Version 177.1 by Dilisi S on 2024/11/08 06:48

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering the LT-22222-L ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options are available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248 * Click the **Register end device** button.
249
250 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
251
252
253 You will be navigated to the **Device overview** page.
254
255 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
256
257
258 ==== Joining ====
259
260 Click on **Live data** in the left navigation. Then, power on LT-22222-L. It will join The Things Stack LoRaWAN network server. You can see the **join request**, **join accept**, followed by **uplink data messages** form the device showing in the **Live data** panel.
261
262 [[image:lt-22222-join-network.png||height="625" width="1000"]]
263
264
265 Click on a message with the messge type, **Forward uplink data message**. You can see the  decoded uplink payload as shown below.
266
267 [[image:lt-22222-ul-payload-decoded.png]]
268
269
270 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
271
272 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
273
274
275 == 3.3 Work Modes and their Uplink Payload formats ==
276
277
278 The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
279
280 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
281
282 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
283
284 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
285
286 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
287
288 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289
290 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
291
292 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
293
294 (((
295 The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
298 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
299 |Value|(((
300 AVI1 voltage
301 )))|(((
302 AVI2 voltage
303 )))|(((
304 ACI1 Current
305 )))|(((
306 ACI2 Current
307 )))|**DIDORO***|(((
308 Reserve
309 )))|MOD
310 )))
311
312 (((
313 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
314
315 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
316 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
317 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
318 )))
319
320 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
321 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
322 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
323
324 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
325
326 For example, if the payload is: [[image:image-20220523175847-2.png]]
327
328
329 **The interface values can be calculated as follows:  **
330
331 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
332
333 AVI2 channel voltage is 0x04AC/1000=1.196V
334
335 ACI1 channel current is 0x1310/1000=4.880mA
336
337 ACI2 channel current is 0x1300/1000=4.864mA
338
339 The last byte 0xAA= **10101010**(b) means,
340
341 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
342 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
343 * [1] DI3 - not used for LT-22222-L.
344 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
345 * [1] DI1 channel input state:
346 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
347 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
348 ** DI1 LED is ON in both cases.
349 * [0] DO3 - not used for LT-22222-L.
350 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
351 * [0] DO1 channel output state:
352 ** DO1 is FLOATING when there is no load between DO1 and V+.
353 ** DO1 is HIGH when there is a load between DO1 and V+.
354 ** DO1 LED is OFF in both cases.
355
356 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
357
358
359 (((
360 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
361 )))
362
363 (((
364 The uplink payload is 11 bytes long.
365
366 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
367 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
368 |Value|COUNT1|COUNT2 |DIDORO*|(((
369 Reserve
370 )))|MOD
371 )))
372
373 (((
374 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
377 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
378 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
379
380 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
381 )))
382
383 * FIRST: Indicates that this is the first packet after joining the network.
384 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
385
386 (((
387 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
388
389
390 )))
391
392 (((
393 **To activate this mode, run the following AT commands:**
394 )))
395
396 (((
397 (% class="box infomessage" %)
398 (((
399 **AT+MOD=2**
400
401 **ATZ**
402 )))
403 )))
404
405 (((
406
407
408 (% style="color:#4f81bd" %)**AT Commands for counting:**
409 )))
410
411 (((
412 **For LT22222-L:**
413
414 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
415
416 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
417
418 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
419
420 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
421
422 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
423
424 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
425 )))
426
427
428 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
429
430
431 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
432
433 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
435 |Value|COUNT1|(((
436 ACI1 Current
437 )))|(((
438 ACI2 Current
439 )))|DIDORO*|Reserve|MOD
440
441 (((
442 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
443
444 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
445 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
446 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
447 )))
448
449 * RO is for the relay. ROx=1: closed, ROx=0 always open.
450 * FIRST: Indicates that this is the first packet after joining the network.
451 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
452
453 (((
454 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
455 )))
456
457
458 (((
459 **To activate this mode, run the following AT commands:**
460 )))
461
462 (((
463 (% class="box infomessage" %)
464 (((
465 **AT+MOD=3**
466
467 **ATZ**
468 )))
469 )))
470
471 (((
472 AT Commands for counting:
473
474 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
475 )))
476
477
478 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
479
480
481 (((
482 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
483 )))
484
485 (((
486 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
487
488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
489 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
490 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
491 Reserve
492 )))|MOD
493 )))
494
495 (((
496 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
497
498 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
499 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
500 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
501 )))
502
503 * RO is for the relay. ROx=1: closed, ROx=0 always open.
504 * FIRST: Indicates that this is the first packet after joining the network.
505 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
506
507 (((
508 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
509
510
511 )))
512
513 (((
514 **To activate this mode, run the following AT commands:**
515 )))
516
517 (((
518 (% class="box infomessage" %)
519 (((
520 **AT+MOD=4**
521
522 **ATZ**
523 )))
524 )))
525
526 (((
527 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
528 )))
529
530 (((
531 **In addition to that, below are the commands for AVI1 Counting:**
532
533 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
534
535 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
536
537 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
538
539 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
540 )))
541
542
543 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
544
545
546 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
550 |Value|(((
551 AVI1 voltage
552 )))|(((
553 AVI2 voltage
554 )))|(((
555 ACI1 Current
556 )))|COUNT1|DIDORO*|(((
557 Reserve
558 )))|MOD
559
560 (((
561 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
562
563 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
564 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
565 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
566 )))
567
568 * RO is for the relay. ROx=1: closed, ROx=0 always open.
569 * FIRST: Indicates that this is the first packet after joining the network.
570 * (((
571 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
572 )))
573
574 (((
575 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
576 )))
577
578 (((
579 **To activate this mode, run the following AT commands:**
580 )))
581
582 (((
583 (% class="box infomessage" %)
584 (((
585 **AT+MOD=5**
586
587 **ATZ**
588 )))
589 )))
590
591 (((
592 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
593 )))
594
595
596 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
597
598
599 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
600
601 For example, if you configured the following commands:
602
603 * **AT+MOD=1 ** **~-~->**  The normal working mode
604 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
605
606 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
607
608 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
609 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
610
611 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
612
613 (% style="color:#4f81bd" %)**Trigger based on voltage**:
614
615 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
616
617
618 **Example:**
619
620 AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
621
622 AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
623
624
625 (% style="color:#4f81bd" %)**Trigger based on current**:
626
627 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
628
629
630 **Example:**
631
632 AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
633
634
635 (% style="color:#4f81bd" %)**Trigger based on DI status**:
636
637 DI status triggers Flag.
638
639 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
640
641
642 **Example:**
643
644 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
645
646
647 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
648
649 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
650
651 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
652
653 AA: Type Code for this downlink Command:
654
655 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
656
657 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
658
659 yy2 yy2: AC1 or AV1 HIGH limit.
660
661 yy3 yy3: AC2 or AV2 LOW limit.
662
663 Yy4 yy4: AC2 or AV2 HIGH limit.
664
665
666 **Example 1**: AA 00 13 88 00 00 00 00 00 00
667
668 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
669
670
671 **Example 2**: AA 02 01 00
672
673 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
674
675
676 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
677
678 MOD6 Payload: total of 11 bytes
679
680 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
681 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
682 |Value|(((
683 TRI_A FLAG
684 )))|(((
685 TRI_A Status
686 )))|(((
687 TRI_DI FLAG+STA
688 )))|Reserve|Enable/Disable MOD6|(((
689 MOD(6)
690 )))
691
692 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
693
694 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
695 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
696 |(((
697 AV1_LOW
698 )))|(((
699 AV1_HIGH
700 )))|(((
701 AV2_LOW
702 )))|(((
703 AV2_HIGH
704 )))|(((
705 AC1_LOW
706 )))|(((
707 AC1_HIGH
708 )))|(((
709 AC2_LOW
710 )))|(((
711 AC2_HIGH
712 )))
713
714 * Each bit shows if the corresponding trigger has been configured.
715
716 **Example:**
717
718 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
719
720
721 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
722
723 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
724 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
725 |(((
726 AV1_LOW
727 )))|(((
728 AV1_HIGH
729 )))|(((
730 AV2_LOW
731 )))|(((
732 AV2_HIGH
733 )))|(((
734 AC1_LOW
735 )))|(((
736 AC1_HIGH
737 )))|(((
738 AC2_LOW
739 )))|(((
740 AC2_HIGH
741 )))
742
743 * Each bit shows which status has been triggered on this uplink.
744
745 **Example:**
746
747 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
748
749
750 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
751
752 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
753 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
754 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
755
756 * Each bits shows which status has been triggered on this uplink.
757
758 **Example:**
759
760 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
761
762 00000101: Means both DI1 and DI2 trigger are enabled.
763
764
765 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
766
767 Downlink command to poll MOD6 status:
768
769 **AB 06**
770
771 When device got this command, it will send the MOD6 payload.
772
773
774 === 3.3.7 Payload Decoder ===
775
776 (((
777
778
779 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
780 )))
781
782
783 == 3.4 ​Configure LT via AT Commands or Downlinks ==
784
785
786 (((
787 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
788 )))
789
790 (((
791 (((
792 There are two kinds of Commands:
793 )))
794 )))
795
796 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
797
798 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
799
800 === 3.4.1 Common Commands ===
801
802 (((
803 These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
804 )))
805
806
807 === 3.4.2 Sensor related commands ===
808
809 ==== 3.4.2.1 Set Transmit Interval ====
810
811 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
812
813 * (% style="color:#037691" %)**AT command:**
814
815 (% style="color:blue" %)**AT+TDC=N**
816
817 where N is the time in milliseconds.
818
819 **Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
820
821
822 * (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
823
824 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
825
826
827
828 ==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
829
830
831 Sets the work mode.
832
833 * (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
834
835 Where N is the work mode.
836
837 **Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
838
839
840 * (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
841
842 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
843
844
845
846 ==== 3.4.2.3 Poll an uplink ====
847
848
849 Asks the device to send an uplink.
850
851 * (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
852
853 * (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
854
855 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
856
857 **Example**: 0x08FF, ask device to send an Uplink
858
859
860
861 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
862
863
864 Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
865
866 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
867
868 (% style="color:red" %)**1:** (%%)Enable the trigger mode
869
870 (% style="color:red" %)**0: **(%%)Disable the trigger mode
871
872
873 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
874
875 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
876
877
878
879 ==== 3.4.2.5 Poll trigger settings ====
880
881
882 Polls the trigger settings
883
884 * (% style="color:#037691" %)**AT Command:**
885
886 There is no AT Command for this feature.
887
888 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
889
890 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
891
892
893
894 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
895
896
897 Enable or Disable DI1/DI2/DI2 as trigger,
898
899 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
900
901 **Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
902
903
904 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
905
906 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
907
908
909
910 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
911
912
913 Set DI1 or DI3(for LT-33222-L) trigger.
914
915 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
916
917 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
918
919 (% style="color:red" %)**b :** (%%)delay timing.
920
921 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
922
923
924 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
925
926 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
927
928
929
930 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
931
932
933 Sets DI2 trigger.
934
935 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
936
937 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
938
939 (% style="color:red" %)**b :** (%%)delay timing.
940
941 **Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
942
943
944 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
945
946 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
947
948
949
950 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
951
952
953 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
954
955 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
956
957 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
958
959 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
960
961
962
963 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
964
965
966 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
967
968 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
969
970 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
971
972 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
973
974
975
976 ==== 3.4.2.11 Trigger – Set minimum interval ====
977
978
979 Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
980
981 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
982
983 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
984
985 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
986
987 (((
988 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
989 )))
990
991
992
993 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
994
995
996 * (% style="color:#037691" %)**AT Command**
997
998 There is no AT Command to control Digital Output
999
1000
1001 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1002
1003 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1004
1005 (((
1006 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1007 )))
1008
1009 (((
1010 01: Low,  00: High ,  11: No action
1011
1012 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1013 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1014 |02  01  00  11|Low|High|No Action
1015 |02  00  11  01|High|No Action|Low
1016 |02  11  01  00|No Action|Low|High
1017 )))
1018
1019 (((
1020 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1021 )))
1022
1023 (((
1024 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1025 )))
1026
1027
1028
1029 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1030
1031
1032 * (% style="color:#037691" %)**AT Command**
1033
1034 There is no AT Command to control Digital Output
1035
1036
1037 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1038
1039 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1040
1041
1042 This is to control the digital output time of DO pin. Include four bytes:
1043
1044 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1045
1046 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1047
1048 01: DO pins will change back to original state after timeout.
1049
1050 00: DO pins will change to an inverter state after timeout 
1051
1052
1053 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1054
1055 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1056 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1057 |0x01|DO1 set to low
1058 |0x00|DO1 set to high
1059 |0x11|DO1 NO Action
1060
1061 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1062
1063 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1064 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1065 |0x01|DO2 set to low
1066 |0x00|DO2 set to high
1067 |0x11|DO2 NO Action
1068
1069 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1070
1071 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1072 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1073 |0x01|DO3 set to low
1074 |0x00|DO3 set to high
1075 |0x11|DO3 NO Action
1076
1077 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1078
1079
1080 (% style="color:red" %)**Note: **
1081
1082 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1083
1084 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1085
1086 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1087
1088
1089 **Example payload:**
1090
1091 **~1. A9 01 01 01 01 07 D0**
1092
1093 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1094
1095 **2. A9 01 00 01 11 07 D0**
1096
1097 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1098
1099 **3. A9 00 00 00 00 07 D0**
1100
1101 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1102
1103 **4. A9 00 11 01 00 07 D0**
1104
1105 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1106
1107
1108
1109 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1110
1111
1112 * (% style="color:#037691" %)**AT Command:**
1113
1114 There is no AT Command to control Relay Output
1115
1116
1117 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1118
1119 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1120
1121
1122 (((
1123 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1124 )))
1125
1126 (((
1127 00: Closed ,  01: Open , 11: No action
1128
1129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1130 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1131 |03  00  11|Open|No Action
1132 |03  01  11|Close|No Action
1133 |03  11  00|No Action|Open
1134 |03  11  01|No Action|Close
1135 |03  00  00|Open|Open
1136 |03  01  01|Close|Close
1137 |03  01  00|Close|Open
1138 |03  00  01|Open|Close
1139 )))
1140
1141 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1142
1143
1144
1145 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1146
1147
1148 * (% style="color:#037691" %)**AT Command:**
1149
1150 There is no AT Command to control Relay Output
1151
1152
1153 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1154
1155 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1156
1157
1158 This is to control the relay output time of relay. Include four bytes:
1159
1160 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1161
1162 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1163
1164 01: Relays will change back to original state after timeout.
1165
1166 00: Relays will change to an inverter state after timeout
1167
1168
1169 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1170
1171 [[image:image-20221008095908-1.png||height="364" width="564"]]
1172
1173
1174 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1175
1176
1177 (% style="color:red" %)**Note:**
1178
1179 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1180
1181 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1182
1183
1184 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1185
1186
1187 **Example payload:**
1188
1189 **~1. 05 01 11 07 D0**
1190
1191 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1192
1193 **2. 05 01 10 07 D0**
1194
1195 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1196
1197 **3. 05 00 01 07 D0**
1198
1199 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1200
1201 **4. 05 00 00 07 D0**
1202
1203 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1204
1205
1206
1207 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1208
1209
1210 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1211
1212 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1213
1214 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1215
1216 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1217
1218
1219
1220 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1221
1222
1223 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1224
1225 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1226
1227 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1228
1229
1230 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1231
1232 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1233
1234
1235
1236 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1237
1238
1239 Clear counting for counting mode
1240
1241 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1242
1243 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1244
1245 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1246
1247
1248
1249 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1250
1251
1252 * (% style="color:#037691" %)**AT Command:**
1253
1254 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1255
1256
1257 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1258
1259 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1260
1261 (((
1262 range: aa bb cc:0 to 16777215,  (unit:second)
1263 )))
1264
1265
1266
1267 ==== 3.4.2.20 Reset save RO DO state ====
1268
1269
1270 * (% style="color:#037691" %)**AT Command:**
1271
1272 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1273
1274 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1275
1276
1277 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1278
1279 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1280
1281
1282
1283 ==== 3.4.2.21 Encrypted payload ====
1284
1285
1286 * (% style="color:#037691" %)**AT Command:**
1287
1288 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1289
1290 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1291
1292
1293
1294 ==== 3.4.2.22 Get sensor value ====
1295
1296
1297 * (% style="color:#037691" %)**AT Command:**
1298
1299 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1300
1301 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1302
1303
1304
1305 ==== 3.4.2.23 Resets the downlink packet count ====
1306
1307
1308 * (% style="color:#037691" %)**AT Command:**
1309
1310 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1311
1312 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1313
1314
1315
1316 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1317
1318
1319 * (% style="color:#037691" %)**AT Command:**
1320
1321 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1322
1323 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1324
1325
1326 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1327
1328 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1329
1330
1331
1332 ==== 3.4.2.25 Copy downlink to uplink ====
1333
1334
1335 * (% style="color:#037691" %)**AT Command**(%%)**:**
1336
1337 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1338
1339 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1340
1341
1342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1343
1344 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1345
1346
1347
1348 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1349
1350 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1351
1352
1353
1354 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1355
1356
1357 * (((
1358 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1359
1360 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1361
1362
1363 )))
1364
1365 **Example:**
1366
1367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1368
1369
1370 == 3.5 Integrating with ThingsEye.io ==
1371
1372 The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1373
1374 === 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1375
1376 We use The Things Stack Sandbox for demonstating the configuration but  other
1377
1378 * In **The Things Stack Sandbox**, select your application under **Applications**.
1379 * Select **MQTT** under **Integrations**.
1380 * In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1381 * For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1382
1383 NOTE. The username and  password (API key) you created here are required in the next section.
1384
1385 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1386
1387 === 3.5.2 Configuring ThingsEye.io ===
1388
1389 This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1390
1391 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1392 * Under the **Integrations center**, click **Integrations**.
1393 * Click the **Add integration** button (the button with the **+** symbol).
1394
1395 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1396
1397
1398 On the **Add integration** window, configure the following:
1399
1400 **Basic settings:**
1401
1402 * Select **The Things Stack Community** from the **Integration type** list.
1403 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1404 * Ensure the following options are turned on.
1405 ** Enable integration
1406 ** Debug mode
1407 ** Allow create devices or assets
1408 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1409
1410 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1411
1412
1413 **Uplink data converter:**
1414
1415 * Click the **Create new** button if it is not selected by default.
1416 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1417 * Click the **JavaScript** button.
1418 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1419 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1420
1421 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1422
1423
1424 **Downlink data converter (this is an optional step):**
1425
1426 * Click the **Create new** button if it is not selected by default.
1427 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1428 * Click the **JavaScript** button.
1429 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1430 * Click the **Next** button. You will be navigated to the **Connection** tab.
1431
1432 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1433
1434
1435 **Connection:**
1436
1437 * Choose **Region** from the **Host type**.
1438 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1439 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1440 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1441
1442 [[image:message-1.png]]
1443
1444
1445 * Click the **Add** button.
1446
1447 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1448
1449
1450 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1451
1452
1453 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1454
1455
1456 **Viewing integration details**:
1457
1458 Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1459
1460 [[image:integration-details.png||height="686" width="1000"]]
1461
1462
1463 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1464
1465 Note: See also ThingsEye documentation.
1466
1467
1468 **Viewing events:**
1469
1470 This tab  displays all the uplink messages from the LT-22222-L.
1471
1472 * Click on the **Events **tab.
1473 * Select **Debug **from the **Event type** dropdown.
1474 * Select the** time frame** from the **time window**.
1475
1476 [insert image]
1477
1478 - To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1479
1480 [insert image]
1481
1482
1483 **Deleting the integration**:
1484
1485 If you want to delete this integration, click the **Delete integratio**n button.
1486
1487
1488 == 3.6 Interface Details ==
1489
1490 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1491
1492
1493 Support NPN-type sensor
1494
1495 [[image:1653356991268-289.png]]
1496
1497
1498 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1499
1500
1501 (((
1502 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1503 )))
1504
1505 (((
1506 (((
1507 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1508
1509
1510 )))
1511 )))
1512
1513 [[image:1653357170703-587.png]]
1514
1515 (((
1516 (((
1517 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1518 )))
1519 )))
1520
1521 (((
1522
1523 )))
1524
1525 (((
1526 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1527 )))
1528
1529 (((
1530 This type of sensor outputs a low (GND) signal when active.
1531 )))
1532
1533 * (((
1534 Connect the sensor's output to DI1-
1535 )))
1536 * (((
1537 Connect the sensor's VCC to DI1+.
1538 )))
1539
1540 (((
1541 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1542 )))
1543
1544 (((
1545 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1546 )))
1547
1548 (((
1549 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1550 )))
1551
1552 (((
1553
1554 )))
1555
1556 (((
1557 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1558 )))
1559
1560 (((
1561 This type of sensor outputs a high signal (e.g., 24V) when active.
1562 )))
1563
1564 * (((
1565 Connect the sensor's output to DI1+
1566 )))
1567 * (((
1568 Connect the sensor's GND DI1-.
1569 )))
1570
1571 (((
1572 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1573 )))
1574
1575 (((
1576 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1577 )))
1578
1579 (((
1580 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1581 )))
1582
1583 (((
1584
1585 )))
1586
1587 (((
1588 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1589 )))
1590
1591 (((
1592 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1593 )))
1594
1595 * (((
1596 Connect the sensor's output to DI1+ with a 50K resistor in series.
1597 )))
1598 * (((
1599 Connect the sensor's GND DI1-.
1600 )))
1601
1602 (((
1603 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1604 )))
1605
1606 (((
1607 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1608 )))
1609
1610 (((
1611 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1612 )))
1613
1614
1615 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1616
1617 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1618
1619 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1620
1621 [[image:image-20230616235145-1.png]]
1622
1623 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1624
1625 [[image:image-20240219115718-1.png]]
1626
1627
1628 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1629
1630
1631 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1632
1633 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1634
1635 [[image:1653357531600-905.png]]
1636
1637
1638 === 3.6.4 Analog Input Interfaces ===
1639
1640
1641 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1642
1643
1644 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1645
1646 [[image:1653357592296-182.png]]
1647
1648 Example: Connecting a 4~~20mA sensor
1649
1650 We will use the wind speed sensor as an example for reference only.
1651
1652
1653 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1654
1655 (% style="color:red" %)**Red:  12~~24V**
1656
1657 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1658
1659 **Black:  GND**
1660
1661 **Connection diagram:**
1662
1663 [[image:1653357640609-758.png]]
1664
1665 [[image:1653357648330-671.png||height="155" width="733"]]
1666
1667
1668 Example: Connecting to a regulated power supply to measure voltage
1669
1670 [[image:image-20230608101532-1.png||height="606" width="447"]]
1671
1672 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1673
1674 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1675
1676
1677 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1678
1679 (% style="color:red" %)**Red:  12~~24v**
1680
1681 **Black:  GND**
1682
1683
1684 === 3.6.5 Relay Output ===
1685
1686
1687 (((
1688 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1689
1690 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1691 )))
1692
1693 [[image:image-20220524100215-9.png]]
1694
1695
1696 [[image:image-20220524100215-10.png||height="382" width="723"]]
1697
1698
1699 == 3.7 LEDs Indicators ==
1700
1701
1702 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1703 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1704 |**PWR**|Always on if there is power
1705 |**TX**|(((
1706 (((
1707 Device boot: TX blinks 5 times.
1708 )))
1709
1710 (((
1711 Successful join network: TX ON for 5 seconds.
1712 )))
1713
1714 (((
1715 Transmit a LoRa packet: TX blinks once
1716 )))
1717 )))
1718 |**RX**|RX blinks once when receiving a packet.
1719 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1720 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1721 |**DI1**|(((
1722 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1723 )))
1724 |**DI2**|(((
1725 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1726 )))
1727 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1728 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1729
1730 = 4. Using AT Command =
1731
1732 == 4.1 Connecting the LT-22222-L to a computer ==
1733
1734
1735 (((
1736 The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1737 )))
1738
1739 [[image:1653358238933-385.png]]
1740
1741
1742 (((
1743 On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1744 )))
1745
1746 [[image:1653358355238-883.png]]
1747
1748
1749 (((
1750 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1751 )))
1752
1753 (((
1754 The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1755
1756 AT+<CMD>?        : Help on <CMD>
1757 )))
1758
1759 (((
1760 AT+<CMD>         : Run <CMD>
1761 )))
1762
1763 (((
1764 AT+<CMD>=<value> : Set the value
1765 )))
1766
1767 (((
1768 AT+<CMD>=?       :  Get the value
1769 )))
1770
1771 (((
1772 ATZ: Trig a reset of the MCU
1773 )))
1774
1775 (((
1776 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1777 )))
1778
1779 (((
1780 AT+DEUI: Get or Set the Device EUI
1781 )))
1782
1783 (((
1784 AT+DADDR: Get or Set the Device Address
1785 )))
1786
1787 (((
1788 AT+APPKEY: Get or Set the Application Key
1789 )))
1790
1791 (((
1792 AT+NWKSKEY: Get or Set the Network Session Key
1793 )))
1794
1795 (((
1796 AT+APPSKEY:  Get or Set the Application Session Key
1797 )))
1798
1799 (((
1800 AT+APPEUI:  Get or Set the Application EUI
1801 )))
1802
1803 (((
1804 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1805 )))
1806
1807 (((
1808 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1809 )))
1810
1811 (((
1812 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1813 )))
1814
1815 (((
1816 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1817 )))
1818
1819 (((
1820 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1821 )))
1822
1823 (((
1824 AT+RX2FQ: Get or Set the Rx2 window frequency
1825 )))
1826
1827 (((
1828 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1829 )))
1830
1831 (((
1832 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1833 )))
1834
1835 (((
1836 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1837 )))
1838
1839 (((
1840 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1841 )))
1842
1843 (((
1844 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1845 )))
1846
1847 (((
1848 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1849 )))
1850
1851 (((
1852 AT+NWKID: Get or Set the Network ID
1853 )))
1854
1855 (((
1856 AT+FCU: Get or Set the Frame Counter Uplink
1857 )))
1858
1859 (((
1860 AT+FCD: Get or Set the Frame Counter Downlink
1861 )))
1862
1863 (((
1864 AT+CLASS: Get or Set the Device Class
1865 )))
1866
1867 (((
1868 AT+JOIN: Join network
1869 )))
1870
1871 (((
1872 AT+NJS: Get OTAA Join Status
1873 )))
1874
1875 (((
1876 AT+SENDB: Send hexadecimal data along with the application port
1877 )))
1878
1879 (((
1880 AT+SEND: Send text data along with the application port
1881 )))
1882
1883 (((
1884 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1885 )))
1886
1887 (((
1888 AT+RECV: Print last received data in raw format
1889 )))
1890
1891 (((
1892 AT+VER:  Get current image version and Frequency Band
1893 )))
1894
1895 (((
1896 AT+CFM: Get or Set the confirmation mode (0-1)
1897 )))
1898
1899 (((
1900 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1901 )))
1902
1903 (((
1904 AT+SNR: Get the SNR of the last received packet
1905 )))
1906
1907 (((
1908 AT+RSSI: Get the RSSI of the last received packet
1909 )))
1910
1911 (((
1912 AT+TDC: Get or set the application data transmission interval in ms
1913 )))
1914
1915 (((
1916 AT+PORT: Get or set the application port
1917 )))
1918
1919 (((
1920 AT+DISAT: Disable AT commands
1921 )))
1922
1923 (((
1924 AT+PWORD: Set password, max 9 digits
1925 )))
1926
1927 (((
1928 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1929 )))
1930
1931 (((
1932 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1933 )))
1934
1935 (((
1936 AT+CFG: Print all settings
1937 )))
1938
1939
1940 == 4.2 Common AT Command Sequence ==
1941
1942 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1943
1944 (((
1945
1946
1947 (((
1948 (% style="color:blue" %)**If device has not joined network yet:**
1949 )))
1950 )))
1951
1952 (((
1953 (% style="background-color:#dcdcdc" %)**123456**
1954 )))
1955
1956 (((
1957 (% style="background-color:#dcdcdc" %)**AT+FDR**
1958 )))
1959
1960 (((
1961 (% style="background-color:#dcdcdc" %)**123456**
1962 )))
1963
1964 (((
1965 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1966 )))
1967
1968 (((
1969 (% style="background-color:#dcdcdc" %)**ATZ**
1970 )))
1971
1972
1973 (((
1974 (% style="color:blue" %)**If device already joined network:**
1975 )))
1976
1977 (((
1978 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1979 )))
1980
1981 (((
1982 (% style="background-color:#dcdcdc" %)**ATZ**
1983 )))
1984
1985
1986 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1987
1988 (((
1989
1990
1991 (((
1992 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1993 )))
1994 )))
1995
1996 (((
1997 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1998 )))
1999
2000 (((
2001 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2002 )))
2003
2004 (((
2005 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2006 )))
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2010 )))
2011
2012 (((
2013 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2014 )))
2015
2016 (((
2017 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2018 )))
2019
2020 (((
2021 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2022 )))
2023
2024 (((
2025 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2026 )))
2027
2028 (((
2029 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2030 )))
2031
2032 (((
2033 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2034 )))
2035
2036 (((
2037 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2038 )))
2039
2040 (((
2041 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2042
2043
2044 )))
2045
2046 (((
2047 (% style="color:red" %)**Note:**
2048 )))
2049
2050 (((
2051 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2052
2053 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2054
2055 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2056 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2057
2058 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2059 )))
2060
2061 (((
2062 [[image:1653359097980-169.png||height="188" width="729"]]
2063 )))
2064
2065
2066 === 4.2.3 Change to Class A ===
2067
2068
2069 (((
2070 (% style="color:blue" %)**If sensor JOINED:**
2071
2072 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2073
2074 (% style="background-color:#dcdcdc" %)**ATZ**
2075 )))
2076
2077
2078 = 5. Case Study =
2079
2080 == 5.1 Counting how many objects pass through the flow Line ==
2081
2082
2083 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2084
2085
2086 = 6. FAQ =
2087
2088 == 6.1 How to upgrade the image? ==
2089
2090
2091 The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2092
2093 * Support new features.
2094 * Fix bugs.
2095 * Change LoRaWAN bands.
2096
2097 Below is the hardware connection setup for uploading an image to the LT:
2098
2099 [[image:1653359603330-121.png]]
2100
2101
2102 (((
2103 (% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2104 (% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2105 (% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2106
2107
2108 (((
2109 (% style="color:blue" %)**For LT-22222-L**(%%):
2110 Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2111 )))
2112
2113
2114 )))
2115
2116 [[image:image-20220524103407-12.png]]
2117
2118
2119 [[image:image-20220524103429-13.png]]
2120
2121
2122 [[image:image-20220524104033-15.png]]
2123
2124
2125 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2126
2127 [[image:1653360054704-518.png||height="186" width="745"]]
2128
2129
2130 (((
2131 (((
2132 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2133
2134
2135 )))
2136 )))
2137
2138 (((
2139 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2140 )))
2141
2142 (((
2143
2144
2145 == 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2146
2147
2148 )))
2149
2150 (((
2151 (((
2152 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2153 )))
2154 )))
2155
2156 (((
2157 (((
2158 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2159
2160
2161 )))
2162 )))
2163
2164 (((
2165 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2166
2167
2168 )))
2169
2170 (((
2171 [[image:1653360231087-571.png||height="401" width="727"]]
2172
2173
2174 )))
2175
2176 (((
2177 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2178 )))
2179
2180
2181
2182 (((
2183 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2184
2185
2186 )))
2187
2188 (((
2189 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2190
2191 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2192
2193 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2194
2195 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2196
2197 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2198
2199 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2200
2201 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2202
2203 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2204
2205 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2206 )))
2207
2208
2209 (((
2210 As shown in below:
2211 )))
2212
2213 [[image:1653360498588-932.png||height="485" width="726"]]
2214
2215
2216 == 6.4 How to change the uplink interval? ==
2217
2218
2219 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2220
2221
2222 == 6.5 Can I see the counting event in Serial? ==
2223
2224
2225 (((
2226 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2227
2228
2229 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2230
2231
2232 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2233
2234
2235 )))
2236
2237 (((
2238 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2239
2240
2241 If the device is not shut down, but directly powered off.
2242
2243 It will default that this is a power-off state.
2244
2245 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2246
2247 After restart, the status before power failure will be read from flash.
2248
2249
2250 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2251
2252
2253 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2254
2255
2256 [[image:image-20221006170630-1.png||height="610" width="945"]]
2257
2258
2259 == 6.9 Can LT22222-L save RO state? ==
2260
2261
2262 Firmware version needs to be no less than 1.6.0.
2263
2264
2265 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2266
2267
2268 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2269
2270
2271 = 7. Trouble Shooting =
2272 )))
2273
2274 (((
2275 (((
2276 == 7.1 Downlink doesn't work, how to solve it? ==
2277
2278
2279 )))
2280 )))
2281
2282 (((
2283 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2284 )))
2285
2286 (((
2287
2288
2289 == 7.2 Have trouble to upload image. ==
2290
2291
2292 )))
2293
2294 (((
2295 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2296 )))
2297
2298 (((
2299
2300
2301 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2302
2303
2304 )))
2305
2306 (((
2307 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2308 )))
2309
2310
2311 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2312
2313
2314 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2315 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2316
2317
2318 = 8. Order Info =
2319
2320
2321 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2322
2323 (% style="color:#4f81bd" %)**XXX:**
2324
2325 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2326 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2327 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2328 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2329 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2330 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2331 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2332 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2333 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2334
2335 = 9. Packing Info =
2336
2337
2338 **Package Includes**:
2339
2340 * LT-22222-L I/O Controller x 1
2341 * Stick Antenna for LoRa RF part x 1
2342 * Bracket for controller x1
2343 * Program cable x 1
2344
2345 **Dimension and weight**:
2346
2347 * Device Size: 13.5 x 7 x 3 cm
2348 * Device Weight: 105g
2349 * Package Size / pcs : 14.5 x 8 x 5 cm
2350 * Weight / pcs : 170g
2351
2352 = 10. Support =
2353
2354
2355 * (((
2356 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2357 )))
2358 * (((
2359 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2360
2361
2362
2363 )))
2364
2365 = 11. Reference​​​​​ =
2366
2367
2368 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2369 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2370 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]