Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101 == 1.3 Features ==
102
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114
115 * Smart buildings & home automation
116 * Logistics and supply chain management
117 * Smart metering
118 * Smart agriculture
119 * Smart cities
120 * Smart factory
121
122 == 1.5 Hardware Variants ==
123
124
125 (% border="1" cellspacing="3" style="width:510px" %)
126 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
127 |(% style="width:94px" %)**LT-33222-L**|(% style="width:172px" %)(((
128 (% style="text-align:center" %)
129 [[image:lt33222-l.jpg||height="110" width="95"]]
130 )))|(% style="width:256px" %)(((
131 * 3 x Digital Input (Bi-direction)
132 * 3 x Digital Output
133 * 2 x Relay Output (5A@250VAC / 30VDC)
134 * 2 x 0~~20mA Analog Input (res:0.01mA)
135 * 2 x 0~~30V Analog Input (res:0.01v)
136 * 1 x Counting Port
137 )))
138
139 = 2. Assembling the device =
140
141 == 2.1 Connecting the antenna ==
142
143
144 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
145
146 {{warning}}
147 **Warning! Do not power on the device without connecting the antenna.**
148 {{/warning}}
149
150
151 == 2.2 Terminals ==
152
153
154 The  LT-22222-L has two screw terminal blocks. The upper screw terminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
155
156 **Upper screw terminal block (from left to right):**
157
158 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
159 |=(% style="width: 139px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 242px;background-color:#4f81bd;color:white" %)Function
160 |(% style="width:139px" %)GND|(% style="width:242px" %)Ground
161 |(% style="width:139px" %)VIN|(% style="width:242px" %)Input Voltage
162 |(% style="width:139px" %)AVI2|(% style="width:242px" %)Analog Voltage Input Terminal 2
163 |(% style="width:139px" %)AVI1|(% style="width:242px" %)Analog Voltage Input Terminal 1
164 |(% style="width:139px" %)ACI2|(% style="width:242px" %)Analog Current Input Terminal 2
165 |(% style="width:139px" %)ACI1|(% style="width:242px" %)Analog Current Input Terminal 1
166
167 **Lower screw terminal block (from left to right):**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:253px" %)
170 |=(% style="width: 125px;background-color:#4f81bd;color:white" %)Screw Terminal|=(% style="width: 128px;background-color:#4f81bd;color:white" %)Function
171 |(% style="width:125px" %)RO1-2|(% style="width:128px" %)Relay Output 1
172 |(% style="width:125px" %)RO1-1|(% style="width:128px" %)Relay Output 1
173 |(% style="width:125px" %)RO2-2|(% style="width:128px" %)Relay Output 2
174 |(% style="width:125px" %)RO2-1|(% style="width:128px" %)Relay Output 2
175 |(% style="width:125px" %)DI2+|(% style="width:128px" %)Digital Input 2
176 |(% style="width:125px" %)DI2-|(% style="width:128px" %)Digital Input 2
177 |(% style="width:125px" %)DI1+|(% style="width:128px" %)Digital Input 1
178 |(% style="width:125px" %)DI1-|(% style="width:128px" %)Digital Input 1
179 |(% style="width:125px" %)DO2|(% style="width:128px" %)Digital Output 2
180 |(% style="width:125px" %)DO1|(% style="width:128px" %)Digital Output 1
181
182 == 2.3 Connecting LT-22222-L to a Power Source ==
183
184
185 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
186
187 {{warning}}
188 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
189 {{/warning}}
190
191
192 [[image:1653297104069-180.png]]
193
194
195 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
196
197
198 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
199
200
201 == 3.1 Prerequisites ==
202
203
204 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey which allows you to register it with a LoRaWAN network. This registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205
206 [[image:image-20230425173427-2.png||height="246" width="530"]]
207
208 {{info}}
209 If you are unable to set the provided root key and other identifiers in the network server, you must generate new keys and identifiers with the network server and configure the device with them using AT commands.
210 {{/info}}
211
212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213
214
215 == 3.2 The Things Stack ==
216
217
218 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
219
220 {{info}}
221 The Things Stack Sandbox was formally called The Things Stack Community Edition.
222 {{/info}}
223
224
225 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
226
227
228 [[image:dragino-lorawan-nw-lt-22222-n.jpg||height="374" width="1400"]]
229
230 {{info}}
231 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
232 {{/info}}
233
234
235 === 3.2.1 Setting up ===
236
237
238 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
239 * Log in to your The Things Stack Sandbox account.
240 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
241 * Go to your application's page and click on the **End devices** in the left menu.
242 * On the End devices page, click on **+ Register end device**. Two registration options are available:
243
244 ==== 3.2.1.1 Using the LoRaWAN Device Repository ====
245
246
247 * On the **Register end device** page:
248 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
249 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
250 *** **End device brand**: Dragino Technology Co., Limited
251 *** **Model**: LT22222-L I/O Controller
252 *** **Hardware ver**: Unknown
253 *** **Firmware ver**: 1.6.0
254 *** **Profile (Region)**: Select the region that matches your device.
255 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
256
257 [[image:lt-22222-l-dev-repo-reg-p1.png]]
258
259
260 * Register end device page continued...
261 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
262 ** In the **DevEUI** field, enter the **DevEUI**.
263 ** In the **AppKey** field, enter the **AppKey.**
264 ** In the **End device ID** field, enter a unique name for your LT-22222-L within this application.
265 ** Under **After registration**, select the **View registered end device** option.
266 ** Click **Register end device** button.
267
268 [[image:lt-22222-l-dev-repo-reg-p2.png]]
269
270
271 * You will be navigated to the **Device overview** page.
272
273 [[image:lt-22222-device-overview.png]]
274
275
276 ==== 3.2.1.2 Adding device manually ====
277
278
279 * On the **Register end device** page:
280 ** Select the option **Enter end device specifies manually** under **Input method**.
281 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
282 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
283 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
284 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
285 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
286 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
287
288 [[image:lt-22222-l-manually-p1.png]]
289
290
291 * Register end device page continued...
292 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
293 ** In the **DevEUI** field, enter the **DevEUI**.
294 ** In the **AppKey** field, enter the **AppKey**.
295 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
296 ** Under **After registration**, select the **View registered end device** option.
297 ** Click the **Register end device** button.
298
299 [[image:lt-22222-l-manually-p2.png]]
300
301
302 You will be navigated to the **Device overview** page.
303
304
305 [[image:lt-22222-device-overview.png]]
306
307
308 === 3.2.2 Joining ===
309
310
311 On the end device's page (in this case, lt-22222-l), click on **Live data** tab. The Live data panel for your device will display. Initially, it is blank.
312
313 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
314
315
316 [[image:lt-22222-l-joining.png]]
317
318
319 === 3.2.3 Uplinks ===
320
321
322 After successfully joining, the device will send its first **uplink data message** to The Things Stack application it belongs to (in this example, it is **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
323
324 Click on one of the **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the **decode_payload {}** JSON object.
325
326 [[image:lt-22222-ul-payload-decoded.png]]
327
328
329 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > [your application] > End devices** > [**your end device]** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
330
331 {{info}}
332 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
333 {{/info}}
334
335 [[image:lt-22222-ul-payload-fmt.png]]
336
337
338 We have written a payload formatter that resolves some decoding issues present in The Things Stack Device Repository payload formatter. You can add it under the **Custom JavaScript formatter**. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
339
340 (% class="wikigeneratedid" %)
341 [[image:lt-22222-l-js-custom-payload-formatter.png]]
342
343
344 === 3.2.4 Downlinks ===
345
346
347 When the LT-22222-L receives a downlink message from the LoRaWAN Network Server, the **RX LED** turns on for **1 second**.
348
349
350 == 3.3 Working Modes and Uplink Payload formats ==
351
352
353 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
354
355 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
356
357 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
358
359 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
360
361 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
362
363 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
364
365 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
366
367 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
368
369
370 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
371
372
373 (((
374 This is the default mode.
375
376 The uplink payload is 11 bytes long.
377 (% style="display:none" wfd-invisible="true" %)
378
379 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
380 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
381 |Value|(((
382 AVI1 voltage
383 )))|(((
384 AVI2 voltage
385 )))|(((
386 ACI1 Current
387 )))|(((
388 ACI2 Current
389 )))|**DIDORO***|(((
390 Reserve
391 )))|MOD
392 )))
393
394 (((
395 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
396
397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
398 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
399 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
400 )))
401
402 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
403 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
404 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
405
406 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
407
408 For example, if the payload is: [[image:image-20220523175847-2.png]]
409
410
411 **The interface values can be calculated as follows:  **
412
413 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
414
415 AVI2 channel voltage is 0x04AC/1000=1.196V
416
417 ACI1 channel current is 0x1310/1000=4.880mA
418
419 ACI2 channel current is 0x1300/1000=4.864mA
420
421 The last byte 0xAA= **10101010**(b) means,
422
423 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
424 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
425 * **[1] DI3 - not used for LT-22222-L.**
426 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
427 * [1] DI1 channel input state:
428 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
429 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
430 ** DI1 LED is ON in both cases.
431 * **[0] DO3 - not used for LT-22222-L.**
432 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
433 * [0] DO1 channel output state:
434 ** DO1 is FLOATING when there is no load between DO1 and V+.
435 ** DO1 is HIGH and there is a load between DO1 and V+.
436 ** DO1 LED is OFF in both cases.
437
438 Reserve = 0
439
440 MOD = 1
441
442
443 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
444
445
446 (((
447 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
448 )))
449
450 (((
451 The uplink payload is 11 bytes long.
452
453 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
454 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
455 It starts counting again when it reaches the maximum value.**
456
457 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
458 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
459 |Value|COUNT1|COUNT2 |DIDORO*|(((
460 Reserve
461 )))|MOD
462 )))
463
464 (((
465 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
466
467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
468 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
469 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
470
471 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
472 )))
473
474 * FIRST: Indicates that this is the first packet after joining the network.
475 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
476
477 (((
478 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
479
480
481 )))
482
483 (((
484 **To activate this mode, run the following AT commands:**
485 )))
486
487 (((
488 (% class="box infomessage" %)
489 (((
490 **AT+MOD=2**
491
492 **ATZ**
493 )))
494 )))
495
496 (((
497
498
499 (% style="color:#4f81bd" %)**AT Commands for counting:**
500 )))
501
502 (((
503 **For LT22222-L:**
504
505 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
506
507 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
508
509 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
510
511 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
512
513 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
514
515 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
516 )))
517
518
519 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
520
521
522 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
523 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
524 It starts counting again when it reaches the maximum value.**
525
526 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
527
528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
529 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
530 |Value|COUNT1|(((
531 ACI1 Current
532 )))|(((
533 ACI2 Current
534 )))|DIDORO*|Reserve|MOD
535
536 (((
537 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
538
539 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
540 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
541 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
542 )))
543
544 * RO is for the relay. ROx=1: closed, ROx=0 always open.
545 * FIRST: Indicates that this is the first packet after joining the network.
546 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
547
548 (((
549 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
550 )))
551
552
553 (((
554 **To activate this mode, run the following AT commands:**
555 )))
556
557 (((
558 (% class="box infomessage" %)
559 (((
560 **AT+MOD=3**
561
562 **ATZ**
563 )))
564 )))
565
566 (((
567 AT Commands for counting:
568
569 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
570 )))
571
572
573 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
574
575
576 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
577 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
578 It starts counting again when it reaches the maximum value.**
579
580
581 (((
582 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
583 )))
584
585 (((
586 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
587
588 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
589 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
590 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
591 Reserve
592 )))|MOD
593 )))
594
595 (((
596 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
597
598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
599 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
600 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
601 )))
602
603 * RO is for the relay. ROx=1: closed, ROx=0 always open.
604 * FIRST: Indicates that this is the first packet after joining the network.
605 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
606
607 (((
608 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
609
610
611 )))
612
613 (((
614 **To activate this mode, run the following AT commands:**
615 )))
616
617 (((
618 (% class="box infomessage" %)
619 (((
620 **AT+MOD=4**
621
622 **ATZ**
623 )))
624 )))
625
626 (((
627 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
628 )))
629
630 (((
631 **In addition to that, below are the commands for AVI1 Counting:**
632
633 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
634
635 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
636
637 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
638
639 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
640 )))
641
642
643 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
644
645
646 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
647 The maximum count for four bytes is FFFF (hex) = 65535 (dec).
648 It starts counting again when it reaches the maximum value.**
649
650
651 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
652
653 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
654 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
655 |Value|(((
656 AVI1 voltage
657 )))|(((
658 AVI2 voltage
659 )))|(((
660 ACI1 Current
661 )))|COUNT1|DIDORO*|(((
662 Reserve
663 )))|MOD
664
665 (((
666 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
667
668 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
669 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
670 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
671 )))
672
673 * RO is for the relay. ROx=1: closed, ROx=0 always open.
674 * FIRST: Indicates that this is the first packet after joining the network.
675 * (((
676 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
677 )))
678
679 (((
680 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
681 )))
682
683 (((
684 **To activate this mode, run the following AT commands:**
685 )))
686
687 (((
688 (% class="box infomessage" %)
689 (((
690 **AT+MOD=5**
691
692 **ATZ**
693 )))
694 )))
695
696 (((
697 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
698 )))
699
700
701 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
702
703
704 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
705
706 For example, if you configure the following commands:
707
708 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
709 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
710
711 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
712
713 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
714 1. (((
715 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
716
717 * The first uplink uses the payload specified in trigger mode (MOD=6).
718 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
719 )))
720
721 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
722
723 (% style="color:#4f81bd" %)**Trigger based on voltage**:
724
725 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
726
727
728 **Example:**
729
730 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
731
732 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0 for parameters that are not in use)
733
734
735 (% style="color:#4f81bd" %)**Trigger based on current**:
736
737 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
738
739
740 **Example:**
741
742 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
743
744
745 (% style="color:#4f81bd" %)**Trigger based on DI status**:
746
747 DI status triggers Flag.
748
749 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
750
751
752 **Example:**
753
754 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
755
756
757 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
758
759 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
760
761 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
762
763 AA: Type Code for this downlink Command:
764
765 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
766
767 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
768
769 yy2 yy2: AC1 or AV1 HIGH limit.
770
771 yy3 yy3: AC2 or AV2 LOW limit.
772
773 Yy4 yy4: AC2 or AV2 HIGH limit.
774
775
776 **Example 1**: AA 00 13 88 00 00 00 00 00 00
777
778 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
779
780
781 **Example 2**: AA 02 01 00
782
783 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
784
785
786 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
787
788 MOD6 Payload: a total of 11 bytes
789
790 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
791 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
792 |Value|(((
793 TRI_A FLAG
794 )))|(((
795 TRI_A Status
796 )))|(((
797 TRI_DI FLAG+STA
798 )))|Reserve|Enable/Disable MOD6|(((
799 MOD(6)
800 )))
801
802 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Total 1 byte as below.
803
804 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
805 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
806 |(((
807 AV1_LOW
808 )))|(((
809 AV1_HIGH
810 )))|(((
811 AV2_LOW
812 )))|(((
813 AV2_HIGH
814 )))|(((
815 AC1_LOW
816 )))|(((
817 AC1_HIGH
818 )))|(((
819 AC2_LOW
820 )))|(((
821 AC2_HIGH
822 )))
823
824 * Each bit shows if the corresponding trigger has been configured.
825
826 **Example:**
827
828 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
829
830
831 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is triggered. Total 1 byte as below.
832
833 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
834 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
835 |(((
836 AV1_LOW
837 )))|(((
838 AV1_HIGH
839 )))|(((
840 AV2_LOW
841 )))|(((
842 AV2_HIGH
843 )))|(((
844 AC1_LOW
845 )))|(((
846 AC1_HIGH
847 )))|(((
848 AC2_LOW
849 )))|(((
850 AC2_HIGH
851 )))
852
853 * Each bit shows which status has been triggered on this uplink.
854
855 **Example:**
856
857 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
858
859
860 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is triggered. Total 1 byte as below.
861
862 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
863 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
864 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
865
866 * Each bit shows which status has been triggered on this uplink.
867
868 **Example:**
869
870 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is triggered by DI1.
871
872 00000101: This means both DI1 and DI2 triggers are enabled.
873
874
875 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
876
877 Downlink command to poll/request MOD6 status:
878
879 **AB 06**
880
881 When the device receives this command, it will send the MOD6 payload.
882
883
884 === 3.3.7 Payload Decoder ===
885
886 (((
887
888
889 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LT22222-L]]
890 )))
891
892
893 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
894
895
896 (((
897 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
898 )))
899
900 (((
901 (((
902 There are two types of commands:
903 )))
904 )))
905
906 * (% style="color:blue" %)**Common commands**(%%):
907
908 * (% style="color:blue" %)**Sensor-related commands**(%%):
909
910 === 3.4.1 Common commands ===
911
912
913 (((
914 These are available for each sensor and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
915
916
917 )))
918
919 === 3.4.2 Sensor-related commands ===
920
921
922 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
923
924
925 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
926
927
928 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
929
930 (% style="color:#037691" %)**AT command**
931
932 (% border="2" style="width:500px" %)
933 |**Command**|AT+TDC=<time>
934 |**Parameters**|**time **: uplink interval in milliseconds
935 |**Get**|AT+TDC=?
936 |**Response**|(((
937 current uplink interval
938
939 OK
940 )))
941 |**Set**|AT+TDC=<time>
942 |**Response**|OK
943 |**Example**|(((
944 AT+TDC=30000
945
946 Sets the uplink interval to **30 seconds** (30000 milliseconds)
947 )))
948
949 (% style="color:#037691" %)**Downlink payload**
950
951 (% border="2" style="width:500px" %)
952 |**Payload**|(((
953 <prefix><time>
954 )))
955 |**Parameters**|(((
956 **prefix** : 0x01
957
958 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
959 )))
960 |**Example**|(((
961 01 **00 00 1E**
962
963 Sets the uplink interval to **30 seconds**
964
965 Conversion: 30 (dec) = 00 00 1E (hex)
966
967 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
968
969 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
970 )))
971
972 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
973
974
975 Sets the working mode.
976
977 (% style="color:#037691" %)**AT command**
978
979 (% border="2" style="width:500px" %)
980 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
981 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
982 **working_mode** :
983
984 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
985
986 2 = Double DI Counting + DO + RO
987
988 3 = Single DI Counting + 2 x ACI + DO + RO
989
990 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
991
992 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
993
994 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
995 )))
996 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
997 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
998 Current working mode
999
1000 OK
1001 )))
1002 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
1003 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
1004 Attention:Take effect after ATZ
1005
1006 OK
1007 )))
1008 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
1009 AT+MOD=2
1010
1011 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1012 )))
1013
1014 (% class="wikigeneratedid" %)
1015 (% style="color:#037691" %)**Downlink payload**
1016
1017 (% border="2" style="width:500px" %)
1018 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1019 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1020 **prefix** : 0x0A
1021
1022 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1023 )))
1024 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1025 0A **02**
1026
1027 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1028 )))
1029
1030 ==== 3.4.2.3 Request an uplink from the device ====
1031
1032
1033 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1034
1035 (% style="color:#037691" %)**AT command**
1036
1037 There is no AT Command available for this feature.
1038
1039 (% style="color:#037691" %)**Downlink payload**
1040
1041 (% border="2" style="width:500px" %)
1042 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1043 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1044 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1045 08 **FF**
1046
1047 Requests an uplink from LT-22222-L.
1048 )))
1049
1050 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1051
1052
1053 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]).
1054
1055 (% style="color:#037691" %)**AT Command**
1056
1057 (% border="2" style="width:500px" %)
1058 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1059 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1060 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1061 **enable/disable trigger_mode** :
1062
1063 1 = enable trigger mode
1064
1065 0 = disable trigger mode
1066 )))
1067 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1068 AT+ADDMOD6=1
1069
1070 Enable trigger mode for the current working mode
1071 )))
1072
1073 (% style="color:#037691" %)**Downlink payload**
1074
1075 (% border="2" style="width:500px" %)
1076 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1077 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1078 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1079
1080 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1081 )))
1082 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1083 0A 06 **01**
1084
1085 Enable trigger mode for the current working mode
1086 )))
1087
1088 ==== 3.4.2.5 Request trigger settings ====
1089
1090
1091 Requests the trigger settings.
1092
1093 (% style="color:#037691" %)**AT Command:**
1094
1095 There is no AT Command available for this feature.
1096
1097 (% style="color:#037691" %)**Downlink Payload**
1098
1099 (% border="2" style="width:500px" %)
1100 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1101 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1102 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1103 AB 06
1104
1105 Uplink the trigger settings.
1106 )))
1107
1108 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1109
1110
1111 Enable or disable DI1/DI2/DI3 as a trigger.
1112
1113 (% style="color:#037691" %)**AT Command**
1114
1115 (% border="2" style="width:500px" %)
1116 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1117 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1118 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1119 **DI1_trigger:**
1120
1121 1 = enable DI1 trigger
1122
1123 0 = disable DI1 trigger
1124
1125 **DI2 _trigger**
1126
1127 1 = enable DI2 trigger
1128
1129 0 = disable DI2 trigger
1130 )))
1131 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1132 AT+DTRI=1,0
1133
1134 Enable DI1 trigger, disable DI2 trigger
1135 )))
1136
1137 (% class="wikigeneratedid" %)
1138 (% style="color:#037691" %)**Downlink Payload**
1139
1140 (% border="2" style="width:500px" %)
1141 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1142 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1143 **prefix :** AA 02 (two bytes in hexadecimal)
1144
1145 **DI1_trigger:**
1146
1147 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1148
1149 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1150
1151 **DI2 _trigger**
1152
1153 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1154
1155 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1156 )))
1157 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1158 AA 02 **01 00**
1159
1160 Enable DI1 trigger, disable DI2 trigger
1161 )))
1162
1163 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as a trigger ====
1164
1165
1166 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1167
1168 (% style="color:#037691" %)**AT Command**
1169
1170 (% border="2" style="width:500px" %)
1171 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1172 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1173 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1174 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1175
1176 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1177 )))
1178 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1179 AT+TRIG1=1,100
1180
1181 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1182 )))
1183
1184 (% class="wikigeneratedid" %)
1185 (% style="color:#037691" %)**Downlink Payload**
1186
1187 (% border="2" style="width:500px" %)
1188 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1189 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1190 **prefix** : 09 01 (hexadecimal)
1191
1192 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1193
1194 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1195 )))
1196 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1197 09 01 **01 00 64**
1198
1199 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1200 )))
1201
1202 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1203
1204
1205 Sets DI2 as a trigger.
1206
1207 (% style="color:#037691" %)**AT Command**
1208
1209 (% border="2" style="width:500px" %)
1210 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1211 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1212 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1213 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1214
1215 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1216 )))
1217 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1218 AT+TRIG2=0,100
1219
1220 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1221 )))
1222
1223 (% style="color:#037691" %)**Downlink Payload**
1224
1225 (% border="2" style="width:500px" %)
1226 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1227 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1228 **prefix** : 09 02 (hexadecimal)
1229
1230 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1231
1232 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1233 )))
1234 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1235
1236 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1237
1238
1239 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1240
1241 (% style="color:#037691" %)**AT Command**
1242
1243 (% border="2" style="width:500px" %)
1244 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1245 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1246 )))
1247 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1248 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1249 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1250
1251 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1252
1253 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1254
1255 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1256 )))
1257 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1258 AT+ACLIM=10000,15000,0,0
1259
1260 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1261 )))
1262 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1263
1264 (% style="color:#037691" %)**Downlink Payload**
1265
1266 (% border="2" style="width:500px" %)
1267 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1268 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1269 **prefix **: AA 01 (hexadecimal)
1270
1271 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1272
1273 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1274
1275 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1276
1277 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1278 )))
1279 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1280 AA 01 **27** **10 3A** **98** 00 00 00 00
1281
1282 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1283 )))
1284 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1285
1286 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1287
1288
1289 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1290
1291 (% style="color:#037691" %)**AT Command**
1292
1293 (% border="2" style="width:500px" %)
1294 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1295 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1296 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1297 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1298
1299 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1300
1301 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1302
1303 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1304 )))
1305 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1306 AT+AVLIM=3000,6000,0,2000
1307
1308 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1309 )))
1310 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1311
1312 (% style="color:#037691" %)**Downlink Payload**
1313
1314 (% border="2" style="width:500px" %)
1315 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1316 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1317 **prefix **: AA 00 (hexadecimal)
1318
1319 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1320
1321 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1322
1323 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1324
1325 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1326 )))
1327 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1328 AA 00 **0B B8 17 70 00 00 07 D0**
1329
1330 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1331 )))
1332 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D628TriggerMode2COptional29"]]
1333
1334 ==== 3.4.2.11 Trigger – Set the minimum interval ====
1335
1336
1337 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1338
1339 (% style="color:#037691" %)**AT Command**
1340
1341 (% border="2" style="width:500px" %)
1342 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1343 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1344 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1345 **time** : in minutes
1346 )))
1347 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1348 AT+ATDC=5
1349
1350 The device won't respond to the second trigger within 5 minutes after the first trigger.
1351 )))
1352 |(% style="width:113px" %)**Note**|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1353
1354 (% style="color:#037691" %)**Downlink Payload**
1355
1356 (% border="2" style="width:500px" %)
1357 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1358 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1359 **prefix** : AC (hexadecimal)
1360
1361 **time **: in minutes (two bytes in hexadecimal)
1362 )))
1363 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1364 AC **00 05**
1365
1366 The device won't respond to the second trigger within 5 minutes after the first trigger.
1367 )))
1368 |(% style="width:112px" %)**Note**|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1369
1370 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1371
1372
1373 Controls the digital outputs DO1, DO2, and DO3
1374
1375 (% style="color:#037691" %)**AT Command**
1376
1377 There is no AT Command to control the Digital Output.
1378
1379
1380 (% style="color:#037691" %)**Downlink Payload**
1381
1382 (% border="2" style="width:500px" %)
1383 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1384 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1385 **prefix** : 02 (hexadecimal)
1386
1387 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1388
1389 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1390
1391 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1392 )))
1393 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1394 02 **01 00 01**
1395
1396 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1397
1398 **More examples:**
1399
1400 (((
1401 01: Low,  00: High,  11: No action
1402
1403 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1404 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1405 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1406 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1407 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1408 )))
1409
1410 (((
1411 (((
1412 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1413 )))
1414
1415 (((
1416 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1417 )))
1418 )))
1419 )))
1420
1421 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1422
1423
1424 (% style="color:#037691" %)**AT command**
1425
1426 There is no AT command to control the digital output.
1427
1428
1429 (% style="color:#037691" %)**Downlink payload**
1430
1431 (% border="2" style="width:500px" %)
1432 |(% style="width:116px" %)**Prefix**|(% style="width:382px" %)0xA9
1433 |(% style="width:116px" %)**Parameters**|(% style="width:382px" %)(((
1434 **inverter_mode**: 1 byte in hex.
1435
1436 **01:** DO pins revert to their original state after the timeout.
1437 **00:** DO pins switch to an inverted state after the timeout.
1438
1439
1440 **DO1_control_method_and_port_status **- 1 byte in hex
1441
1442 0x01 : DO1 set to low
1443
1444 0x00 : DO1 set to high
1445
1446 0x11 : DO1 NO action
1447
1448
1449 **DO2_control_method_and_port_status** - 1 byte in hex
1450
1451 0x01 : DO2 set to low
1452
1453 0x00 : DO2 set to high
1454
1455 0x11 : DO2 NO action
1456
1457
1458 **DO3_control_method_and_port_status **- 1 byte in hex
1459
1460 0x01 : DO3 set to low
1461
1462 0x00 : DO3 set to high
1463
1464 0x11 : DO3 NO action
1465
1466
1467 **latching_time** : 4 bytes in hex
1468
1469 (% style="color:red" %)**Note: **
1470
1471 Since firmware v1.6.0, the latch time supports 4 bytes or 2 bytes
1472
1473 Before firmware v1.6.0, the latch time only supported 2 bytes.
1474
1475 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1476 )))
1477 |(% style="width:116px" %)**Payload format**|(% style="width:382px" %)<prefix><inverter_mode><DO1_control_method_and_port_status><DO2_control_method_and_port_status><DO2_control_method_and_port_status><latching_time>
1478 |(% style="width:116px" %)**Example**|(% style="width:382px" %)(((
1479 **A9 01 01 01 01 07 D0**
1480
1481 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1482
1483
1484 **A9 01 00 01 11 07 D0**
1485
1486 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1487
1488
1489 **A9 00 00 00 00 07 D0**
1490
1491 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1492
1493
1494 **A9 00 11 01 00 07 D0**
1495
1496 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which the DO1 pin takes no action, the DO2 pin is set to high, and the DO3 pin is set to low.
1497 )))
1498
1499 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1500
1501
1502 (% style="color:#037691" %)**AT Command:**
1503
1504 There is no AT Command to control the Relay Output.
1505
1506
1507 (% style="color:#037691" %)**Downlink Payload**
1508
1509 (% border="2" style="width:500px" %)
1510 |(% style="width:113px" %)**Prefix**|(% style="width:384px" %)0x03
1511 |(% style="width:113px" %)**Parameters**|(% style="width:384px" %)(((
1512 **RO1_status** : 1 byte in hex
1513
1514 00: Close
1515
1516 01: Open
1517
1518 11: No action
1519
1520
1521 **RO2_status** : 1 byte in hex
1522
1523 00: Close
1524
1525 01: Open
1526
1527 11: No action
1528 )))
1529 |(% style="width:113px" %)**Payload format**|(% style="width:384px" %)<prefix><RO1_status><RO2_status>
1530 |(% style="width:113px" %)**Example**|(% style="width:384px" %)(((
1531 (% border="2" %)
1532 |=Payload|=RO1|=RO2
1533 |03  00  11|Open|No action
1534 |03  01  11|Close|No action
1535 |03 11  00|No action|Open
1536 |03 11  01|No action|Close
1537 |03 00 00|Open|Open
1538 |03 01 01|Close|Close
1539 |03 01 00|Close|Open
1540 |03 00 01|Open|Close
1541
1542 (% style="color:red" %)**The device will transmit an uplink packet if the downlink payload is executed successfully.**
1543 )))
1544
1545 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1546
1547
1548 Controls the relay output time.
1549
1550
1551 (% style="color:#037691" %)**AT Command:**
1552
1553 There is no AT Command to control the Relay Output
1554
1555
1556 (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1557
1558 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1559
1560
1561 This controls the relay output time and includes 4 bytes:
1562
1563 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1564
1565 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1566
1567 01: Relays will change back to their original state after a timeout.
1568
1569 00: Relays will change to the inverter state after a timeout.
1570
1571
1572 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1573
1574 [[image:image-20221008095908-1.png||height="364" width="564"]]
1575
1576
1577 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1578
1579
1580 (% style="color:red" %)**Note:**
1581
1582 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1583
1584 Before firmware v1.6.0, the latch time only supported 2 bytes.
1585
1586
1587 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1588
1589
1590 **Example payload:**
1591
1592 **~1. 05 01 11 07 D0**
1593
1594 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1595
1596 **2. 05 01 10 07 D0**
1597
1598 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, and then both will revert to their original state.
1599
1600 **3. 05 00 01 07 D0**
1601
1602 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1603
1604 **4. 05 00 00 07 D0**
1605
1606 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1607
1608
1609
1610 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1611
1612
1613 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1614
1615 (% style="color:#037691" %)**AT Command**
1616
1617 (% border="2" style="width:500px" %)
1618 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1619 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1620 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1621 **voltage** : voltage threshold in mV
1622
1623 **logic**:
1624
1625 **0** : lower than
1626
1627 **1**: higher than
1628
1629 if you leave the logic parameter blank, it is considered 0
1630 )))
1631 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1632 AT+VOLMAX=20000
1633
1634 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1635
1636 AT+VOLMAX=20000,0
1637
1638 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1639
1640 AT+VOLMAX=20000,1
1641
1642 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1643 )))
1644
1645 (% style="color:#037691" %)**Downlink Payload**
1646
1647 (% border="2" style="width:500px" %)
1648 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1649 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1650 **prefix** : A5 (hex)
1651
1652 **voltage** : voltage threshold in mV (2 bytes in hex)
1653
1654 **logic**: (1 byte in hexadecimal)
1655
1656 **0** : lower than
1657
1658 **1**: higher than
1659
1660 if you leave the logic parameter blank, it is considered 1 (higher than)
1661 )))
1662 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1663 A5 **4E 20**
1664
1665 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1666
1667 A5 **4E 20 00**
1668
1669 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1670
1671 A5 **4E 20 01**
1672
1673 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1674 )))
1675
1676 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1677
1678
1679 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1680
1681 (% style="color:#037691" %)**AT Command**
1682
1683 (% border="2" style="width:500px" %)
1684 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1685 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1686 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1687 **counting_parameter** :
1688
1689 1: COUNT1
1690
1691 2: COUNT2
1692
1693 3: AVI1 Count
1694
1695 **number** : Start number
1696 )))
1697 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1698 AT+SETCNT=1,10
1699
1700 Sets the COUNT1 to 10.
1701 )))
1702
1703 (% style="color:#037691" %)**Downlink Payload**
1704
1705 (% border="2" style="width:500px" %)
1706 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1707 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1708 prefix : A8 (hex)
1709
1710 **counting_parameter** : (1 byte in hexadecimal)
1711
1712 1: COUNT1
1713
1714 2: COUNT2
1715
1716 3: AVI1 Count
1717
1718 **number** : Start number, 4 bytes in hexadecimal
1719 )))
1720 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1721 A8 **01 00 00 00 0A**
1722
1723 Sets the COUNT1 to 10.
1724 )))
1725
1726 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1727
1728
1729 This command clears the counting in counting mode.
1730
1731 (% style="color:#037691" %)**AT Command**
1732
1733 (% border="2" style="width:500px" %)
1734 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1735 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1736
1737 (% style="color:#037691" %)**Downlink Payload**
1738
1739 (% border="2" style="width:500px" %)
1740 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1741 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1742 prefix : A6 (hex)
1743
1744 clear? : 01 (hex)
1745 )))
1746 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1747
1748 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1749
1750
1751 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1752
1753 (% style="color:#037691" %)**AT Command**
1754
1755 (% border="2" style="width:500px" %)
1756 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1757 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1758 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1759 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1760 AT+COUTIME=60
1761
1762 Sets the device to save its counting results to the memory every 60 seconds.
1763 )))
1764
1765 (% style="color:#037691" %)**Downlink Payload**
1766
1767 (% border="2" style="width:500px" %)
1768 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1769 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1770 prefix : A7
1771
1772 time : seconds, 3 bytes in hexadecimal
1773 )))
1774 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1775 A7 **00 00 3C**
1776
1777 Sets the device to save its counting results to the memory every 60 seconds.
1778 )))
1779
1780 ==== 3.4.2.20 Reset saved RO and DO states ====
1781
1782
1783 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1784
1785 (% style="color:#037691" %)**AT Command**
1786
1787 (% border="2" style="width:500px" %)
1788 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1789 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1790 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1791 **state** :
1792
1793 **0** : RODO will close when the device joins the network. (default)
1794
1795 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1796 )))
1797 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1798 (% style="color:blue" %)**AT+RODORESET=1 **
1799
1800 RODO will close when the device joins the network. (default)
1801
1802 (% style="color:blue" %)**AT+RODORESET=0 **
1803
1804 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1805 )))
1806
1807 (% style="color:#037691" %)**Downlink Payload**
1808
1809 (% border="2" style="width:500px" %)
1810 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1811 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1812 **prefix** : AD
1813
1814 **state** :
1815
1816 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1817
1818 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1819 )))
1820 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1821 AD **01**
1822
1823 RODO will close when the device joins the network. (default)
1824
1825 AD **00**
1826
1827 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1828 )))
1829
1830 ==== 3.4.2.21 Encrypted payload ====
1831
1832
1833 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1834
1835 (% style="color:#037691" %)**AT Command:**
1836
1837 (% border="2" style="width:500px" %)
1838 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1839 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1840 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1841 **state** :
1842
1843 **1** : The payload is uploaded without encryption
1844
1845 **0** : The payload is encrypted when uploaded (default)
1846 )))
1847 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1848 AT+DECRYPT=1
1849
1850 The payload is uploaded without encryption
1851
1852 AT+DECRYPT=0
1853
1854 The payload is encrypted when uploaded (default)
1855 )))
1856
1857 There is no downlink payload for this configuration.
1858
1859
1860 ==== 3.4.2.22 Get sensor value ====
1861
1862
1863 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1864
1865 (% style="color:#037691" %)**AT Command**
1866
1867 (% border="2" style="width:500px" %)
1868 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1869 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1870 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1871 **state** :
1872
1873 **0 **: Retrieves the current sensor reading via the serial port.
1874
1875 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1876 )))
1877 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1878 AT+GETSENSORVALUE=0
1879
1880 Retrieves the current sensor reading via the serial port.
1881
1882 AT+GETSENSORVALUE=1
1883
1884 Retrieves and uplinks the current sensor reading via the serial port.
1885 )))
1886
1887 There is no downlink payload for this configuration.
1888
1889
1890 ==== 3.4.2.23 Resetting the downlink packet count ====
1891
1892
1893 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1894
1895 (% style="color:#037691" %)**AT Command**
1896
1897 (% border="2" style="width:500px" %)
1898 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1899 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1900
1901 )))
1902 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1903 **state **:
1904
1905 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1906
1907
1908 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1909 )))
1910 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1911 AT+DISFCNTCHECK=0
1912
1913 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1914
1915 AT+DISFCNTCHECK=1
1916
1917 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1918 )))
1919
1920 There is no downlink payload for this configuration.
1921
1922
1923 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1924
1925
1926 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceed the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1927
1928 (% style="color:#037691" %)**AT Command**
1929
1930 (% border="2" style="width:500px" %)
1931 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1932 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1933 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1934 **state** :
1935
1936 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1937
1938 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1939 )))
1940 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1941 AT+DISMACANS=0
1942
1943 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1944
1945 AT+DISMACANS=1
1946
1947 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1948 )))
1949
1950 (% style="color:#037691" %)**Downlink Payload**
1951
1952 (% border="2" style="width:500px" %)
1953 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1954 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1955 **prefix** : 21
1956
1957 **state** : (2 bytes in hexadecimal)
1958
1959 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1960
1961 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1962 )))
1963 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1964 21 **00 01**
1965
1966 Set DISMACANS=1
1967 )))
1968
1969 ==== 3.4.2.25 Copy downlink to uplink ====
1970
1971
1972 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1973
1974 (% style="color:#037691" %)**AT Command**(%%)**:**
1975
1976 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1977
1978 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1979
1980
1981 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1982
1983 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1984
1985 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1986
1987 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1988
1989
1990 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1991
1992 There is no downlink option available for this feature.
1993
1994
1995 ==== 3.4.2.26 Query firmware version, frequency band, subband, and TDC time ====
1996
1997
1998 This command is used to query key information about the device, including its firmware version, frequency band, subband, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1999
2000 * (((
2001 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
2002
2003 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, subband, and TDC time.
2004
2005
2006 )))
2007
2008 **Example:**
2009
2010 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
2011
2012
2013 == 3.5 Integrating with ThingsEye.io ==
2014
2015
2016 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2017
2018
2019 === 3.5.1 Configuring The Things Stack ===
2020
2021
2022 We use The Things Stack Sandbox in this example:
2023
2024 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2025 * Select **MQTT** under **Integrations** in the left menu.
2026 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2027 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2028
2029 {{info}}
2030 The username and  password (API key) you created here are required in the next section.
2031 {{/info}}
2032
2033 [[image:tts-mqtt-integration.png]]
2034
2035
2036 === 3.5.2 Configuring ThingsEye.io ===
2037
2038
2039 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2040
2041 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2042 * Under the **Integrations center**, click **Integrations**.
2043 * Click the **Add integration** button (the button with the **+** symbol).
2044
2045 [[image:thingseye-io-step-1.png]]
2046
2047
2048 On the **Add integration** window, configure the following:
2049
2050 **Basic settings:**
2051
2052 * Select **The Things Stack Community** from the **Integration type** list.
2053 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2054 * Ensure the following options are turned on.
2055 ** Enable integration
2056 ** Debug mode
2057 ** Allow creating devices or assets
2058 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2059
2060 [[image:thingseye-io-step-2.png]]
2061
2062
2063 **Uplink data converter:**
2064
2065 * Click the **Create new** button if it is not selected by default.
2066 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2067 * Click the **JavaScript** button.
2068 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2069 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2070
2071 [[image:thingseye-io-step-3.png]]
2072
2073
2074 **Downlink data converter (this is an optional step):**
2075
2076 * Click the **Create new** button if it is not selected by default.
2077 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2078 * Click the **JavaScript** button.
2079 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2080 * Click the **Next** button. You will be navigated to the **Connection** tab.
2081
2082 [[image:thingseye-io-step-4.png]]
2083
2084
2085 **Connection:**
2086
2087 * Choose **Region** from the **Host type**.
2088 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2089 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2090 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2091
2092 [[image:message-1.png]]
2093
2094
2095 * Click the **Add** button.
2096
2097 [[image:thingseye-io-step-5.png]]
2098
2099
2100 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2101
2102 [[image:thingseye.io_integrationsCenter_integrations.png]]
2103
2104
2105 ==== 3.5.2.1 Viewing integration details ====
2106
2107
2108 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2109
2110 [[image:integration-details.png]]
2111
2112
2113 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2114
2115 {{info}}
2116 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2117 {{/info}}
2118
2119
2120 ==== 3.5.2.2 Viewing events ====
2121
2122
2123 The **Events **tab displays all the uplink messages from the LT-22222-L.
2124
2125 * Select **Debug **from the **Event type** dropdown.
2126 * Select the** time frame** from the **time window**.
2127
2128 [[image:thingseye-events.png]]
2129
2130
2131 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
2132
2133 [[image:thingseye-json.png]]
2134
2135
2136 ==== 3.5.2.3 Deleting an integration ====
2137
2138
2139 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2140
2141
2142 ==== 3.5.2.4 Viewing sensor data on a dashboard ====
2143
2144
2145 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LT-22222-L. The following image shows a dashboard created for the LT-22222-L. See **Creating a dashboard** in ThingsEye documentation for more information.
2146
2147 [[image:lt-22222-l-dashboard.png]]
2148
2149
2150 == 3.6 Interface Details ==
2151
2152 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2153
2154
2155 Supports** NPN-type **sensors.
2156
2157 [[image:1653356991268-289.png]]
2158
2159
2160 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2161
2162
2163 (((
2164 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2165 )))
2166
2167 (((
2168 (((
2169 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2170
2171
2172 )))
2173 )))
2174
2175 [[image:1653357170703-587.png]]
2176
2177 (((
2178 (((
2179 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2180 )))
2181 )))
2182
2183 (((
2184
2185 )))
2186
2187 (((
2188 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2189 )))
2190
2191 (((
2192 This type of sensor outputs a low (GND) signal when active.
2193 )))
2194
2195 * (((
2196 Connect the sensor's output to DI1-
2197 )))
2198 * (((
2199 Connect the sensor's VCC to DI1+.
2200 )))
2201
2202 (((
2203 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2204 )))
2205
2206 (((
2207 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2208 )))
2209
2210 (((
2211 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2212 )))
2213
2214 (((
2215
2216 )))
2217
2218 (((
2219 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2220 )))
2221
2222 (((
2223 This type of sensor outputs a high signal (e.g., 24V) when active.
2224 )))
2225
2226 * (((
2227 Connect the sensor's output to DI1+
2228 )))
2229 * (((
2230 Connect the sensor's GND DI1-.
2231 )))
2232
2233 (((
2234 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2235 )))
2236
2237 (((
2238 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2239 )))
2240
2241 (((
2242 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2243 )))
2244
2245 (((
2246
2247 )))
2248
2249 (((
2250 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2251 )))
2252
2253 (((
2254 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2255 )))
2256
2257 * (((
2258 Connect the sensor's output to DI1+ with a 50K resistor in series.
2259 )))
2260 * (((
2261 Connect the sensor's GND DI1-.
2262 )))
2263
2264 (((
2265 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2266 )))
2267
2268 (((
2269 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2270 )))
2271
2272 (((
2273 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2274 )))
2275
2276
2277 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2278
2279 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2280
2281 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2282
2283 [[image:image-20230616235145-1.png]]
2284
2285 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2286
2287 [[image:image-20240219115718-1.png]]
2288
2289
2290 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2291
2292
2293 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2294
2295 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2296
2297 [[image:1653357531600-905.png]]
2298
2299
2300 === 3.6.4 Analog Input Interfaces ===
2301
2302
2303 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2304
2305
2306 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2307
2308 [[image:1653357592296-182.png]]
2309
2310 Example: Connecting a 4~~20mA sensor
2311
2312 We will use the wind speed sensor as an example for reference only.
2313
2314
2315 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2316
2317 (% style="color:red" %)**Red:  12~~24V**
2318
2319 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2320
2321 **Black:  GND**
2322
2323 **Connection diagram:**
2324
2325 [[image:1653357640609-758.png]]
2326
2327 [[image:1653357648330-671.png||height="155" width="733"]]
2328
2329
2330 Example: Connecting to a regulated power supply to measure voltage
2331
2332 [[image:image-20230608101532-1.png||height="606" width="447"]]
2333
2334 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2335
2336 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2337
2338
2339 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2340
2341 (% style="color:red" %)**Red:  12~~24v**
2342
2343 **Black:  GND**
2344
2345
2346 === 3.6.5 Relay Output ===
2347
2348
2349 (((
2350 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2351
2352 (% style="color:red" %)**Note:**(%%) The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2353 )))
2354
2355 [[image:image-20220524100215-9.png]]
2356
2357
2358 [[image:image-20220524100215-10.png||height="382" width="723"]]
2359
2360
2361 == 3.7 LED Indicators ==
2362
2363
2364 The table below lists the behaviour of LED indicators for each port function.
2365
2366 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2367 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2368 |**PWR**|Always on when there is power
2369 |**TX**|(((
2370 (((
2371 Device booting: TX blinks 5 times.
2372 )))
2373
2374 (((
2375 Successful network joins: TX remains ON for 5 seconds.
2376 )))
2377
2378 (((
2379 Transmit a LoRa packet: TX blinks once
2380 )))
2381 )))
2382 |**RX**|RX blinks once when a packet is received.
2383 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2384 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2385 |**DI1**|(((
2386 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2387 )))
2388 |**DI2**|(((
2389 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2390 )))
2391 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2392 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2393
2394 = 4. Using AT Commands =
2395
2396
2397 The LT-22222-L supports programming using AT Commands.
2398
2399
2400 == 4.1 Connecting the LT-22222-L to a PC ==
2401
2402
2403 (((
2404 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2405
2406 [[image:usb-ttl-audio-jack-connection.jpg]]
2407
2408
2409 )))
2410
2411 (((
2412 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2413 )))
2414
2415 [[image:1653358355238-883.png]]
2416
2417
2418 (((
2419 == 4.2 LT-22222-L related AT commands ==
2420
2421
2422 )))
2423
2424 (((
2425 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2426
2427 * **##AT##+<CMD>?** : Help on <CMD>
2428 * **##AT##+<CMD>** : Run <CMD>
2429 * **##AT##+<CMD>=<value>** : Set the value
2430 * **##AT##+<CMD>=?** : Get the value
2431 * ##**ATZ**##: Trigger a reset of the MCU
2432 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2433 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2434 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2435 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2436 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2437 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2438 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2439 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2440 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2441 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2442 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2443 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2444 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2445 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2446 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2447 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2448 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2449 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2450 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2451 * ##**AT+NWKID**##: Get or set the Network ID
2452 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2453 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2454 * ##**AT+CLASS**##: Get or set the Device Class
2455 * ##**AT+JOIN**##: Join Network
2456 * ##**AT+NJS**##: Get OTAA Join Status
2457 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2458 * ##**AT+SEND**##: Send text data along with the application port
2459 * ##**AT+RECVB**##: Print the last received data in binary format (with hexadecimal values)
2460 * ##**AT+RECV**##: Print the last received data in raw format
2461 * ##**AT+VER**##: Get the current image version and Frequency Band
2462 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2463 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2464 * ##**AT+SNR**##: Get the SNR of the last received packet
2465 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2466 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2467 * ##**AT+PORT**##: Get or set the application port
2468 * ##**AT+DISAT**##: Disable AT commands
2469 * ##**AT+PWORD**##: Set password, max 9 digits
2470 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2471 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2472 * ##**AT+CFG**##: Print all settings
2473 )))
2474
2475
2476 == 4.2 Common AT Command Sequence ==
2477
2478 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2479
2480 (((
2481
2482
2483 (((
2484 (% style="color:blue" %)**If the device has not yet joined the network:**
2485 )))
2486 )))
2487
2488 (((
2489 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2490 )))
2491
2492 (((
2493 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2494 )))
2495
2496 (((
2497 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT command access**##
2498 )))
2499
2500 (((
2501 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2502 )))
2503
2504 (((
2505 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2506 )))
2507
2508
2509 (((
2510 (% style="color:blue" %)**If the device has already joined the network:**
2511 )))
2512
2513 (((
2514 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2515 )))
2516
2517 (((
2518 (% style="background-color:#dcdcdc" %)##**ATZ**##
2519 )))
2520
2521
2522 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2523
2524 (((
2525
2526
2527 (((
2528 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter the password to enable AT commands access
2529 )))
2530 )))
2531
2532 (((
2533 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2534 )))
2535
2536 (((
2537 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter the password to enable AT command access
2538 )))
2539
2540 (((
2541 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2542 )))
2543
2544 (((
2545 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2546 )))
2547
2548 (((
2549 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2550 )))
2551
2552 (((
2553 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2554 )))
2555
2556 (((
2557 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2558 )))
2559
2560 (((
2561 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2562 )))
2563
2564 (((
2565 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2566 )))
2567
2568 (((
2569 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2570 )))
2571
2572 (((
2573 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2574 )))
2575
2576 (((
2577 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2578
2579
2580 )))
2581
2582 (((
2583 (% style="color:red" %)**Note:**
2584 )))
2585
2586 (((
2587 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2588
2589 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2590
2591 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2592
2593 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2594 )))
2595
2596 (((
2597 [[image:1653359097980-169.png||height="188" width="729"]]
2598 )))
2599
2600
2601 === 4.2.3 Change to Class A ===
2602
2603
2604 (((
2605 (% style="color:blue" %)**If the sensor has JOINED:**
2606
2607 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2608
2609 (% style="background-color:#dcdcdc" %)**ATZ**
2610 )))
2611
2612
2613 = 5. Case Study =
2614
2615 == 5.1 Counting how many objects pass through the flow line ==
2616
2617
2618 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]].
2619
2620
2621 = 6. FAQ =
2622
2623
2624 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2625
2626
2627 == 6.1 How to update the firmware? ==
2628
2629
2630 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2631
2632 * Support new features
2633 * Fix bugs
2634 * Change LoRaWAN frequency bands
2635
2636 You will need the following things before proceeding:
2637
2638 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2639 * USB to TTL adapter/converter
2640 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2641 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2642
2643 {{info}}
2644 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2645 {{/info}}
2646
2647 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2648
2649 [[image:usb-ttl-audio-jack-connection.jpg]]
2650
2651
2652
2653 Start the STM32 Flash Loader and choose the correct COM port to update.
2654
2655 (((
2656 (((
2657 (% style="color:blue" %)**For LT-22222-L**(%%):
2658
2659 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2660 )))
2661
2662
2663 )))
2664
2665 [[image:image-20220524103407-12.png]]
2666
2667
2668 [[image:image-20220524103429-13.png]]
2669
2670
2671 [[image:image-20220524104033-15.png]]
2672
2673
2674 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2675
2676 [[image:1653360054704-518.png||height="186" width="745"]]
2677
2678
2679 (((
2680 (((
2681 == 6.2 How to change the LoRaWAN frequency band/region? ==
2682
2683
2684 )))
2685 )))
2686
2687 (((
2688 You can follow the introductions on [[how to upgrade the image>>||anchor="H6.1Howtoupdatethefirmware3F"]]. When downloading, select the required image file.
2689 )))
2690
2691 (((
2692
2693
2694 == 6.3 How to set up LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2695
2696
2697 )))
2698
2699 (((
2700 (((
2701 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2702 )))
2703 )))
2704
2705 (((
2706 (((
2707 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2708
2709
2710 )))
2711 )))
2712
2713 (((
2714 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2715
2716 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2717 )))
2718
2719 (((
2720
2721 )))
2722
2723 {{warning}}
2724 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2725 {{/warning}}
2726
2727
2728 (((
2729 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2730
2731
2732 )))
2733
2734 (((
2735 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2736
2737 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2738
2739 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2740
2741 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2742
2743 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2744
2745 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2746
2747 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2748
2749 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2750
2751 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2752
2753 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2754
2755 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2756
2757 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2758 )))
2759
2760
2761 (((
2762 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2763 )))
2764
2765 [[image:1653360498588-932.png||height="485" width="726"]]
2766
2767
2768 == 6.4 How to change the uplink interval? ==
2769
2770
2771 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2772
2773
2774 == 6.5 Can I see the counting event in the serial output? ==
2775
2776
2777 (((
2778 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2779
2780
2781 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2782
2783
2784 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2785
2786
2787 )))
2788
2789 (((
2790 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2791
2792
2793 * If the device is not properly shut down and is directly powered off.
2794 * It will default to a power-off state.
2795 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2796 * After a restart, the status before the power failure will be read from Flash.
2797
2798 == 6.8 Can I set up LT-22222-L as an NC (Normally Closed) relay? ==
2799
2800
2801 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2802
2803
2804 [[image:image-20221006170630-1.png||height="610" width="945"]]
2805
2806
2807 == 6.9 Can the LT-22222-L save the RO state? ==
2808
2809
2810 To enable this feature, the firmware version must be 1.6.0 or higher.
2811
2812
2813 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2814
2815
2816 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2817
2818
2819 = 7. Troubleshooting =
2820
2821
2822 This section provides some known troubleshooting tips.
2823
2824
2825 )))
2826
2827 (((
2828 (((
2829 == 7.1 Downlink isn't working. How can I solve this? ==
2830
2831
2832 )))
2833 )))
2834
2835 (((
2836 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2837 )))
2838
2839 (((
2840
2841
2842 == 7.2 Having trouble uploading an image? ==
2843
2844
2845 )))
2846
2847 (((
2848 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2849 )))
2850
2851 (((
2852
2853
2854 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2855
2856
2857 )))
2858
2859 (((
2860 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2861 )))
2862
2863
2864 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2865
2866
2867 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2868 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resettingthedownlinkpacketcount"]]
2869
2870
2871 = 8. Ordering information =
2872
2873
2874 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2875
2876 (% style="color:#4f81bd" %)**XXX:**
2877
2878 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2879 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2880 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2881 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2882 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2883 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2884 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2885 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2886 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2887
2888 = 9. Package information =
2889
2890
2891 **Package includes**:
2892
2893 * 1 x LT-22222-L I/O Controller
2894 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2895 * 1 x bracket for DIN rail mounting
2896 * 1 x 3.5 mm programming cable
2897
2898 **Dimension and weight**:
2899
2900 * Device Size: 13.5 x 7 x 3 cm
2901 * Device Weight: 105 g
2902 * Package Size / pcs : 14.5 x 8 x 5 cm
2903 * Weight / pcs : 170 g
2904
2905 = 10. Support =
2906
2907
2908 * (((
2909 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2910 )))
2911 * (((
2912 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2913
2914
2915 )))
2916
2917 = 11. Reference​​​​​ =
2918
2919
2920 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2921 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2922 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0