will be active and user can connect via BLE to configure device.

Pressing ACT for more than 3sActive Device

Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to  attach NB-IoT/CAT-M1 network.
Green led will solidly turn on for 5 seconds after joined in network.
Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device attach NB-IoT/CAT-M1 network or not.

Fast press ACT 5 times.Deactivate DeviceRed led will solid on for 5 seconds. Means device is in Deep Sleep Mode.

Note: When the device is executing a program, the buttons may become invalid. It is best to press the buttons after the device has completed the program execution.

1.7 BLE connection

D2x-CB support BLE remote configure and firmware update.

BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:

  • Press button to send an uplink
  • Press button to active device.
  • Device Power on or reset.

If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.

1.8 Pin Definitions , Switch & SIM Direction

D2x-CB use the mother board from D2x-CB which as below.

image-20240716143323-1.png

1.8.1 Jumper JP2

Power on Device when put this jumper.

1.8.2 BOOT MODE / SW1

1) ISP: upgrade mode, device won't have any signal in this mode. but ready for upgrade firmware. LED won't work. Firmware won't run.

2) Flash: work mode, device starts to work and send out console output for further debug

1.8.3 Reset Button

Press to reboot the device.

1.8.4 SIM Card Direction

See this link. How to insert SIM Card.

1.9 Hardware Variant

ModelPhotoProbe Info
D20-CBimage-20230526153320-2.jpeg

 

1 x DS28B20 Probe

Cable Length : 2 meters

 

D20S-CBimage-20230526150859-1.jpeg

 

1 x DS28B20 Probe (Suitable for bury in soil)

Material: TPE, Cable Length: 2meters

D22-CBimage-20230526153345-3.jpeg

 

2 x DS28B20 Probes

Cable lengths total 1.5meters per probe

Cable Drawing: See This Link

D23-CB

 

image-20230526153417-4.jpeg

 

3 x DS28B20 Probes

Cable lengths total 1.5meters per probe

Cable Drawing: See This Link

 

2. Use D2x-CB to communicate with IoT Server

2.1 Send data to IoT server via NB-IoT/CAT-M1 network

The D2x-CB is equipped with a NB-IoT module, the pre-loaded firmware in D2x-CB will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by D2x-CB.

Below shows the network structure:

image-20240722084453-1.jpeg

There are two version: -GE and -1T version of D2x-CB.

GE Version: This version doesn't include SIM card or point to any IoT server. User needs to use AT Commands to configure below two steps to set D2x-CB send data to IoT server.

  • Install NB-IoT SIM card and configure APN. See instruction of Attach Network.

Below shows result of different server as a glance.

ServersDash BoardComments
Node-Red

image-20230819113244-8.png

 
DataCake

image-20230819113244-9.png

 
Tago.IO  
General UDPRaw Payload. Need Developer to design Dash Board 
General MQTTRaw Payload. Need Developer to design Dash Board 
ThingSpeak

image-20230819113244-10.png

 
ThingsBoard

image-20230819113244-11.png

 

1T Version: This version has 1NCE SIM card pre-installed and configure to send value to ThingsEye. User Just need to select the sensor type in ThingsEyeand Activate D2x-CB and user will be able to see data in ThingsEye. See here for ThingsEye Config Instruction.

2.2 ​Payload Types

To meet different server requirement, D2x-CB supports different payload type.

Includes:

User can specify the payload type when choose the connection protocol. Example:

AT+PRO=2,0            // Use UDP Connection & hex Payload

AT+PRO=2,5            // Use UDP Connection & Json Payload

AT+PRO=3,5            // Use MQTT Connection & Json Payload

2.2.1 General Json Format(Type=5)

(D23-CB)This is the General Json Format. As below:

{"IMEI":"868508065628110","IMSI":"460240210507481","Model":"D23-CB","temperature1":28.1,"temperature2":28.7,"temperature3":28.5,"interrupt":0,"interrupt_level":0,"battery":3.15,"signal":23,"time":"2024-12-09T08:02:48Z","latitude":0.000000,"longitude":0.000000,"gps_time":"1970-01-01T00:00:00Z","1":[204.8,1.0,0.4,"2024-12-09T07:47:05Z"],"2":[204.8,1.0,0.4,"2024-12-09T07:32:05Z"],"3":[23.3,54.2,0.4,"2024-12-09T06:09:17Z"],"4":[23.1,53.9,0.4,"2024-12-09T05:54:17Z"],"5":[22.5,54.8,0.4,"2024-12-09T05:39:17Z"],"6":[21.6,55.2,1.3,"2024-12-09T05:24:17Z"],"7":[21.8,55.1,1.3,"2024-12-09T05:09:17Z"],"8":[21.7,55.4,1.3,"2024-12-09T04:54:17Z"]}

image-20241209160643-1.png

Notice, from above payload:

  • Temperature1 , Temperature2, Temperature3, Interrupt, Interrupt_level, Battery, Signal, Latitude, Longitude & GPS_time are the value at uplink time.
  • Json entry 1 ~ 8 are the last 1 ~ 8 sampling data as specify by AT+CLOCKLOG=1,65535,15,8  Command. Each entry includes (from left to right): Temperature1, Temperature2, Temperature3, Sampling time.

2.2.2 HEX format Payload(Type=0)

This is the HEX Format. As below:

f868508065628110f460240210507481496e0c9218010000000000011c012701206756a5650000000000000000000000000800000a00046756a0790800000a000467569cf500e9021e00046756898d00e7021b00046756860900e1022400046756828500d80228000d67567f0100da0227000d67567b7d00d9022a000d675677f9

image-20241226095653-1.png

If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NB sensor uplink data.

image-20241209160959-2.png

Version:

These bytes include the hardware and software version.

Higher byte: Specify Sensor Model: 0x49 for D2x-CB

Lower byte: Specify the software version: 0x6e=110, means firmware version 1.1.0

BAT (Battery Info):

Ex1: 0x0cea = 3306mV

Signal Strength:

NB-IoT Network signal Strength.

Ex1: 0x1C = 28

0        -113dBm or less

1        -111dBm

2...30 -109dBm... -53dBm

31      -51dBm or greater

99      Not known or not detectable

ADC:

  Ex1: 0x0000=0   /The error value is 50mV.

  Ex2: 0x0b94 =2964= 2964.00mv

PA4_level:

Level of PA4 pin. (0: Low level     1: High level)

Interrupt:

This data field shows if this packet is generated by interrupt or not.

Example:

If byte[0]&0x01=0x00 : Normal uplink packet.

If byte[0]&0x01=0x01 : Interrupt Uplink Packet.

Interrupt_level:

This byte shows whether the interrupt is triggered by a high or low level.

Ex1: 0x00  Interrupt triggered by falling edge (low level)

Ex2: 0x01  Interrupt triggered by rising edge (high level)

Temperature: 

If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree

If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.

(FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

If payload is: FFFF(H): (FFFF & 8000 == 1), Fixed display temp = -409.5℃, Indicates that the DS18B20 sensor is not connected, or no data.

TimeStamp/GPS_Timestamp:   

Unit TimeStamp Example: 668613d7(H) = 1720062935(D)

Put the decimal value into this link(https://www.epochconverter.com)) to get the time.

Latitude:

Example: 0x015a758e(H)=22705550(D)=22.705550

Longitude:

Example: 0x06cf36da(H)=114243290(D)=114.243290

2.2.3 ThingsBoard Payload(Type=3)

Type3 payload special design for ThingsBoard, it will also configure other default server to ThingsBoard.

{
    "topic": "002_CB",
    "payload": {
        "IMEI": "868508065628110",
        "IMSI": "460240210507481",
        "Model": "D23-CB",
        "temperature1": 28.1,
        "temperature2": 29.3,
        "temperature3": 28.8,
        "interrupt": 0,
        "interrupt_level": 0,
        "battery": 3.14,
        "signal": 24,
        "time": "2024-12-09T08:14:39Z",
        "latitude": 0.0,
        "longitude": 0.0,
        "gps_time": "1970-01-01T00:00:00Z",
        "1": [204.8, 1.0, 0.4, "2024-12-09T07:47:05Z"],
        "2": [204.8, 1.0, 0.4, "2024-12-09T07:32:05Z"],
        "3": [23.3, 54.2, 0.4, "2024-12-09T06:09:17Z"],
        "4": [23.1, 53.9, 0.4, "2024-12-09T05:54:17Z"],
        "5": [22.5, 54.8, 0.4, "2024-12-09T05:39:17Z"],
        "6": [21.6, 55.2, 1.3, "2024-12-09T05:24:17Z"],
        "7": [21.8, 55.1, 1.3, "2024-12-09T05:09:17Z"],
        "8": [21.7, 55.4, 1.3, "2024-12-09T04:54:17Z"]
    }
}

image-20241209161612-3.png

2.2.4 ThingSpeak Payload(Type=1)

This payload meets ThingSpeak platform requirement. It includes only four fields. Form 1~5 are:

Temperature1, Temperature 2, Temperature 3,Battery & Signal. This payload type only valid for ThingsSpeak Platform

As below:

field1=temp1 value&field2=temp2 value&field3=temp3 value&field4=Battery value&field5=Signal value

image-20240710103122-5.png

image-20240710103236-6.png

2.3 Uplink Payload

D2x-CB will uplink payload via NB-IoT with below payload format:

Uplink payload includes in total 29 bytes.

Size(bytes)8221121112224
Valuef+IMEIVerBAT

Signal Strength

ModADC PA4_levelInterrupt

Interrupt
_level

Temp1 (PC13)

Temp2 (PB9)

Temp3 (PB8)

Timestamp

If the cache upload mechanism is turned on, you will receive the payload shown in the figure below.

Frame headerFrame data(1)Frame data(2)F…Frame data(X)

Decode corresponding probe color

D20:

Red <--> C1 

D22:

White <--> C1 , Red <--> C2

D23:

White <-->C1  , Red <--> C2  , Black <--> C3

Temperature RED or Temperature White

This point to the Red probe in D20-CB or the probe of D22-CB/D23-CB White

When the cache upload mechanism is turned on and the sensor is not identified, the uploaded real-time data is FFFF and the uploaded historical data is F001.

Example:

Real-time data:

If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree

If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.

(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

When no sensor is identified,payload is: FFFFH : (FFFF&8000 == 1),temp = (FFFFH-65536)/10=-409.5 degrees. 

(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

Caching data:

If payload is: 0109H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.5 degree

if payload is: F001H: (F001&8000 == 1),temp = (F001-65536)/10 = -409.5 degrees.

(F001 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

Temperature White

This point to the Red probe in D22-CB/D23-CB.

When the cache upload mechanism is turned on and the sensor is not identified, the uploaded real-time data is FFFF and the uploaded historical data is F001.

Example:

Real-time data:

If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree

If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.

(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

When no sensor is identified,payload is: FFFFH : (FFFF&8000 == 1),temp = (FFFFH-65536)/10=-409.5 degrees. 

(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

Caching data:

If payload is: 0109H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.5 degree

if payload is: F001H: (F001&8000 == 1),temp = (F001-65536)/10 = -409.5 degrees.

(F001 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

Temperature Black

This point to the BLACK probe in D23-CB

When the cache upload mechanism is turned on and the sensor is not identified, the uploaded real-time data is FFFF and the uploaded historical data is F001.

Example:

Real-time data:

If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree

If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.

(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

When no sensor is identified,payload is: FFFFH : (FFFF & 8000 == 1),temp = (FFFFH - 65536)/10=-409.5 degrees. 

(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

Caching data:

If payload is: 0109H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.5 degree

if payload is: F001H: (F001&8000 == 1),temp = (F001-65536)/10 = -409.5 degrees.

(F001 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)

3. Configure D2x-CB

3.1 Configure Methods

D2x-CB supports below configure method:

​​​

3.2  Serial Access Password

After the Bluetooth or UART connection is successful, use the Serial Access Password to enter the AT command window.

The label on the box of the node will print the initial password: AT+PIN=xxxxxx, and directly use the six-digit password to access the AT instruction window.

image-20240826182452-2.png

If you need to change the password, use AT+PWORD=xxxxxx (6 characters), -CB nodes only support lowercase letters.

image-20240826182457-3.png

Note: After entering the command, you need to add a line break, and you can also set automatic line breaks in the Bluetooth tool or UART connection tool.

image-20240826182505-4.png

3.3 AT Commands Set

AT+<CMD>? : Help on <CMD>

AT+<CMD> : Run <CMD>

AT+<CMD>=<value> : Set the value

AT+<CMD>=? : Get the value

General Commands       

AT                    : Attention        

AT?                  : Short Help      

ATZ : Trig a reset of the MCU

AT+MODEL : Get module information

AT+CFGMOD : Working mode selection

AT+DEUI : Get or set the Device ID

AT+CFG : Print all settings

AT+SERVADDR: Get or Set the Server address

AT+TDC : Get or set the application data transmission interval in s

AT+INTMOD : Get or Set the trigger interrupt mode (0:input,1:falling or rising,2:falling,3:rising)

AT+APN : Get or set the APN

AT+5VT : Get or Set extend the time of 5V power

AT+PRO : Get or Set usage agreement (1:COAP,2:UDP,3:MQTT,4:TCP)

AT+RXDL : Get or Set the receiving time

AT+EXT : Get or Set Count value

ATAT+TEMPALARM1:Get or Set alarm of temp1

ATAT+TEMPALARM2:Get or Set alarm of temp2

ATAT+TEMPALARM3:Get or Set alarm of temp3

AT+GETSENSORVALUE : Returns the current sensor measurement

AT+DNSCFG : Get or Set DNS Server

AT+CSQTIME : Get or Set the time to join the network

AT+GDNS : Get or Set the DNS

AT+TLSMOD : Get or Set the TLS mode

AT+SLEEP : Get or Set the sleep mode

AT+MQOS : Set the QoS level of MQTT

AT+IPTYPE : Set the IPv4 or IPv6

AT+QSW : Power on and power off BG95 module

AT+GETLOG : Print serial port logs

AT+CLOCKLOG: Get or set SHT record time

AT+QBAND: Get or set Frequency Band

AT+IOTMOD: Configure Network Category to be Searched for under LTE RAT

MQTT Management

AT+CLIENT : Get or Set the MQTT clientID

AT+UNAME : Get or Set the MQTT Username

AT+PWD : Get or Set the MQTT password

AT+PUBTOPIC: Get or set MQTT publishing topic

AT+SUBTOPIC: Get or set MQTT subscription topic

Coap Management:

AT+URI1: Get or set CoAP option 1

AT+URI2: Get or set CoAP option 2

AT+URI3: Get or set CoAP option 3

AT+URI4: Get or set CoAP option 4

AT+URI5: Get or set CoAP option 5

AT+URI6: Get or set CoAP option 6

AT+URI7: Get or set CoAP option 7

AT+URI8: Get or set CoAP option 8

GPS:

AT+GNSST : Extend the time to turn on GNSS

AT+GPS : Turn off and on GPS

AT+GTDC : Get or set GPS positioning interval in units of h

Information           

AT+FDR1 : Reset parameters to factory default values except for passwords

AT+FDR : Reset Parameters to Factory Default

AT+PWORD : Get or set the System password

AT+CDP : Read or Clear cached data

AT+LDATA : Get the last upload data

3.4 Test Uplink and Change Update Interval

By default, Sensor will send uplinks every 2 hours.

User can use below commands to change the uplink interval.

AT Command: AT+TDC       

Example: AT+TDC=600   // Set Update Interval to 600 seconds

Downlink Commands: 0x01

Format: Command Code (0x01) followed by 3 bytes.

Example:     12 hours= 43200 seconds     43200(D)=0xA8C0(H)

                    Downlink Payload: 01 00 A8 C0          // AT+TDC=43200, Set Update Interval to 12 hours.

Note: User can also push the button for more than 1 seconds to activate an uplink.

3.5 Set the receiving time

Feature: Extend the receiving time

AT Command: AT+RXDL

Example: AT+RXDL=1000   // Set the receiving time delay to 1000ms

Downlink Commands: 0x03

Format: Command Code (0x03) followed by 3 bytes.

Example:  Downlink Payload: 03 00 03 E8     // AT+RXDL=1000

3.6 Reset

Feature: Trig a reset of the MCU.

AT Command: ATZ

Downlink Commands: 0x04FF

3.7 +5V

Feature: Set extend the time of 5V power.

AT Command: AT+5VT

Example: AT+5VT=2000  //Set extend the time of 5V power to 2000 ms

Downlink Commands: 0x05

Format: Command Code (0x05) followed by 3 bytes.

Example:  Downlink Payload: 05 00 07 D0    // AT+5VT=2000

3.8 Trigger an uplink by external interrupt

D2x-CB has an external trigger interrupt function. Users can use the PB15 pin to trigger the upload of data packets.

AT command:

  • AT+INTMOD         // Set the trigger interrupt mode
  • AT+INTMOD=0    // Disable Interrupt
  • AT+INTMOD=1    // Trigger by rising and falling edge
  • AT+INTMOD=2    // Trigger by falling edge
  • AT+INTMOD=3    // Trigger by rising edge

Downlink Commands: 0x06

Format: Command Code (0x06) followed by 3 bytes.

Example1:  Downlink Payload: 06 00 00 01    //AT+INTMOD=1

Example2:  Downlink Payload: 06 00 00 03    //AT+INTMOD=3

3.9 Set the QoS level

This command is used to set the QoS level of MQTT.

AT command:

  • AT+MQOS=xx   // 0~2

Downlink command: 0x07

Format: Command Code (0x07) followed by 1 byte.

Ex1: Downlink payload: 0x0700   // AT+MQOS=0

Ex2: Downlink payload: 0x0701   // AT+MQOS=1

3.10 Clock logging

Sometimes when we deploy lots of end nodes in field. We want all sensors sample data at the same time, and upload these data together for analyze. In such case, we can use clock loging feature.

We can use this command to set the start time of data recording and the time interval to meet the requirements of the specific collection time of data.

AT command: AT+CLOCKLOG=a,b,c,d

a: 0: Disable Clock logging.   1: Enable Clock Logging

b: Specify First sampling start second: range (0 ~ 3599, 65535)         // Note: If parameter b is set to 65535, the log period starts after the node accesses the network and sends packets.

c: Specify the sampling interval: range (0 ~ 255 minutes)

d: How many entries should be uplink on every TDC (max 32)

Note: To disable clock recording, set the following parameters: AT+CLOCKLOG=1,65535,0,0

image-20240315141254-1.png

Example:

AT+CLOCKLOG=1,65535,1,5

After the node sends the first packet, data is recorded to the memory at intervals of 1 minute. For each TDC uplink, the uplink load will include: battery information + the last 5 memory records (payload + timestamp).

image-20240712103240-1.png

Note: Users need to synchronize the server time before configuring this command. If the server time is not synchronized before this command is configured, the command takes effect only after the node is reset.

Downlink command: 0x08

Format: Command Code (0x08) followed by 5 bytes.

  • Example 1: Downlink Payload: 08 01 FFFF 0F 08             // Set SHT record time: AT+CLOCKLOG=1,65535,15,8
  • Example 2: Downlink Payload: 08 01 04B0 0F 08             // Set SHT record time: AT+CLOCKLOG=1,1200,15,8

Note: When entering the downlink payload, there must be no Spaces between bytes.

3.11 Set the TLS mode

Refer to this link (MQTT Connection to send data to Tago.io)to use the TLS mode.

AT Command: AT+TLSMOD

Example 1:  AT+TLSMOD=0,0   //Disable TLS Mode.

Example 2:  AT+TLSMOD=1,0   //No authentication

                     AT+TLSMOD=1,1   //Perform server authentication

                     AT+TLSMOD=1,2   //Perform server and client authentication if requested by the remote server

Downlink command: 0x09

Format: Command Code (0x09) followed by 2 bytes.

Example1:  Downlink Payload: 09 00 00    //AT+TLSMOD=0,0

Example2:  Downlink Payload: 09 01 02    //AT+TLSMOD=1,2

3.12 Set GNSS open time

Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated.

AT Command: AT+GNSST

Example: AT+GNSST=30  //Set the GPS positioning time to 30 seconds

Downlink command: 0x10

Format: Command Code (0x10) followed by 2 bytes.

Example:  Downlink Payload: 10 00 1E    //AT+GNSST=30

3.13 Turn on/off GPS

AT Command: AT+GPS 

Ex1:  AT+GPS=0    //Turn off GPS

Ex2:  AT+GPS=1    //Turn on GPS

Downlink command: 0x11

Format: Command Code (0x11) followed by 1 byte.

Example:  Downlink Payload: 11 01   //AT+GPS=1

3.14 Set GPS positioning interval

Feature: Set GPS positioning interval (unit: hour). 

When GPS is enabled, the node automatically locates and uplinks each time it passes GTDC time after activation.

AT Command: AT+GTDC

Example: AT+GTDC=24  //Set the GPS positioning interval to 24h.

Downlink command: 0x12

Format: Command Code (0x12) followed by 3 bytes.

Example: 24 hours:  24(D)=0x18(H)

               Downlink Payload: 12 00 00 18  //AT+GTDC=24

3.15 Set the search network time

Feature: Get or Set the time to join the network(unit: minutes).

AT Command: AT+CSQTIME

Example: AT+CSQTIME=10 //Set the search time to 10 minutes.

Downlink command: 0x13

Format: Command Code (0x13) followed by 1 byte.

Example:  Downlink Payload: 13 0A  //AT+CSQTIME=10

3.16 Temperature Alarm Feature

D2x-CB work flow with Alarm feature.

图片-20220623090437-1.png

Set Alarm Thredhold

Set for Separate Probes:

AT+TEMPALARM1 index=min,max

Index:

  • 1: Temperature_Red
  • 2: Temperature_White
  • 3: Temperature_Black

min,max:

  • When min=max, Alarm is not enabled
  • When min=0, and max≠0, Alarm trigger when higher than max
  • When min≠0, and max=0, Alarm trigger when lower than min
  • When min≠0 and max≠0, Alarm trigger when higher than max or lower than min

Downlink command: 0x0A

Format: Command Code (0x0A) followed by 6 bytes.

The first and second bytes after 0x0A are min and max for temperature 1, the third and fourth bytes are min and max for temperature 2, and the fifth and sixth bytes are min and max for temperature 3.

Example:

   AT+TEMPALARM1=-10,30     // Temperature 1 alarm when < -10 or higher than 30.

   AT+TEMPALARM2=20,20      // The alarm for temperature 2 is disabled.                       -->  Downlink payload: 0A  F6  1E 14 14 00 23                                     

   AT+TEMPALARM3=0,35       // Temperature 3 alarm when higher than 30.

For the negative temperature x represented in the downlink payload, it can be calculated as follows:  256+x

Ex1: -10℃       256+(-10)= 246(D) =0xF6(H)

Ex2: -25℃       256+(-25)= 231(D) =0xE7(H)

3.17 Set the IPv4 or IPv6

This command is used to set IP version.

AT command:

  • AT+IPTYPE=1      // IPv4
  • AT+IPTYPE=2      // IPv6

3.18 Configure Network Category to be Searched for under LTE RAT.

AT command: AT+IOTMOD=xx

xx:       0: eMTC 

            1: NB-IoT 

            2: eMTC and NB-IoT 

3.19 Factory data reset

Two different restore factory Settings configurations.

AT command:

  • AT+FDR       // Reset Parameters to Factory Default.
  • AT+FDR1     // Reset parameters to factory default values except for passwords.

3.20 Set CoAP option

Feature: Set CoAP option, follow this link to set up the CoaP protocol.

AT command: AT+URI1~AT+URI8

AT+URI1=11,"i"         // "i/" indicates that the endpoint supports observation mode. In -CB products, fixed  setting AT+URI1=11,"i"

AT+URI2=11,"CoAP endpoint URl"   // 11 is a fixed parameter.

Example:  i/13a35fbe-9515-6e55-36e8-081fb6aacf86

AT+URI1=11,"i"

AT+URI2=11,"13a35fbe-9515-6e55-36e8-081fb6aacf86"

-->If multiple groups of CoAP endpoint urls:

AT+URI3=11,"i"

AT+URI4=11,"CoAP endpoint URl"

3.21 Power on / power off BG95 module

This command is used to power on and power off BG95 module.

  • AT command: AT+QSW

The module is powered on after the command is sent for the first time, and powered off after the command is sent again.

image-20240712104123-5.png

3.22 Example Query saved historical records

  • AT command: AT+CDP

This command can be used to search the saved history, recording up to 32 groups of data, each group of historical data contains a maximum of 100 bytes.

image-20240712103848-2.png

3.23 Uplink log query

  • AT command: AT+GETLOG

This command can be used to query upstream logs of data packets.

image-20240712103938-3.png

3.24 Set the downlink debugging mode(Since firmware v1.1.0)

Feature: Set the conversion between the standard version and 1T version downlinks.

AT command: AT+DOWNTE

Command ExampleFunction/ParametersResponse/Explanation
AT+DOWNTE=?Get current Settings

0,0   (default)
OK

 

AT+DOWNTE=a,b

a: Set the conversion between the downlink of the standard version and 1T version

0: Set the downlink of the standard version.
1: Set the downlink of the 1T version(ThingsEye platform) 

b: Enable/Disable downlink debugging

0: Disable downlink debugging mode.
1: Enable downlink debugging mode, users can see the original downlink reception.

Example:

  • AT+DOWNTE=0,1  // Set to standard version downlink, and enable downlink debugging.
  • AT+DOWNTE=1,1  // Set to 1T version downlink, and enable downlink debugging.

Downlink Command:  

No downlink commands for feature

4. Battery & Power Consumption

D2x-CB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.

Battery Info & Power Consumption Analyze .

5. Firmware update

User can change device firmware to::

  • Update with new features.
  • Fix bugs. 

Firmware and changelog can be downloaded from : Firmware download link

Methods to Update Firmware:

  • (Recommended way) OTA firmware update via BLE: Instruction.

6. FAQ

6.1 How can I access the BG95-NGFF AT Commands?

User can access to BG95-NGFF directly and send AT Commands.

See BG95-NGFF AT Command set

6.2 General Manual for -CB , -CS models

Users can follow the instructions in this link to see how to configure to connect to different servers.

7. Order Info

Part Number: D20-CB-XX  / D20S-CB (designed for used in Soil or Road)/D22-CB-XX / D23-CB-XX

XX

  • GE: General version ( Exclude SIM card)
  • 1T: with 1NCE* 10 years 500MB SIM card and Pre-configure to ThingsEye server

8. ​Packing Info

Package Includes:

  • D2x-CB NB-IoT/LTE-M Temperature Sensor x 1
  • External antenna x 1

Dimension and weight:

  • Device Size: cm
  • Device Weight: g
  • Package Size / pcs : cm
  • Weight / pcs : g

9. Support

  • Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
  • Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to Support@dragino.cc.

   

Tags:
    
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0