1652856952171-363.png

1. Introduction

1.1 ​What is CPN01 NB-IoT Pulse/Contact Sensor

The Dragino CPN01 is an NB-IoT Dry Contact Sensor. It detects open/close status and uplinks the info to IoT server via NB-IoT network. User can see the dry contact status, open time, and open counts in the IoT Server.

The CPN01 will send periodically data every day as well as for each dry contact action. It also counts the contact open times and calculates the last open duration. Users can also disable the uplink for each Open/Close event, instead, device can count each open event and uplink periodically.

CPN01 has Open-Alarm feature, user can set this feature so CPN01 will send an alarm if the contact has been open exceeds a certain time.

CPN01 is designed for outdoor use. It has a weatherproof enclosure and industrial-level battery to work in low to high temperatures.

NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity, and spectrum efficiency, especially in deep coverage.

CPN01 supports different uplink methods including TCP, MQTT, UDP, and CoAP for different application requirements.

CPN01 is powered by 8500mAh Li-SOCI2 battery, It is designed for long-term use of up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)

To use CPN01, user needs to check if there is NB-IoT coverage in the field and with the Nb-IoT bands that CPN01 supports. If local operator support it, user needs to get a NB-IoT SIM card from the operator and install into CPN01 to get NB-IoT network connection. 

​1.2 Features

  • NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
  • Open/Close detect
  • Open/Close statistics
  • Monitor Battery Level
  • Uplink on periodically and open/close event
  • Datalog feature
  • Uplink periodically
  • Downlink to change configure
  • Wall Mountable
  • Outdoor Use
  • Ultra-Low Power consumption
  • AT Commands to change parameters
  • Micro SIM card slot for NB-IoT SIM
  • 8500mAh Battery for long-term use

1.3  Specification

Common DC Characteristics:

  • Supply Voltage: 2.1v ~ 3.6v
  • Operating Temperature: -40 ~ 85°C

NB-IoT Spec:

  • - B1 @H-FDD: 2100MHz
  • - B3 @H-FDD: 1800MHz
  • - B8 @H-FDD: 900MHz
  • - B5 @H-FDD: 850MHz
  • - B20 @H-FDD: 800MHz
  • - B28 @H-FDD: 700MHz

1.4 Installation

Connect CPN01 to an Open Close sensor like below. So it can detect the Open/Close event.

image-20221021110329-1.png

image-20221022234602-2.png

1.5 ​Applications

  • Open/Close Detection
  • Pulse meter application
  • Dry Contact Detection

1.6 Mechanical

image-20221021110415-3.png

 1.7 Pin Definitions and Switch

image-20221021110429-4.png

1.7.1 Pin Definition

CPN01 is pre-configured to connect to two external wires. The other pins are not used. If user wants to know more about other pins, please refer to the LSN50v2 User Manual.

1.7.2 Jumper JP2(Power ON/OFF)

Power on Device when putting this jumper.

1.7.3 BOOT MODE / SW1

1) ISP: upgrade mode, device won't have any signal in this mode. but ready for upgrade firmware. LED won't work. The firmware won't run.

2) Flash: working mode, the device starts to work for NB-IoT connection and sends out console output for further debugging.

1.7.4 Reset Button

Press to reboot the device.

1.7.5 LED

The LED will blink when :

  1. Boot the device in flash mode
  2. Send an uplink packet

2.  Use CPN01 to communicate with IoT Server

2.1  How it works

The CPN01 is equipped with a NB-IoT module, the pre-loaded firmware in CPN01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by CPN01.

The diagram below shows the working flow in default firmware of CPN01: 

image-20221021110615-5.png

2.2 ​ Configure the CPN01

2.2.1  Test Requirement

To use CPN01 in your city, make sure meet below requirements:

  • Your local operator has already distributed a NB-IoT Network there.
  • The local NB-IoT network used the band that CPN01 supports.
  • Your operator is able to distribute the data received in their NB-IoT network to your IoT server.

Below figure shows our testing structure.   Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The CPN01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server

  ​

2.2.2  Insert SIM card

Insert the NB-IoT Card get from your provider.

User need to take out the NB-IoT module and insert the SIM card like below:

image-20221021110745-6.png ​

2.2.3  Connect USB – TTL to CPN01 to configure it

User need to configure CPN01 via serial port to set the Server Address / Uplink Topic to define where and how-to uplink packets. CPN01 support AT Commands, user can use a USB to TTL adapter to connect to CPN01 and use AT Commands to configure it, as below.

Connection:

 USB TTL GND <----> GND

 USB TTL TXD <----> UART_RXD

 USB TTL RXD <----> UART_TXD

In the PC, use below serial tool settings:

  • Baud:       9600
  • Data bits: 8
  • Stop bits: 1
  • Parity:      None
  • Flow Control: None

Make sure the switch is in FLASH position, then power on device by connecting the jumper on CPN01. CPN01 will output system info once power on as below, we can enter the password: 12345678 to access AT Command input. 

image-20221021110817-7.png

Note: the valid AT Commands can be found at:  https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0

2.2.4  Use CoAP protocol to uplink data

Note: if you don't have CoAP server, you can refer this link to set up one: http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/

Use below commands:

  • AT+PRO=1                                               // Set to use CoAP protocol to uplink
  • AT+SERVADDR=120.24.4.116,5683     // to set CoAP server address and port
  • AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"        //Set COAP resource path

For parameter description, please refer to AT command set

image-20221021110948-8.png

After configure the server address and reset the device (via AT+ATZ ), CPN01 will start to uplink sensor values to CoAP server. 

image-20221021110956-9.png ​

2.2.5  Use UDP protocol to uplink data(Default protocol)

This feature is supported since firmware version v1.0.1

  • AT+PRO=2     // Set to use UDP protocol to uplink
  • AT+SERVADDR=120.24.4.116,5601      // to set UDP server address and port
  • AT+CFM=1           //If the server does not respond, this command is unnecessary

image-20221021111025-10.png

image-20221021111033-11.png

2.2.6  Use MQTT protocol to uplink data

This feature is supported since firmware version v110

  • AT+PRO=3                                                 //Set to use MQTT protocol to uplink
  • AT+SERVADDR=120.24.4.116,1883         //Set MQTT server address and port
  • AT+CLIENT=CLIENT                                  //Set up the CLIENT of MQTT
  • AT+UNAME=UNAME                               //Set the username of MQTT
  • AT+PWD=PWD                                        //Set the password of MQTT
  • AT+PUBTOPIC=NSE01_PUB                    //Set the sending topic of MQTT
  • AT+SUBTOPIC=NSE01_SUB                    //Set the subscription topic of MQTT

image-20221021111058-12.png

image-20221021111108-13.png

MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.

2.2.7  Use TCP protocol to uplink data

This feature is supported since firmware version v110

  • AT+PRO=4                                              // Set to use TCP protocol to uplink
  • AT+SERVADDR=120.24.4.116,5600    // to set TCP server address and port

image-20221021111125-14.png

image-20221021111131-15.png

2.2.8  Change Update Interval

User can use below command to change the uplink interval.

  • AT+TDC=600        // Set Update Interval to 600s

NOTE:

1. By default, the device will send an uplink message every 1 hour.

2.3  Uplink Payload

In this mode, uplink payload includes 87 bytes in total by default.

Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.

Size(bytes)822111224
ValueDevice IDVerBATSignal StrengthMODInterruptSoil PHSoil TemperatureTime stamp
2248 group
Soil TemperatureSoil PHTime stamp...

If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the CPN01 uplink data.

image-20221021111201-16.png

The payload is ASCII string, representative same HEX:

0x 0xf867787050213317  0064 _0c78  17  01  00  01   00  000009    000002  6315537bb   0100000b02000002663510fed  0100000e0200000263510f39 010000000000000063510e85 010000000000000063510d2e 010000000000000063510c7a 010000000000000063510bc6 010000000000000063510954 010000000000000063510882 

where:
* Device ID: 0x f867787050213317 = f867787050213317

* Version: 0x0064=100=1.0.0

* BAT: 0x0c78 = 3192 mV = 3.192V

* Singal: 0x17 = 23

* Mod: 0x01 = 1

* Calculate Flag: 0x00= 0

* Contact Status: 0x00= 0

* Alarm:0x00 =0

* Total pulse:0x09 =0

* The last open duration:0x02 =2

*Time stamp : 0x6315537b =1662342011

* Contact Status, Total pulse, Calculate Flag, The last open duration ,Time stamp : 0100000b0200002663510fed

* 8 sets of recorded data: Contact Status, Total pulse, Calculate Flag, The last open duration ,Time stamp : 0100000e0200002663510f39,.......

2.4  Payload Explanation and Sensor Interface

2.4.1  Device ID

By default, the Device ID equal to the last 15 bits of IMEI.

User can use AT+DEUI to set Device ID

Example:

AT+DEUI=868411056754138

The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.

2.4.2  Version Info

Specify the software version: 0x64=100, means firmware version 1.00.

For example: 0x00 64 : this device is CPN01 with firmware version 1.0.0.

2.4.3  Battery Info

Check the battery voltage for CPN01.

Ex1: 0x0B45 = 2885mV

Ex2: 0x0B49 = 2889mV

2.4.4  Signal Strength

NB-IoT Network signal Strength.

Ex1: 0x1d = 29

0        -113dBm or less

1        -111dBm

2...30 -109dBm... -53dBm

31      -51dBm or greater

99      Not known or not detectable

2.4.5 Calculate Flag

The calculate flag is a user define field, IoT server can use this filed to handle different meter with different pulse factor. For example, if there are 100 water meters, meter 1 ~50 are 1 liter/pulse and meter 51 ~ 100 has 1.5 liter/pulse.

User can set calculate flag to 1 for meter 1~50 and 2 for meter 51 ~ 100, So IoT Server can use this field for calculation.

Default value: 0.  

Range (6 bits): (b)000000 ~ (b) 111111

2.4.6   Alarm

See Alarm Base on Timeout

2.4.7 Contact Status

0: Open

1: Close

2.4.8 Total pulse

Total pulse/counting base on dry contact trigger event

Range (3 Bytes) : 0x000000 ~ 0xFFFFFF . Max: 16777215

2.4.9 The last open duration

Dry Contact last open duration.

Unit: min.

image-20221021111346-17.png

2.4.10  Timestamp

Time stamp : 0x6315537b =1662342011

Convert Unix timestamp to time 2022-9-5 9:40:11.

 

2.5  Downlink Payload

By default, CPN01 prints the downlink payload to console port.

image-20221021111414-18.png ​

Examples:

  • Set TDC

If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.

Payload:    01 00 00 1E    TDC=30S

Payload:    01 00 00 3C    TDC=60S

  • Reset

If payload = 0x04FF, it will reset the NSE01

  • INTMOD

Downlink Payload: 06000003, Set AT+INTMOD=3

2.6  ​LED Indicator

The CPN01 has an internal LED which is to show the status of different state. 

  • When power on, CPN01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
  • Then the LED will be on for 1 second means device is boot normally.
  • After CPN01 join NB-IoT network. The LED will be ON for 3 seconds.
  • For each uplink probe, LED will be on for 500ms.

2.7  Alarm Base on Timeout

CPL01 can monitor the timeout for a status change, this feature can be used to monitor some events such as door opening too long etc. Related Parameters are:

1. Keep Status: Status to be monitor

Keep Status = 1: Monitor Close to Open event

Keep Status = 0: Monitor Open to Close event

2. Keep Time: Timeout to send an Alarm

Range 0 ~ 65535(0xFFFF) seconds.

If keep time = 0, Disable Alarm Base on Timeout feature.

If keep time > 0, device will monitor the keep status event and send an alarm when status doesn’t change after timeout.

AT Command to configure:

AT+TTRIG=1,30   --> When the Keep Status change from connect to disconnect, and device remains in disconnect status for more than 30 seconds. CPL01 will send an uplink packet, the Alarm bit (the second bit of 1st byte of payload) on this uplink packet is set to 1.

AT+TTIG=0,0       --> Default Value, disable timeout Alarm.

2.8 Set debug mode

Feature: Enable or Disable debug mode

AT Command: AT+DEBUG

image-20221021111629-21.png

2.9 Clear Flash Record

Feature: Clear flash storage for data log feature.

AT Command: AT+CLRDTA

image-20221021111527-19.png

 2.10 Set trigger mode

➢ AT Command: AT+TTRMOD

Feature: Set the trigger interrupt mode.

image-20221021111552-20.png

2.11 Set the calculate flag

Feature: Set the calculate flag

AT Command: AT+CALCFLAG

image-20221021111711-22.png

2.12  Set count number

Feature: Manually set the count number

AT Command: AT+SETCNT

image-20221021111748-24.png

2.13 Set the number of data to be uploaded and the recording time

➢ AT Command:

AT+TR=900  //The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)

AT+NOUD=8  //The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.

2.14 Read or Clear cached data

➢ AT Command:

AT+CDP    // Read cached data

image-20221021111810-25.png

AT+CDP=0    // Clear cached data ​

2.15  ​Firmware Change Log

Download URL & Firmware Change log: https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0

Upgrade Instruction: Upgrade Firmware

2.16  ​Battery Analysis

2.16.1  ​Battery Type

The CPN01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.

The battery is designed to last for several years depends on the actually use environment and update interval.  

The battery related documents as below:

image-20221021111911-26.png ​

2.16.2  Power consumption Analyze

Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.

Instruction to use as below:

Step 1:  Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/

Step 2:  Open it and choose

  • Product Model
  • Uplink Interval
  • Working Mode

And the Life expectation in difference case will be shown on the right.

image-20221021111923-27.png ​

2.16.3  ​Battery Note

The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.

2.16.4  Replace the battery

The default battery pack of CPN01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).

3. ​ Access NB-IoT Module

Users can directly access the AT command set of the NB-IoT module.

The AT Command set can refer the BC35-G NB-IoT Module AT Command: https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/  

image-20221021112006-28.png ​

4.  Using the AT Commands

4.1  Access AT Commands

See this link for detail:  https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0

AT+<CMD>?                    : Help on <CMD>

AT+<CMD>                      : Run <CMD>

AT+<CMD>=<value>      : Set the value

AT+<CMD>=?                  : Get the value

General Commands       

AT                            : Attention        

AT?                           : Short Help      

ATZ                          : MCU Reset     

AT+TDC                   : Application Data Transmission Interval

AT+CFG                   : Print all configurations

AT+CFGMOD           : Working mode selection

AT+INTMOD            : Set the trigger interrupt mode

AT+5VT                     : Set extend the time of 5V power   

AT+PRO                    : Choose agreement

AT+RXDL                   : Extend the sending and receiving time

AT+SERVADDR          : Server Address

AT+TR      : Get or Set record time"

AT+NOUD      : Get or Set the number of data to be uploaded

AT+CDP     : Read or Clear cached data

AT+ DEBUG   : Enable or Disable debug mode

AT+ TTRIG   : Get or Set Alarm Base on Timeout

AT+ TTRMOD   : Get or Set the trigger interrupt mode(0:falling,1:rising)

AT+ CALCFLAG   : Get or Set the calculate flag

AT+ CLRC   : Clear current door open count

COAP Management       

AT+URI            : Resource parameters

UDP Management

AT+CFM          : Upload confirmation mode (only valid for UDP)

MQTT Management

AT+CLIENT               : Get or Set MQTT client

AT+UNAME             : Get or Set MQTT Username

AT+PWD                  : Get or Set MQTT password

AT+PUBTOPIC          : Get or Set MQTT publish topic

AT+SUBTOPIC          : Get or Set MQTT subscription topic

Information           

AT+FDR              : Factory Data Reset

AT+PWORD       : Serial Access Password

​5.  FAQ

5.1 ​ How to Upgrade Firmware

User can upgrade the firmware for 1) bug fix, 2) new feature release.

Please see this link for how to upgrade:  http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList

Notice, CPN01 and CPN01 share the same mother board. They use the same connection and method to update.

5.2  Can I calibrate CPN01 to different soil types?

CPN01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at this link.

6.  Trouble Shooting

6.1  ​Connection problem when uploading firmware

Please see: http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting

6.2  AT Command input doesn't work

In the case if user can see the console output but can't type input to the device. Please check if you already include the ENTER while sending out the command. Some serial tool doesn't send ENTER while press the send key, user need to add ENTER in their string. 

7. ​ Order Info

Part Number: CPN01

8.  Packing Info

Package Includes:

  • CPN01 NB-IoT Soil Moisture & EC Sensor x 1
  • External antenna x 1

Dimension and weight:

  • Size: 195 x 125 x 55 mm
  • Weight:   420g

9.  Support

  • Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
  • Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to support@dragino.com

 

Tags:
    
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0