Wiki source code of Water Quality Sensors

Version 72.19 by Karry Zhuang on 2025/07/16 09:58

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8 = 1. DR-EC Water EC Probe =
9
10 == 1.1 Specification: ==
11
12
13 * **Power Input**: DC7~~30
14
15 * **Power Consumption** : < 0.5W
16
17 * **Interface**: RS485. 9600 Baud Rate
18
19 * **EC Range & Resolution:**
20 ** **ECK1.0 :** 0 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
21 ** **ECK10.0 : **10 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
22 ** **EC200 : **1 ~~ 200,000 μS/cm  Resolution: 1 μS/cm
23 * **EC Accuracy**: ±1% FS
24 * **Salinity measurement range**
25 ** **EC200 :**0~~70PSU Resolution: 0.1PSU
26 * **Temperature measurement range**
27 ** **ECK1/ECK10:**-20~~+60℃; Resolution: 0.1℃
28 ** **EC200 :**-5~~+80℃; Resolution: 0.1℃
29 * **Temperature Accuracy: **±0.5 °C
30 * **Temperature compensation range**
31 ** **ECK1/ECK10:**0~~+60℃ (default compensation temperature 25℃)
32 ** **EC200:**-5~~+80℃ (default compensation temperature 25℃)
33 * **Temperature compensation coefficient:**Default 0.2
34 * **Working environment:**
35 ** Ambient Temperature: 0–60°C
36 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
37 ** ECK200 Continuous monitoring of cross-section water quality, aquaculture, sewage treatment, environmental protection, pharmaceuticals, food, tap water, seawater and other high conductivity environments
38 * **IP Rated**: IP68
39 * **Max Pressure**: 0.6MPa
40
41 == 1.2 Application for Different Range ==
42
43
44 [[image:image-20240714173018-1.png]]
45
46
47 == 1.3 Wiring ==
48
49
50 [[image:image-20241129142314-1.png||height="352" width="1108"]]
51
52
53 == 1.4 Mechinical Drawing ==
54
55 ECK1 and ECK10  EC200
56
57
58 [[image:image-20240714174241-2.png]] [[image:1752564223905-283.png||height="399" width="160"]]
59
60
61 == 1.5 Installation ==
62
63
64 **Electrode installation form:**
65
66 A: Side wall installation
67
68 B: Top flange installation
69
70 C: Pipeline bend installation
71
72 D: Pipeline bend installation
73
74 E: Flow-through installation
75
76 F: Submerged installation
77
78 [[image:image-20240718190121-1.png||height="350" width="520"]]
79
80 **Several common installation methods of electrodes**
81
82 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
83
84 A. Several common incorrect installation methods
85
86 [[image:image-20240718190204-2.png||height="262" width="487"]]
87
88 **Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
89
90 [[image:image-20240718190221-3.png||height="292" width="500"]]
91
92 **Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
93
94 B. Correct installation method
95
96 [[image:image-20240718190249-4.png||height="287" width="515"]]
97
98
99 == 1.6 Maintenance ==
100
101
102 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
103
104 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
105
106 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
107
108 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
109
110 == 1.7 RS485 Commands ==
111
112
113 RS485 signal (K1 default address 0x12; K10 default address 0x11):
114 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
115
116
117 (% style="color:red" %)**ery.**
118
119 === 1.7.1 Query address ===
120
121
122 **send:**
123
124 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
125 |=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
126 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
127
128 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
129
130
131 **response:**
132
133 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
134 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
135 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
136
137
138
139 === 1.7.2 Change address ===
140
141
142 For example: Change the address of the sensor with address 1 to 2, master → slave
143
144 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
145 |=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
146 |(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
147
148 If the sensor receives correctly, the data is returned along the original path.
149
150 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
151
152
153 === 1.7.3 Modify intercept ===
154
155
156 **send:**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
159 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
160 |(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
161 0X07
162 )))
163
164 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
165
166 **response:**
167
168 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
169 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
170 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
171 0X02
172 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
173 0X8F
174 )))
175
176 === 1.7.4 Query data ===
177
178
179 Query the data (EC,temperature) of the sensor (address 11), host → slave
180
181 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
182 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
183 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
184
185 If the sensor receives correctly, the following data will be returned, slave → host
186
187 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
188 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
189 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
190
191 The address of the EC K10 sensor is 11
192
193 The query data command is 11 03 00 00 00 02 C6 9B
194
195 **For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
196
197
198 Query the data (EC,temperature) of the sensor (address 11), host → slave
199
200 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
201 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
202 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
203
204 If the sensor receives correctly, the following data will be returned, slave → host
205
206 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
207 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
208 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
209
210 The address of the EC K1 sensor is 12
211
212 The query data command is 12 03 00 00 00 02 C6 A8
213
214 **For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
215
216
217 EC200
218
219 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
220 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
221 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X04|(% style="width:72px" %)(((
222 0XC5
223 )))|(% style="width:77px" %)0XC8
224
225 **response:**
226
227 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
228 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Number of valid bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
229 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X08|(% style="width:94px" %)(((
230 0X00 0X00  0X1E 0XEF 0X01 0X14 0X00 0X2B
231 )))|(% style="width:72px" %)(((
232 0X42
233 )))|(% style="width:77px" %)0X59
234
235 Conductivity calculation: 0X1EEF=7919=>Conductivity=7919μS/cm
236 Temperature calculation: 0X0114=276=>Temperature=27.6℃
237 Salinity calculation: 0X002b=43=>Salinity=4.3PSU
238
239
240
241
242
243 === 1.7.5 Calibration Method ===
244
245 ECK1 and ECK10.0
246
247 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
248
249 (% style="color:blue" %)**The calibration steps are as follows:**
250
251 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
252
253 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
254 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
255 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
256 0X00
257 0X00
258 0X37
259 0X32
260 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
261
262 1413*10 gives 0X00003732
263
264 **response:**
265
266 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
267 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
268 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
269
270 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
271
272 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
273 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
274 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
275 0X00
276 0X01
277 0XF7
278 0X20
279 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
280
281 12880*10 gives 0X01F720
282
283 **response:**
284
285 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
286 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
287 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
288
289
290
291 EC200
292
293 For the device with address 01, use 1413uS/cm standard solution to calibrate the first point. Send frame: 1413. Convert hexadecimal to 585. Write 0001, 00 00, 0585 to 0x0120, 0x0121, 0x0122 respectively.
294
295 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
296 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
297 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
298 0X00
299 0X01
300 0X00
301 0X00
302 0X05
303 0X85
304 )))|(% style="width:1px" %)0X1c|(% style="width:1px" %)(((
305 (((
306 0X25
307 )))
308 )))
309
310 **response:**
311
312 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
313 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
314 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
315 0X80
316 )))|(% style="width:60px" %)0X3e(((
317
318 )))
319
320 Use 111310uS/cm standard solution to calibrate the second point and send the frame: 111310 is converted into hexadecimal 1b2ce, and 0002, 0001,b2 ce are written to 0x0120, 0x0121, and 0x0122 respectively.
321
322 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
323 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
324 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
325 0X00
326 0X02
327 0X00
328 0X01
329 0Xb2
330 0Xce
331 )))|(% style="width:1px" %)0X3e|(% style="width:1px" %)(((
332 (((
333 0X22
334 )))
335 )))
336
337 **response:**
338
339 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
340 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
341 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
342 0X80
343 )))|(% style="width:60px" %)0X3e
344
345 = 2. DR-PH01 Water PH Sensor =
346
347 == 2.1 Specification ==
348
349
350 * **Power Input**: DC7~~30
351
352 * **Power Consumption** : < 0.5W
353
354 * **Interface**: RS485. 9600 Baud Rate
355
356 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
357
358 * **pH measurement error**: ±0.15pH
359
360 * **Repeatability error**: ±0.02pH
361
362 * **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
363
364 * **Temperature measurement error**: ±0.5°C
365
366 * **Working environment:**
367 ** Ambient Temperature: 0–60°C
368 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
369
370 * **Temperature Accuracy: **±0.5 °C
371
372 * **IP Rated**: IP68
373
374 * **Max Pressure**: 0.6MPa
375
376 == 2.2 Wiring ==
377
378
379 [[image:image-20240720172548-2.png||height="348" width="571"]]
380
381
382 == 2.3 Mechinical Drawing ==
383
384
385 [[image:image-20240714174241-2.png]]
386
387
388 == 2.4 Installation Notice ==
389
390
391 Do not power on while connect the cables. Double check the wiring before power on.
392
393 Installation Photo as reference:
394
395 (% style="color:blue" %)**Submerged installation:**
396
397 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
398
399 [[image:image-20240718191348-6.png]]
400
401 (% style="color:blue" %)**Pipeline installation:**
402
403 Connect the equipment to the pipeline through the 3/4 thread.
404
405 [[image:image-20240718191336-5.png||height="239" width="326"]]
406
407 (% style="color:blue" %)**Sampling:**
408
409 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
410
411 (% style="color:blue" %)**Measure the pH of the water sample:**
412
413 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
414
415
416 == 2.5 Maintenance ==
417
418
419 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
420
421 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
422
423 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
424
425 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
426
427 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
428
429 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
430
431 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
432
433 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
434
435 * The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
436
437 == 2.6 RS485 Commands ==
438
439
440 RS485 signaldefault address 0x10
441 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
442
443
444 === 2.6.1 Query address ===
445
446
447 **send:**
448
449 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
450 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
451 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
452
453 **response:**
454
455 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
456 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
457 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
458
459 === 2.6.2 Change address ===
460
461
462 For example: Change the address of the sensor with address 1 to 2, master → slave
463
464 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
465 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
466 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
467
468 If the sensor receives correctly, the data is returned along the original path.
469
470 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
471
472
473 === 2.6.3 Modify intercept ===
474
475
476 **send:**
477
478 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
479 |=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
480 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
481 0XA5
482 )))
483
484 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
485
486 **response:**
487
488 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
489 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
490 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
491 0X00
492 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
493 0XA5
494 )))
495
496 === 2.6.4 Query data ===
497
498
499 Query the data (PH) of the sensor (address 10), host → slave
500
501 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
502 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
503 |(% style="width:99px" %)0X10|(% style="width:74px" %)0X03|(% style="width:75px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
504
505 If the sensor receives correctly, the following data will be returned, slave → host
506
507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
508 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
509 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
510
511 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
512
513 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
514
515 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
516
517
518 === 2.6.5 Calibration Method ===
519
520
521 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
522
523 (% style="color:blue" %)**The calibration steps are as follows:**
524
525 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
526
527 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
528 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
529 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
530 0X00
531 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
532 0XF1
533 )))
534
535 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
536
537 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
538 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
539 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
540 0X00
541 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
542 0X31
543 )))
544
545 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
546
547 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
548 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
549 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
550 0X00
551 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
552 0X31
553 )))
554
555 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
556
557
558 = 3. DR-ORP1 Water ORP Sensor =
559
560 == 3.1 Specification ==
561
562
563 * **Power Input**: DC7~~30
564
565 * **Measuring range**:** **-1999~~1999mV
566
567 * **Resolution**: 1mV
568
569 * **Interface**: RS485. 9600 Baud Rate
570
571 * **Measurement error**: ±3mV
572
573 * **Stability**: ≤2mv/24 hours
574
575 * **Working environment:**
576 ** Ambient Temperature: 0–60°C
577 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
578
579 * **IP Rated**: IP68
580
581 * **Max Pressure**: 0.6MPa
582
583 == 3.2 Wiring ==
584
585
586 [[image:image-20240720172620-3.png||height="378" width="620"]]
587
588
589 == 3.3 Mechinical Drawing ==
590
591
592 [[image:image-20240714174241-2.png]]
593
594
595 == 3.4 Installation Notice ==
596
597
598 Do not power on while connect the cables. Double check the wiring before power on.
599
600 **Installation Photo as reference:**
601
602 (% style="color:blue" %)** Submerged installation:**
603
604 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
605
606 [[image:image-20240718191348-6.png]]
607
608 (% style="color:blue" %)** Pipeline installation:**
609
610 Connect the equipment to the pipeline through the 3/4 thread.
611
612 [[image:image-20240718191336-5.png||height="239" width="326"]]
613
614
615 == 3.5 Maintenance ==
616
617
618 (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
619
620 (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
621
622 (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
623
624 (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
625
626 (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
627
628 (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
629
630 (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
631
632 (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
633
634 (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
635
636
637 == 3.6 RS485 Commands ==
638
639
640 RS485 signaldefault address 0x13
641 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
642
643
644 === 3.6.1 Query address ===
645
646
647 **send:**
648
649 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
650 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
651 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
652
653 **response:**
654
655 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
656 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
657 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
658
659 === 3.6.2 Change address ===
660
661
662 For example: Change the address of the sensor with address 1 to 2, master → slave
663
664 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
665 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
666 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
667
668 If the sensor receives correctly, the data is returned along the original path.
669
670 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
671
672
673 === 3.6.3 Modify intercept ===
674
675
676 **send:**
677
678 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
679 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
680 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
681 0X96
682 )))
683
684 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
685
686 **response:**
687
688 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
689 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
690 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
691 0X00
692 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
693 0X96
694 )))
695
696 === 3.6.4 Query data ===
697
698
699 Query the data (ORP) of the sensor (address 13), host → slave
700
701 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
702 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
703 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
704
705 If the sensor receives correctly, the following data will be returned, slave → host
706
707 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
708 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
709 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
710
711 The query data command is 13 03 00 00 00 01 87 78
712
713 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
714
715 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
716
717
718 === 3.6.5 Calibration Method ===
719
720
721 This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
722 (1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
723 enter the following calibration command, and the 86mV point calibration is completed;
724
725 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
726 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
727 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
728 0X00
729 )))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
730 0X03
731 )))
732
733 Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
734
735 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
736 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
737 |(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
738 0X00
739 )))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
740 0XC3
741 )))
742
743 = 4. DR-DO1 Dissolved Oxygen Sensor =
744
745 == 4.1 Specification ==
746
747
748 * **Measuring range**: 0-20mg/L, 0–50℃
749
750 * **Accuracy**: 3%, ±0.5℃
751
752 * **Resolution**: 0.01 mg/L, 0.01℃
753
754 * **Maximum operating pressure**: 6 bar
755
756 * **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
757
758 * **Power supply voltage**: 5-24V DC
759
760 * **Working environment:**
761 ** Ambient Temperature: 0–60°C
762 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
763
764 * **Power consumption**: ≤0.5W
765
766 == 4.2 wiring ==
767
768
769 [[image:image-20240720172632-4.png||height="390" width="640"]]
770
771
772 == 4.3 Impedance requirements for current signals ==
773
774
775 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
776 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
777 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
778
779 == 4.4 Mechinical Drawing ==
780
781
782 [[image:image-20240719155308-1.png||height="226" width="527"]]
783
784
785 == 4.5 Instructions for use and maintenance ==
786
787
788 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
789
790 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
791
792 == 4.6 RS485 Commands ==
793
794
795 RS485 signaldefault address 0x14
796 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
797
798
799 === 4.6.1 Query address ===
800
801
802 **send:**
803
804 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
805 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
806 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
807
808 If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
809
810
811 **response:**
812
813 Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
814 Register 1 data high and register 1 data low indicate the sensor version
815
816 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
817 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
818 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
819
820 === 4.6.2 Change address ===
821
822
823 For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
824
825 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
826 |=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
827 |(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
828
829 **response:**
830
831 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
832 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
833 |(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
834
835 === 4.6.3 Query data ===
836
837
838 Query the data (dissolved oxygen) of the sensor (address 14), host → slave
839
840 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
841 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
842 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
843
844 If the sensor receives correctly, the following data will be returned, slave → host
845
846 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
847 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
848 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
849
850 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
851
852 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
853
854
855 Query the data (temperature) of the sensor (address 14), host → slave
856
857 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
858 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
859 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
860
861 If the sensor receives correctly, the following data will be returned, slave → host
862
863 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
864 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
865 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
866
867 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
868
869 Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
870
871
872 = 5. DR-TS1 Water Turbidity Sensor =
873
874 == 5.1 Specification ==
875
876
877 * **Measuring range**: 0.1~~1000.0NTU
878
879 * **Accuracy**: ±5%
880
881 * **Resolution**: 0.1NTU
882
883 * **Stability**: ≤3mV/24 hours
884
885 * **Output signal**: RS485 (standard Modbus-RTU protocol, device default address: 01)
886
887 * **Power supply voltage**: 5~~24V DC (when output signal is RS485), 12~~24V DC (when output signal is 4~~20mA)
888
889 * **Working environment:**
890 ** Ambient Temperature: 0–60°C
891 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
892
893 * **Power consumption**: ≤ 0.5W
894
895 == 5.2 wiring ==
896
897
898 [[image:image-20240720172640-5.png||height="387" width="635"]]
899
900
901 == 5.3 Impedance requirements for current signals ==
902
903
904 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
905 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
906 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
907
908 == 5.4 Mechinical Drawing ==
909
910
911 [[image:image-20240718195058-7.png||height="305" width="593"]]
912
913
914 == 5.5 Instructions for use and maintenance ==
915
916
917 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
918
919 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
920
921 == 5.6 RS485 Commands ==
922
923
924 RS485 signaldefault address 0x15
925 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
926
927
928 === 5.6.1 Query address ===
929
930
931 **send:**
932
933 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
934 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
935 |(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
936
937 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
938
939
940 **response:**
941
942 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
943 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
944 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
945
946 === 5.6.2 Change address ===
947
948
949 For example: Change the address of the sensor with address 1 to 2, master → slave
950
951 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
952 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
953 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
954
955 If the sensor receives correctly, the data is returned along the original path.
956
957 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
958
959
960 === 5.6.3 Query data ===
961
962
963 Query the data (turbidity) of the sensor (address 15), host → slave
964
965 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
966 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
967 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
968
969 If the sensor receives correctly, the following data will be returned, slave → host
970
971 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
972 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
973 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
974
975 The query data command is 15 03 00 00 00 01 87 1E
976
977 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
978
979 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
980
981
982 = 6. DR-CL Water CL Probe =
983
984 == 6.1 Specification: ==
985
986 * **Power Input**: DC7~~30
987
988 * **Power Consumption** : 0.19W
989
990 * **Interface**: RS485. 9600 Baud Rate
991
992 * **CL Range & Resolution:**
993 ** **CL2ML:**0-2mg/L
994 ** **CL10ML:**0-10mg/L
995 ** **Resolution:**0.01mg/L
996
997 * **CL Accuracy**: ±5% FS
998 * **Temperature Accuracy: **±0.5 °C
999 * **Working environment:**
1000 ** Ambient Temperature: 0–50°C
1001 ** pH:4-9
1002 ** Flow rate: 30L/h~~60L/h (flow tank installation)
1003 * **IP Rated**: IP68
1004
1005 * **Max Pressure**: 0.6MPa
1006
1007 == 6.2 Wiring ==
1008
1009 [[image:image-20240720172548-2.png||height="348" width="571"]]
1010
1011 == 6.3 Mechinical Drawing ==
1012
1013 [[image:1752573238705-910.png||height="694" width="278"]]
1014
1015 == 6.4 Installation ==
1016
1017 Flow-through installation: Use the matching flow slot for installation. The device and the flow slot are installed tightly.
1018
1019 The measuring end is completely immersed in the measured liquid to ensure a steady flow rate without bubbles.
1020
1021 It is recommended that the flow rate be controlled at 30-60Lh to ensure the accuracy of the test.
1022
1023 [[image:1752573643879-991.png||height="360" width="343"]]
1024
1025 == 6.5 Maintenance ==
1026
1027 * The device itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible!
1028 * After using the electrode, please clean the electrode head with clean water and cover it with a protective cover.
1029 * When measuring the device, the measured liquid should flow and the flow rate should be uniform, and there should be no bubbles attached to the measuring end of the device.
1030 * If the electrode diaphragm is attached with dirt and mineral components, the sensitivity will be reduced, and it may not be possible to perform sufficient measurement. Please ensure that the platinum ring is clean.
1031 * The platinum induction ring of a good residual chlorine electrode should always be kept clean and bright. If the platinum ring of the electrode becomes rough or covered with pollutants after measurement, please clean it according to the following method: (For reference) Inorganic pollution: immerse the electrode in 0.1mol/L dilute hydrochloric acid for 15 minutes, gently wipe the platinum ring of the residual chlorine electrode with a cotton swab, and then wash it with tap water.
1032 * Organic or oil pollution: immerse the electrode in tap water with a small amount of detergent, such as dishwashing liquid, and thoroughly clean the sensing surface of the electrode sensor. Gently wipe the platinum ring of the electrode with a cotton swab, then rinse with tap water, and the cleaning is complete. If the platinum ring of the electrode has formed an oxide film, please use toothpaste or 1000-grit fine sandpaper to properly polish the sensing surface, and then clean it with tap water. The platinum ring is connected to the glass, so please handle it carefully when polishing.
1033 The electrode has a service life of about one year, and a new electrode should be replaced in time after aging.
1034 * Before the cable plug and the device plug are locked, do not put the plug part into water.
1035
1036
1037
1038 == 6.6 RS485 Commands ==
1039
1040 RS485 signal 
1041 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
1042
1043
1044 == 6.7 Query data ==
1045
1046 Example 1: Read the current residual chlorine concentration of the device with address 01
1047
1048 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1049 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1050 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X01|(% style="width:72px" %)(((
1051 0X84
1052 )))|(% style="width:77px" %)0X0A
1053
1054 **response:**
1055
1056 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1057 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Valid Bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1058 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X03|(% style="width:110px" %)0X02|(% style="width:94px" %)0X03 0X16|(% style="width:72px" %)(((
1059 0X39
1060 )))|(% style="width:77px" %)0X7A
1061
1062 Calculation of residual chlorine concentration: 316H (hexadecimal) = 790 => residual chlorine = 7.90
1063
1064
1065 Example 2: Set the deviation value for the current residual chlorine value of the device with address 01 to correct the value and send the frame: (If the current residual gas value output by the device is 7.90, the value needs to be corrected to 8.00, the difference is 8.00-7.90-0.100.1*100=10=>41200000 (floating point number), write 41200000 to the contents of the two registers)
1066
1067 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
1068 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register number|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Byte number|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register content|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
1069 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X12|(% style="width:126px" %)0X00 0X02|(% style="width:85px" %)0X04|(% style="width:1px" %)0X4120 0X0000|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
1070
1071 **response:**
1072
1073 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1074 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Register address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register number|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1075 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X10|(% style="width:110px" %)0X01 0X12|(% style="width:94px" %)0X00 0X02|(% style="width:72px" %)(((
1076 0XE5
1077 )))|(% style="width:77px" %)0X0D
1078
1079
1080
1081 = 7.  Water Quality Sensor Datasheet =
1082
1083 * **[[Water Quality Sensor Transmitter Datasheet>>https://www.dropbox.com/scl/fi/9tofocmgapkbddshznumn/Datasheet_WQS-xB-WQS-xS_Water-Quality-Sensor-Transmitter.pdf?rlkey=wxua12ur9swk30rkqnh2boo9z&st=axga6epf&dl=0]]**