Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8 = 1. DR-ECK Water EC Probe =
9
10 == 1.1 Specification: ==
11
12
13 * **Power Input**: DC7~~30
14
15 * **Power Consumption** : < 0.5W
16
17 * **Interface**: RS485. 9600 Baud Rate
18
19 * **EC Range & Resolution:**
20 ** **ECK0.01** : 0.02 ~~ 20 μS/cm
21 ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
22 ** **ECK1.0** : 0 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
23 ** **ECK10.0** : 10 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
24
25 * **EC Accuracy**: ±1% FS
26 * **Temperature Accuracy: **±0.5 °C
27 * **Working environment:**
28 ** Ambient Temperature: 0–60°C
29 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
30 * **IP Rated**: IP68
31
32 * **Max Pressure**: 0.6MPa
33
34 == 1.2 Application for Different Range ==
35
36
37 [[image:image-20240714173018-1.png]]
38
39
40 == 1.3 Wiring ==
41
42
43 [[image:image-20241129142314-1.png||height="352" width="1108"]]
44
45
46 == 1.4 Mechinical Drawing ==
47
48
49 [[image:image-20240714174241-2.png]]
50
51
52 == 1.5 Installation ==
53
54
55 **Electrode installation form:**
56
57 A: Side wall installation
58
59 B: Top flange installation
60
61 C: Pipeline bend installation
62
63 D: Pipeline bend installation
64
65 E: Flow-through installation
66
67 F: Submerged installation
68
69 [[image:image-20240718190121-1.png||height="350" width="520"]]
70
71 **Several common installation methods of electrodes**
72
73 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
74
75 A. Several common incorrect installation methods
76
77 [[image:image-20240718190204-2.png||height="262" width="487"]]
78
79 **Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
80
81 [[image:image-20240718190221-3.png||height="292" width="500"]]
82
83 **Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
84
85 B. Correct installation method
86
87 [[image:image-20240718190249-4.png||height="287" width="515"]]
88
89
90 == 1.6 Maintenance ==
91
92
93 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
94
95 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
96
97 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
98
99 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
100
101 == 1.7 RS485 Commands ==
102
103
104 RS485 signal (K1 default address 0x12; K10 default address 0x11):
105 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
106
107
108 === 1.7.1 Query address ===
109
110
111 **send:**
112
113 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
114 |=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
115 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
116
117 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
118
119
120 **response:**
121
122 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
123 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
124 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
125
126 === 1.7.2 Change address ===
127
128
129 For example: Change the address of the sensor with address 1 to 2, master → slave
130
131 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
132 |=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
133 |(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
134
135 If the sensor receives correctly, the data is returned along the original path.
136
137 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
138
139
140 === 1.7.3 Modify intercept ===
141
142
143 **send:**
144
145 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
146 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
147 |(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
148 0X07
149 )))
150
151 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
152
153 **response:**
154
155 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
156 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
157 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
158 0X02
159 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
160 0X8F
161 )))
162
163 === 1.7.4 Query data ===
164
165
166 Query the data (EC,temperature) of the sensor (address 11), host → slave
167
168 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
169 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
170 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
171
172 If the sensor receives correctly, the following data will be returned, slave → host
173
174 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
175 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
176 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
177
178 The address of the EC K10 sensor is 11
179
180 The query data command is 11 03 00 00 00 02 C6 9B
181
182 **For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
183
184
185 Query the data (EC,temperature) of the sensor (address 11), host → slave
186
187 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
188 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
189 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
190
191 If the sensor receives correctly, the following data will be returned, slave → host
192
193 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
194 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
195 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
196
197 The address of the EC K1 sensor is 12
198
199 The query data command is 12 03 00 00 00 02 C6 A8
200
201 **For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
202
203
204 === 1.7.5 Calibration Method ===
205
206
207 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
208
209 (% style="color:blue" %)**The calibration steps are as follows:**
210
211 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
212
213 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
214 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
215 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
216 0X00
217 0X00
218 0X37
219 0X32
220 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
221
222 1413*10 gives 0X00003732
223
224 **response:**
225
226 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
227 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
228 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
229
230 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
231
232 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
233 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
234 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
235 0X00
236 0X01
237 0XF7
238 0X20
239 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
240
241 12880*10 gives 0X01F720
242
243 **response:**
244
245 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
246 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
247 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
248
249 = 2. DR-PH01 Water PH Sensor =
250
251 == 2.1 Specification ==
252
253
254 * **Power Input**: DC7~~30
255
256 * **Power Consumption** : < 0.5W
257
258 * **Interface**: RS485. 9600 Baud Rate
259
260 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
261
262 * **pH measurement error**: ±0.15pH
263
264 * **Repeatability error**: ±0.02pH
265
266 * **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
267
268 * **Temperature measurement error**: ±0.5°C
269
270 * **Working environment:**
271 ** Ambient Temperature: 0–60°C
272 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
273
274 * **Temperature Accuracy: **±0.5 °C
275
276 * **IP Rated**: IP68
277
278 * **Max Pressure**: 0.6MPa
279
280 == 2.2 Wiring ==
281
282
283 [[image:image-20240720172548-2.png||height="348" width="571"]]
284
285
286 == 2.3 Mechinical Drawing ==
287
288
289 [[image:image-20240714174241-2.png]]
290
291
292 == 2.4 Installation Notice ==
293
294
295 Do not power on while connect the cables. Double check the wiring before power on.
296
297 Installation Photo as reference:
298
299 (% style="color:blue" %)**Submerged installation:**
300
301 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
302
303 [[image:image-20240718191348-6.png]]
304
305 (% style="color:blue" %)**Pipeline installation:**
306
307 Connect the equipment to the pipeline through the 3/4 thread.
308
309 [[image:image-20240718191336-5.png||height="239" width="326"]]
310
311 (% style="color:blue" %)**Sampling:**
312
313 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
314
315 (% style="color:blue" %)**Measure the pH of the water sample:**
316
317 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
318
319
320 == 2.5 Maintenance ==
321
322
323 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
324
325 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
326
327 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
328
329 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
330
331 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
332
333 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
334
335 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
336
337 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
338
339 * The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
340
341 == 2.6 RS485 Commands ==
342
343
344 RS485 signaldefault address 0x10
345 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
346
347
348 === 2.6.1 Query address ===
349
350
351 **send:**
352
353 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
354 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
355 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
356
357 **response:**
358
359 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
360 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
361 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
362
363 === 2.6.2 Change address ===
364
365
366 For example: Change the address of the sensor with address 1 to 2, master → slave
367
368 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
369 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
370 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
371
372 If the sensor receives correctly, the data is returned along the original path.
373
374 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
375
376
377 === 2.6.3 Modify intercept ===
378
379
380 **send:**
381
382 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
383 |=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
384 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
385 0XA5
386 )))
387
388 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
389
390 **response:**
391
392 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
393 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
394 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
395 0X00
396 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
397 0XA5
398 )))
399
400 === 2.6.4 Query data ===
401
402
403 Query the data (PH) of the sensor (address 10), host → slave
404
405 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
406 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
407 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
408
409 If the sensor receives correctly, the following data will be returned, slave → host
410
411 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
412 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
413 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
414
415 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
416
417 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
418
419 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
420
421
422 === 2.6.5 Calibration Method ===
423
424
425 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
426
427 (% style="color:blue" %)**The calibration steps are as follows:**
428
429 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
430
431 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
432 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
433 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
434 0X00
435 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
436 0XF1
437 )))
438
439 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
440
441 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
442 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
443 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
444 0X00
445 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
446 0X31
447 )))
448
449 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
450
451 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
452 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
453 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
454 0X00
455 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
456 0X31
457 )))
458
459 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
460
461
462 = 3. DR-ORP1 Water ORP Sensor =
463
464 == 3.1 Specification ==
465
466
467 * **Power Input**: DC7~~30
468
469 * **Measuring range**:** **-1999~~1999mV
470
471 * **Resolution**: 1mV
472
473 * **Interface**: RS485. 9600 Baud Rate
474
475 * **Measurement error**: ±3mV
476
477 * **Stability**: ≤2mv/24 hours
478
479 * **Working environment:**
480 ** Ambient Temperature: 0–60°C
481 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
482
483 * **IP Rated**: IP68
484
485 * **Max Pressure**: 0.6MPa
486
487 == 3.2 Wiring ==
488
489
490 [[image:image-20240720172620-3.png||height="378" width="620"]]
491
492
493 == 3.3 Mechinical Drawing ==
494
495
496 [[image:image-20240714174241-2.png]]
497
498
499 == 3.4 Installation Notice ==
500
501
502 Do not power on while connect the cables. Double check the wiring before power on.
503
504 **Installation Photo as reference:**
505
506 (% style="color:blue" %)** Submerged installation:**
507
508 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
509
510 [[image:image-20240718191348-6.png]]
511
512 (% style="color:blue" %)** Pipeline installation:**
513
514 Connect the equipment to the pipeline through the 3/4 thread.
515
516 [[image:image-20240718191336-5.png||height="239" width="326"]]
517
518
519 == 3.5 Maintenance ==
520
521
522 (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
523
524 (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
525
526 (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
527
528 (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
529
530 (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
531
532 (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
533
534 (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
535
536 (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
537
538 (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
539
540
541 == 3.6 RS485 Commands ==
542
543
544 RS485 signaldefault address 0x13
545 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
546
547
548 === 3.6.1 Query address ===
549
550
551 **send:**
552
553 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
554 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
555 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
556
557 **response:**
558
559 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
560 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
561 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
562
563 === 3.6.2 Change address ===
564
565
566 For example: Change the address of the sensor with address 1 to 2, master → slave
567
568 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
569 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
570 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
571
572 If the sensor receives correctly, the data is returned along the original path.
573
574 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
575
576
577 === 3.6.3 Modify intercept ===
578
579
580 **send:**
581
582 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
583 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
584 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
585 0X96
586 )))
587
588 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
589
590 **response:**
591
592 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
593 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
594 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
595 0X00
596 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
597 0X96
598 )))
599
600 === 3.6.4 Query data ===
601
602
603 Query the data (ORP) of the sensor (address 13), host → slave
604
605 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
606 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
607 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
608
609 If the sensor receives correctly, the following data will be returned, slave → host
610
611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
612 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
613 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
614
615 The query data command is 13 03 00 00 00 01 87 78
616
617 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
618
619 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
620
621
622 === 3.6.5 Calibration Method ===
623
624
625 This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
626 (1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
627 enter the following calibration command, and the 86mV point calibration is completed;
628
629 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
630 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
631 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
632 0X00
633 )))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
634 0X03
635 )))
636
637 Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
638
639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
640 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
641 |(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
642 0X00
643 )))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
644 0XC3
645 )))
646
647 = 4. DR-DO1 Dissolved Oxygen Sensor =
648
649 == 4.1 Specification ==
650
651
652 * **Measuring range**: 0-20mg/L, 0–50℃
653
654 * **Accuracy**: 3%, ±0.5℃
655
656 * **Resolution**: 0.01 mg/L, 0.01℃
657
658 * **Maximum operating pressure**: 6 bar
659
660 * **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
661
662 * **Power supply voltage**: 5-24V DC
663
664 * **Working environment:**
665 ** Ambient Temperature: 0–60°C
666 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
667
668 * **Power consumption**: ≤0.5W
669
670 == 4.2 wiring ==
671
672
673 [[image:image-20240720172632-4.png||height="390" width="640"]]
674
675
676 == 4.3 Impedance requirements for current signals ==
677
678
679 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
680 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
681 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
682
683 == 4.4 Mechinical Drawing ==
684
685
686 [[image:image-20240719155308-1.png||height="226" width="527"]]
687
688
689 == 4.5 Instructions for use and maintenance ==
690
691
692 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
693
694 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
695
696 == 4.6 RS485 Commands ==
697
698
699 RS485 signaldefault address 0x14
700 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
701
702
703 === 4.6.1 Query address ===
704
705
706 **send:**
707
708 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
709 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
710 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
711
712 If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
713
714
715 **response:**
716
717 Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
718 Register 1 data high and register 1 data low indicate the sensor version
719
720 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
721 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
722 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
723
724 === 4.6.2 Change address ===
725
726
727 For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
728
729 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
730 |=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
731 |(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
732
733 **response:**
734
735 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
736 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
737 |(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
738
739 === 4.6.3 Query data ===
740
741
742 Query the data (dissolved oxygen) of the sensor (address 14), host → slave
743
744 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
745 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
746 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
747
748 If the sensor receives correctly, the following data will be returned, slave → host
749
750 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
751 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
752 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
753
754 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
755
756 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
757
758
759 Query the data (temperature) of the sensor (address 14), host → slave
760
761 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
762 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
763 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
764
765 If the sensor receives correctly, the following data will be returned, slave → host
766
767 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
768 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
769 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
770
771 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
772
773 Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
774
775
776 = 5. DR-TS1 Water Turbidity Sensor =
777
778 == 5.1 Specification ==
779
780
781 * **Measuring range**: 0.1~~1000.0NTU
782
783 * **Accuracy**: ±5%
784
785 * **Resolution**: 0.1NTU
786
787 * **Stability**: ≤3mV/24 hours
788
789 * **Output signal**: RS485 (standard Modbus-RTU protocol, device default address: 01)
790
791 * **Power supply voltage**: 5~~24V DC (when output signal is RS485), 12~~24V DC (when output signal is 4~~20mA)
792
793 * **Working environment:**
794 ** Ambient Temperature: 0–60°C
795 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
796
797 * **Power consumption**: ≤ 0.5W
798
799 == 5.2 wiring ==
800
801
802 [[image:image-20240720172640-5.png||height="387" width="635"]]
803
804
805 == 5.3 Impedance requirements for current signals ==
806
807
808 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
809 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
810 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
811
812 == 5.4 Mechinical Drawing ==
813
814
815 [[image:image-20240718195058-7.png||height="305" width="593"]]
816
817
818 == 5.5 Instructions for use and maintenance ==
819
820
821 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
822
823 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
824
825 == 5.6 RS485 Commands ==
826
827
828 RS485 signaldefault address 0x15
829 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
830
831
832 === 5.6.1 Query address ===
833
834
835 **send:**
836
837 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
838 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
839 |(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
840
841 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
842
843
844 **response:**
845
846 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
847 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
848 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
849
850 === 5.6.2 Change address ===
851
852
853 For example: Change the address of the sensor with address 1 to 2, master → slave
854
855 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
856 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
857 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
858
859 If the sensor receives correctly, the data is returned along the original path.
860
861 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
862
863
864 === 5.6.3 Query data ===
865
866
867 Query the data (turbidity) of the sensor (address 15), host → slave
868
869 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
870 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
871 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
872
873 If the sensor receives correctly, the following data will be returned, slave → host
874
875 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
876 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
877 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
878
879 The query data command is 15 03 00 00 00 01 87 1E
880
881 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
882
883 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
884
885
886 = 6.  Water Quality Sensor Datasheet =
887
888
889 * **[[Water Quality Sensor Transmitter Datasheet>>https://www.dropbox.com/scl/fi/9tofocmgapkbddshznumn/Datasheet_WQS-xB-WQS-xS_Water-Quality-Sensor-Transmitter.pdf?rlkey=wxua12ur9swk30rkqnh2boo9z&st=axga6epf&dl=0]]**
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0