Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Operate Temperature:**
56
57 * -40°C ~~ 65°C
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66 * 5V sampling maximum current:500mA
67
68 (% style="color:#037691" %)**Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC.
94
95 ​​​
96
97
98 == 1.3 Features ==
99
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110 == 1.4 Applications ==
111
112
113 * Smart Buildings & Home Automation
114 * Logistics and Supply Chain Management
115 * Smart Metering
116 * Smart Agriculture
117 * Smart Cities
118 * Smart Factory
119
120 == 1.5 Firmware Change log ==
121
122
123 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129
130
131 (((
132 **v1.4**
133 )))
134 )))
135
136 (((
137 (((
138 ~1. Change Power IC to TPS22916
139 )))
140 )))
141
142 (((
143
144 )))
145
146 (((
147 (((
148 **v1.3**
149 )))
150 )))
151
152 (((
153 (((
154 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
155 )))
156 )))
157
158 (((
159
160 )))
161
162 (((
163 (((
164 **v1.2**
165 )))
166 )))
167
168 (((
169 (((
170 Release version ​​​​​
171 )))
172 )))
173
174
175 = 2. Pin mapping and Power ON Device =
176
177
178 (((
179 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
180
181
182 )))
183
184 [[image:1652953055962-143.png||height="387" width="728"]]
185
186
187 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
188
189
190 = 3. Operation Mode =
191
192 == 3.1 How it works? ==
193
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203
204 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
205
206 [[image:1652953414711-647.png||height="337" width="723"]]
207
208
209 (((
210 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
211 )))
212
213 (((
214 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
215
216
217 )))
218
219 (((
220 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
221 )))
222
223 (((
224 Each RS485-BL is shipped with a sticker with unique device EUI:
225 )))
226
227 [[image:image-20230425173638-1.png]]
228
229
230 (((
231 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
232 )))
233
234 (((
235 **Add APP EUI in the application.**
236 )))
237
238
239 [[image:image-20220519174512-1.png]]
240
241 [[image:image-20220519174512-2.png||height="328" width="731"]]
242
243 [[image:image-20220519174512-3.png||height="556" width="724"]]
244
245 [[image:image-20220519174512-4.png]]
246
247
248 You can also choose to create the device manually.
249
250 [[image:1652953542269-423.png||height="710" width="723"]]
251
252
253 Add APP KEY and DEV EUI
254
255 [[image:1652953553383-907.png||height="514" width="724"]]
256
257
258
259 (((
260 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
261
262
263 )))
264
265 [[image:1652953568895-172.png||height="232" width="724"]]
266
267
268 == 3.3 Configure Device to Read RS485 Sensor ==
269
270
271 (((
272 There are plenty of RS485 and TTL level devices in the market and each device has different commands to read the valid data. To support these devices in most flexible, RS485-BL supports flexible command set. User can use [[Dragino RS485 Tool>>url:https://www.dropbox.com/sh/us9qecn39fwt8n1/AABREdqUCzEmJMRrfuWuXasoa?dl=0]],  [[AT Commands or LoRaWAN Downlink>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/#H3.5ConfigureRS485-LBviaATorDownlink]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
273
274
275 === 3.3.1 Method 1 ~-~- via RS485 Configure Tool ===
276
277
278 Use the RS485 Configure tool is the recommand method. Please see the instruction of how to use the tool:
279
280 * **[[RS485 Configure Tool Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/]]**
281
282 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20231127144411-1.png?width=494&height=368&rev=1.1||alt="image-20231127144411-1.png" height="368" width="494"]]
283 )))
284
285
286 === 3.3.2 Method 2 ~-~- via AT Commands ===
287
288 ==== 3.3.2.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ====
289
290
291 (((
292 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
293 )))
294
295
296 (((
297 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
298 )))
299
300 (((
301 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
302 )))
303
304
305 (((
306 (% style="color:blue" %)**2.  TTL mode:**
307 )))
308
309 (((
310 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
311 )))
312
313 (((
314 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
315 )))
316
317 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
318 |=(% style="width: 122px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
319 (((
320 **AT Commands**
321 )))
322 )))|=(% style="width: 150px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
323 (((
324 **Description**
325 )))
326 )))|=(% style="width: 238px;background-color:#D9E2F3;color:#0070C0" %)(((
327 (((
328 **Example**
329 )))
330 )))
331 |(% style="width:122px" %)(((
332 (((
333 AT+BAUDR
334 )))
335 )))|(% style="width:113px" %)(((
336 (((
337 Set the baud rate (for RS485 connection).
338
339 Default Value is: 9600.
340 )))
341 )))|(% style="width:226px" %)(((
342 (((
343 (((
344 AT+BAUDR=9600
345 )))
346 )))
347
348 (((
349 (((
350 Options: (1200,2400,4800,14400,19200,115200)
351 )))
352 )))
353 )))
354 |(% style="width:122px" %)(((
355 (((
356 AT+PARITY
357 )))
358 )))|(% style="width:113px" %)(((
359 (((
360 (((
361 Set UART parity (for RS485 connection)
362 )))
363 )))
364
365 (((
366 (((
367 Default Value is: no parity.
368 )))
369 )))
370 )))|(% style="width:226px" %)(((
371 (((
372 (((
373 AT+PARITY=0
374 )))
375 )))
376
377 (((
378 (((
379 Option: 0: no parity, 1: odd parity, 2: even parity
380 )))
381 )))
382 )))
383 |(% style="width:122px" %)(((
384 (((
385 AT+STOPBIT
386 )))
387 )))|(% style="width:113px" %)(((
388 (((
389 (((
390 Set serial stopbit (for RS485 connection)
391 )))
392 )))
393
394 (((
395 (((
396 Default Value is: 1bit.
397 )))
398 )))
399 )))|(% style="width:226px" %)(((
400 (((
401 (((
402 AT+STOPBIT=0 for 1bit
403 )))
404 )))
405
406 (((
407 (((
408 AT+STOPBIT=1 for 1.5 bit
409 )))
410 )))
411
412 (((
413 (((
414 AT+STOPBIT=2 for 2 bits
415 )))
416 )))
417 )))
418
419 Example(Soil three-parameter detector):
420
421 (% style="color:blue" %)**Wiring the UART sensor**
422
423 (((
424 **GND <~-~-~-~-~-~-~-~-> GND
425 TX  <~-~-~-~-~-~-~-~->  RX
426 RX  <~-~-~-~-~-~-~-~->  TX
427 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
428 )))
429
430 [[image:image-20230220110129-1.png||height="277" width="395"]]
431
432
433 (% style="color:blue" %)**Set the correct configuration:**
434
435 (% style="color:#037691" %)**AT+BAUDR=9600**
436
437 (% style="color:#037691" %)**AT+PARITY=0**
438
439 (% style="color:#037691" %)**AT+STOPBIT=1**
440
441 If the sensor needs 5v. Need to move the switch position to 5v and then use the command
442
443 (% style="color:blue" %)**AT+5VT=30000**
444
445
446 (% style="color:blue" %)**Configuration read command:**
447
448 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
449
450 **FE:** Station address
451
452 **03:** Function code
453
454 **00 00:**Register start address
455
456 **00 03:**Number of registers
457
458 **11 04:**  Check code
459
460 [[image:image-20230220111709-2.png]]
461
462
463 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
464
465 [[image:image-20230220112421-3.png]]
466
467
468 (% style="color:blue" %)**upload payload:**
469
470 [[image:image-20230220112517-4.png]]
471
472
473 === 3.3.3  Configure sensors ===
474
475
476 (((
477 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
478 )))
479
480 (((
481 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
482 )))
483
484 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
485 |=(% style="width: 130px;background-color:#D9E2F3;color:#0070C0" %)**AT Commands**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Example**
486 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
487 (((
488 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
489 )))
490
491 (((
492 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
493 )))
494
495 (((
496 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
497 )))
498 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
499
500 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
501
502
503 === 3.3.4 Configure read commands for each sampling ===
504
505
506 (((
507 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
508 )))
509
510 (((
511 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
512 )))
513
514 (((
515 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
516 )))
517
518 (((
519 This section describes how to achieve above goals.
520 )))
521
522 (((
523 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
524
525
526 )))
527
528 (((
529 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
530 )))
531
532 (((
533 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
534
535
536 )))
537
538 (((
539 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
540 )))
541
542 (((
543 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
544 )))
545
546 * (((
547 (% style="color:blue" %)**AT+DATACUT**
548 )))
549
550 (((
551 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
552
553
554 )))
555
556 * (((
557 (% style="color:blue" %)**AT+SEARCH**
558 )))
559
560 (((
561 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
562 )))
563
564 (((
565
566
567 (% style="color:blue" %)**Define wait timeout:**
568 )))
569
570 (((
571 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
572 )))
573
574 (((
575 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
576 )))
577
578 (((
579
580
581 **Examples:**
582 )))
583
584 (((
585 Below are examples for the how above AT Commands works.
586 )))
587
588 (((
589 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
590
591
592 )))
593
594 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
595 |(% style="width:494px" %)(((
596 (((
597 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
598 )))
599
600 (((
601 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
602 )))
603
604 (((
605 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
606 )))
607 )))
608
609 (((
610 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
611 )))
612
613 (((
614 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
615 )))
616
617 (((
618
619 )))
620
621 (((
622 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
623
624
625 )))
626
627 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
628 |(% style="width:470px" %)(((
629 (((
630 **AT+SEARCHx=aa,xx xx xx xx xx**
631 )))
632
633 * (((
634 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
635 )))
636 * (((
637 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
638 )))
639 )))
640
641 (((
642
643
644 **Examples:**
645
646
647 )))
648
649 (((
650 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
651 )))
652
653 (((
654 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
655 )))
656
657 (((
658 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
659
660
661 )))
662
663 (((
664 [[image:1653271044481-711.png]]
665
666
667 )))
668
669 (((
670 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
671 )))
672
673 (((
674 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
675 )))
676
677 (((
678 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
679
680
681 )))
682
683 (((
684 [[image:1653271276735-972.png]]
685
686
687 )))
688
689 (((
690 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
691 )))
692
693 (% style="background-color:#f2f2f2; width:496px" %)
694 |(% style="width:493px" %)(((
695 (((
696 **AT+DATACUTx=a,b,c**
697 )))
698
699 * (((
700 **a: length for the return of AT+COMMAND**
701 )))
702 * (((
703 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
704 )))
705 * (((
706 **c: define the position for valid value.  **
707 )))
708 )))
709
710 (((
711
712
713 **Examples:**
714 )))
715
716 * (((
717 (% style="color:blue" %)**Grab bytes:**
718 )))
719
720 (((
721 [[image:1653271581490-837.png||height="313" width="722"]]
722 )))
723
724 (((
725
726
727
728 )))
729
730 * (((
731 (% style="color:blue" %)**Grab a section.**
732 )))
733
734 (((
735 [[image:1653271648378-342.png||height="326" width="720"]]
736 )))
737
738 (((
739
740
741
742 )))
743
744 * (((
745 (% style="color:blue" %)**Grab different sections.**
746 )))
747
748 (((
749 [[image:1653271657255-576.png||height="305" width="730"]]
750
751
752 )))
753
754 (((
755 (((
756 (% style="color:red" %)**Note:**
757 )))
758 )))
759
760 (((
761 (((
762 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
763
764
765 )))
766 )))
767
768 (((
769 (((
770 **Example:**
771 )))
772 )))
773
774 (((
775 (((
776 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
777 )))
778 )))
779
780 (((
781 (((
782 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
783 )))
784 )))
785
786 (((
787 (((
788 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
789 )))
790 )))
791
792 (((
793 (((
794 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
795 )))
796 )))
797
798 (((
799 (((
800 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
801 )))
802 )))
803
804 (((
805 (((
806 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
807
808
809 )))
810 )))
811
812 (((
813 [[image:1653271763403-806.png]]
814 )))
815
816
817 === 3.3.4 Compose the uplink payload ===
818
819
820 (((
821 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
822
823
824 )))
825
826 (((
827 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
828
829
830 )))
831
832 (((
833 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
834 )))
835
836 (((
837 Final Payload is
838 )))
839
840 (((
841 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
842 )))
843
844 (((
845 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
846 )))
847
848 [[image:1653272787040-634.png||height="515" width="719"]]
849
850
851
852 (((
853 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
854
855
856 )))
857
858 (((
859 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
860 )))
861
862 (((
863 Final Payload is
864 )))
865
866 (((
867 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
868 )))
869
870 1. (((
871 Battery Info (2 bytes): Battery voltage
872 )))
873 1. (((
874 PAYVER (1 byte): Defined by AT+PAYVER
875 )))
876 1. (((
877 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
878 )))
879 1. (((
880 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
881 )))
882 1. (((
883 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
884
885
886 )))
887
888 [[image:1653272817147-600.png||height="437" width="717"]]
889
890 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
891
892
893 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
894
895 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
896
897 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
898
899
900 Below are the uplink payloads:
901
902 [[image:1653272901032-107.png]]
903
904
905 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
906
907 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
908
909 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
910
911 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
912
913 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
914
915 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
916
917 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
918
919 (((
920
921 )))
922
923 * (((
924 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
925 )))
926
927 (% class="wikigeneratedid" %)
928 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
929
930
931 (% class="wikigeneratedid" %)
932 [[image:image-20220824114359-3.png||height="297" width="1106"]]
933
934
935
936 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
937
938
939 [[image:image-20220824114330-2.png]]
940
941
942 === 3.3.5 Uplink on demand ===
943
944
945 (((
946 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
947
948
949 )))
950
951 (((
952 (% style="color:blue" %)** Downlink control command:**
953 )))
954
955 (((
956 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
957 )))
958
959 (((
960 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
961 )))
962
963
964 === 3.3.6 Uplink on Interrupt ===
965
966
967 Put the interrupt sensor between 3.3v_out and GPIO ext.
968
969 [[image:1653273818896-432.png]]
970
971
972 (((
973 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
974 )))
975
976 (((
977 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
978 )))
979
980 (((
981 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
982 )))
983
984 (((
985 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
986 )))
987
988
989 == 3.4 Uplink Payload ==
990
991
992 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
993 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:270px" %)**Length depends on the return from the commands**
994 |Value|(((
995 Battery(mV) & Interrupt _Flag
996 )))|(((
997 PAYLOAD_VER
998
999
1000 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
1001
1002 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
1003
1004
1005 (((
1006 {{{function Decoder(bytes, port) {}}}
1007 )))
1008
1009 (((
1010 {{{//Payload Formats of RS485-BL Deceive}}}
1011 )))
1012
1013 (((
1014 {{{return {}}}
1015 )))
1016
1017 (((
1018 {{{ //Battery,units:V}}}
1019 )))
1020
1021 (((
1022 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
1023 )))
1024
1025 (((
1026 {{{ //GPIO_EXTI }}}
1027 )))
1028
1029 (((
1030 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
1031 )))
1032
1033 (((
1034 {{{ //payload of version}}}
1035 )))
1036
1037 (((
1038 {{{ Pay_ver:bytes[2],}}}
1039 )))
1040
1041 (((
1042 {{{ }; }}}
1043 )))
1044
1045 (((
1046 **}**
1047
1048
1049 )))
1050
1051 (((
1052 TTN V3 uplink screen shot.
1053 )))
1054
1055 [[image:1653274001211-372.png||height="192" width="732"]]
1056
1057
1058 == 3.5 Configure RS485-BL via AT or Downlink ==
1059
1060
1061 (((
1062 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1063 )))
1064
1065 (((
1066 There are two kinds of Commands:
1067 )))
1068
1069 * (((
1070 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1071 )))
1072
1073 * (((
1074 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1075
1076
1077
1078 )))
1079
1080 === 3.5.1 Common Commands: ===
1081
1082
1083 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1084
1085
1086 === 3.5.2 Sensor related commands: ===
1087
1088
1089
1090 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1091
1092
1093 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1094
1095 * (% style="color:#037691" %)**AT Command**
1096
1097 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1098
1099 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1100
1101
1102 * (% style="color:#037691" %)**Downlink Payload**
1103
1104 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1105
1106
1107
1108 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1109
1110
1111 (((
1112 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1113 )))
1114
1115 (((
1116 * (% style="color:#037691" %)**AT Command**
1117
1118 (((
1119 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1120 )))
1121 )))
1122
1123 (((
1124
1125 )))
1126
1127 * (((
1128 (% style="color:#037691" %)**Downlink Payload**
1129 )))
1130
1131 (((
1132 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1133 )))
1134
1135 (((
1136 Where:
1137 )))
1138
1139 * (((
1140 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1141 )))
1142 * (((
1143 NN: The length of RS485 command
1144 )))
1145 * (((
1146 XX XX XX XX: RS485 command total NN bytes
1147 )))
1148 * (((
1149 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1150
1151
1152
1153 )))
1154
1155 (((
1156 (% style="color:blue" %)**Example 1:**
1157 )))
1158
1159 (((
1160 To connect a Modbus Alarm with below commands.
1161 )))
1162
1163 * (((
1164 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1165 )))
1166
1167 * (((
1168 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1169 )))
1170
1171 (((
1172 So if user want to use downlink command to control to RS485 Alarm, he can use:
1173 )))
1174
1175 (((
1176 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1177 )))
1178
1179 (((
1180 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1181 )))
1182
1183 (((
1184 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1185 )))
1186
1187 (((
1188
1189
1190
1191 )))
1192
1193 (((
1194 (% style="color:blue" %)**Example 2:**
1195 )))
1196
1197 (((
1198 Check TTL Sensor return:
1199 )))
1200
1201 (((
1202 [[image:1654132684752-193.png]]
1203 )))
1204
1205
1206
1207 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1208
1209
1210 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1211
1212 * (% style="color:#037691" %)**AT Command:**
1213
1214 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1215
1216
1217 * (% style="color:#037691" %)**Downlink Payload:**
1218
1219 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1220
1221 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1222
1223
1224
1225 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1226
1227
1228 (((
1229 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1230 )))
1231
1232 (((
1233 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1234 )))
1235
1236 (((
1237
1238 )))
1239
1240 * (((
1241 (% style="color:#037691" %)**AT Command:**
1242 )))
1243
1244 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1245
1246 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1247
1248 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1249
1250
1251 * (((
1252 (% style="color:#037691" %)**Downlink Payload:**
1253 )))
1254
1255 (((
1256 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1257 )))
1258
1259 (((
1260 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1261 )))
1262
1263 (((
1264 Format: AF MM NN LL XX XX XX XX YY
1265 )))
1266
1267 (((
1268 Where:
1269 )))
1270
1271 * (((
1272 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1273 )))
1274 * (((
1275 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1276 )))
1277 * (((
1278 LL:  The length of AT+COMMAND or AT+DATACUT command
1279 )))
1280 * (((
1281 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1282 )))
1283 * (((
1284 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1285 )))
1286
1287 (((
1288
1289
1290
1291 **Example:**
1292 )))
1293
1294 (((
1295 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1296 )))
1297
1298 (((
1299 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1300 )))
1301
1302 (((
1303 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1304 )))
1305
1306 (((
1307
1308 )))
1309
1310 (((
1311 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1312 )))
1313
1314 (((
1315
1316
1317 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1318 )))
1319
1320 * (((
1321 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1322 )))
1323 * (((
1324 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1325 )))
1326
1327 (((
1328 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1329 )))
1330
1331
1332
1333 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1334
1335
1336 (((
1337 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1338 )))
1339
1340 (((
1341 This command is valid since v1.3 firmware version
1342 )))
1343
1344 (((
1345
1346 )))
1347
1348 (((
1349 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1350 )))
1351
1352 * (((
1353 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1354 )))
1355
1356 (((
1357 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1358 )))
1359
1360 * (((
1361 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1362 )))
1363
1364 (((
1365
1366
1367 **Example:**
1368 )))
1369
1370 * (((
1371 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1372 )))
1373 * (((
1374 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1375 )))
1376 * (((
1377 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1378 )))
1379
1380 [[image:1654133913295-597.png]]
1381
1382
1383 [[image:1654133954153-643.png]]
1384
1385
1386 * (((
1387 (% style="color:#037691" %)**Downlink Commands:**
1388 )))
1389
1390 (((
1391 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1392 )))
1393
1394
1395
1396 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1397
1398
1399 (((
1400 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1401 )))
1402
1403 (((
1404 Default value: 0, range:  0 ~~ 5 seconds
1405 )))
1406
1407 (((
1408
1409 )))
1410
1411 (((
1412 * (% style="color:#037691" %)**AT Command:**
1413
1414 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1415
1416
1417 )))
1418
1419 (((
1420 **Example:**
1421 )))
1422
1423 (((
1424 **AT+CMDDL1=1000** to send the open time to 1000ms
1425 )))
1426
1427 (((
1428
1429 )))
1430
1431 * (((
1432 (% style="color:#037691" %)**Downlink Payload:**
1433 )))
1434
1435 (((
1436 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1437 )))
1438
1439 (((
1440
1441
1442 **Example:**
1443 )))
1444
1445 (((
1446 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1447 )))
1448
1449
1450
1451 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1452
1453
1454 (((
1455 Define to use one uplink or multiple uplinks for the sampling.
1456 )))
1457
1458 (((
1459 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1460 )))
1461
1462 (((
1463 * (% style="color:#037691" %)**AT Command:**
1464
1465 (% style="color:#4472c4" %)** AT+DATAUP=0**
1466
1467 (% style="color:#4472c4" %)** AT+DATAUP=1**
1468
1469
1470 )))
1471
1472 (((
1473 (% style="color:#4472c4" %)** AT+DATAUP=2  **(%%)~/~/The external sensor is sent as a separate packet and the data returned by the AT+COMMAND command is sent as a separate packet.
1474
1475 An asterisk **(*)** indicates that it is optional and can be added, refer to instructions [[AT+EXT=a,b,c>>||anchor="Set up external sensors and pulse counts"]] to set the external sensor optional.
1476
1477 **(FPORT2)**Battery(mV) & Interrupt_Flag + PAYLOAD_VER + *SHT31 temp + *SHT31 Hum + *counting + *DS18B20
1478 **(FPORT3)**PAYLOAD COUNT + PAYLOAD# + Length depends on the return from the commands
1479
1480
1481 )))
1482
1483 * (((
1484 (% style="color:#037691" %)**Downlink Payload:**
1485 )))
1486
1487 (((
1488 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1489 )))
1490
1491 (((
1492 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1493
1494 (% style="color:#4472c4" %)** 0xAD 02   **(%%)**~-~->** Same as AT+DATAUP=2 
1495
1496
1497
1498 )))
1499
1500 (((
1501 * (% style="color:#037691" %)**AT Command:**
1502
1503 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1504 )))
1505
1506 (((
1507
1508 )))
1509
1510 * (((
1511 (% style="color:#037691" %)**Downlink Payload:**
1512 )))
1513
1514 (((
1515 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1516 )))
1517
1518 (((
1519 Each uplink is sent to the server at 20-second intervals when segmented.
1520 )))
1521
1522
1523
1524 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1525
1526
1527 Ask device to send an uplink immediately.
1528
1529 * (% style="color:#037691" %)**Downlink Payload:**
1530
1531 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1532
1533
1534
1535 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1536
1537
1538 (((
1539 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1540 )))
1541
1542 (((
1543
1544 )))
1545
1546 * (((
1547 (% style="color:#037691" %)**AT Command:**
1548 )))
1549
1550 (((
1551 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1552 )))
1553
1554 (((
1555 Example screen shot after clear all RS485 commands. 
1556 )))
1557
1558 (((
1559
1560 )))
1561
1562 (((
1563 The uplink screen shot is:
1564 )))
1565
1566 (((
1567 [[image:1654134704555-320.png]]
1568 )))
1569
1570 (((
1571
1572 )))
1573
1574 * (((
1575 (% style="color:#037691" %)**Downlink Payload:**
1576 )))
1577
1578 (((
1579 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1580 )))
1581
1582
1583
1584 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1585
1586
1587 (((
1588 Set the Rs485 serial communication parameters:
1589 )))
1590
1591 * (((
1592 (% style="color:#037691" %)**AT Command:**
1593 )))
1594
1595 (((
1596
1597
1598 * **Set Baud Rate:**
1599 )))
1600
1601 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1602
1603
1604 * **Set UART Parity**
1605
1606 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1607
1608
1609 * **Set STOPBIT**
1610
1611 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1612
1613
1614 * (((
1615 (% style="color:#037691" %)**Downlink Payload:**
1616 )))
1617
1618 (((
1619 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1620 )))
1621
1622 (((
1623
1624
1625 **Example:**
1626 )))
1627
1628 * (((
1629 A7 01 00 60   same as AT+BAUDR=9600
1630 )))
1631 * (((
1632 A7 01 04 80  same as AT+BAUDR=115200
1633 )))
1634
1635 (((
1636 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00, 01 or 02)
1637 )))
1638
1639 (((
1640 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00, 01 or 02)
1641 )))
1642
1643
1644
1645 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1646
1647 * (((
1648 (% style="color:#037691" %)**AT Command:**
1649 )))
1650
1651 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1652
1653 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1654
1655
1656 * (((
1657 (% style="color:#037691" %)**Downlink Payload:**
1658 )))
1659
1660 **~ A7 04 07**: Same as  AT+DATABIT=7
1661
1662 **~ A7 04 08**: Same as  AT+DATABIT=8
1663
1664
1665
1666 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1667
1668 (((
1669
1670 )))
1671
1672 * (((
1673 (% style="color:#037691" %)**AT Command:**
1674 )))
1675
1676 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1677
1678 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1679
1680
1681
1682 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1683
1684 (((
1685
1686 )))
1687
1688 * (((
1689 (% style="color:#037691" %)**AT Command:**
1690 )))
1691
1692 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1693
1694 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1695
1696
1697
1698 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1699
1700 (((
1701
1702 )))
1703
1704 * (((
1705 (% style="color:#037691" %)**AT Command:**
1706 )))
1707
1708 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1709
1710 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1711
1712
1713
1714 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1715
1716 (((
1717
1718 )))
1719
1720 * (((
1721 (% style="color:#037691" %)**AT Command:**
1722 )))
1723
1724 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1725
1726 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1727
1728
1729 * (((
1730 (% style="color:#037691" %)**Downlink Payload**
1731 )))
1732
1733 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1734
1735
1736
1737 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1738
1739 (((
1740
1741 )))
1742
1743 * (((
1744 (% style="color:#037691" %)**AT Command:**
1745 )))
1746
1747 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1748
1749
1750 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1751
1752
1753 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1754
1755
1756
1757 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1758
1759
1760 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1761
1762
1763 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1764
1765
1766
1767 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1768
1769
1770 * (((
1771 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1772 )))
1773
1774 **Example:**
1775
1776
1777 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1778
1779
1780
1781 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1782
1783
1784 (((
1785 User can set the output power duration before each sampling.
1786 )))
1787
1788 * (((
1789 (% style="color:#037691" %)**AT Command:**
1790 )))
1791
1792 (((
1793 **Example:**
1794 )))
1795
1796 (((
1797 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1798 )))
1799
1800 (((
1801 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1802 )))
1803
1804 (((
1805
1806 )))
1807
1808 * (((
1809 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1810 )))
1811
1812 (((
1813 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1814 )))
1815
1816 (((
1817 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1818 )))
1819
1820
1821
1822 ==== (% style="color:blue" %)**Set up external sensors and pulse counts**(%%) ====
1823
1824 * (% style="color:#037691" %)**AT Command:**
1825
1826 (% style="color:#4472c4" %)**AT+EXT=a,b,c**(%%)
1827
1828 (% style="color:#4472c4" %)**a:**(%%)  **0:** ignore I2C interface.  ** 1:** Add SHT31 sensor support (4 bytes).
1829 (% style="color:#4472c4" %)**b: **(%%) **0:** ignore pulse interface ( doesn't effect interrupt ).  **1:** Add Counting Support (4 bytes).
1830 (% style="color:#4472c4" %)**c:**(%%)  **0:** ignore one wire interface.  **1:** add DS18B20 support (2 bytes).
1831
1832 **Example:**
1833
1834 (% style="color:#4472c4" %)**AT+EXT=1,1,1**
1835
1836 Device will add SHT31, counting, DS18B20 support.
1837
1838 The payload will be:
1839 Battery(mV) & Interrupt _Flag + PAYLOAD_VER + ***SHT31 temp** + ***SHT31 Hum** + ***counting** + *DS18B20 + Length depends on the return from the commands
1840
1841 (% style="color:#4472c4" %)**AT+EXT=0,1,0**
1842
1843 Device will add counting support.
1844
1845 The payload will be:
1846 Battery(mV) & Interrupt _Flag + PAYLOAD_VER + ***counting** + Length depends on the return from the commands
1847
1848
1849 (% style="color:red" %)**Note: The pulse count value can be set when the node supports pulse counting.**
1850
1851 * (% style="color:#037691" %)**AT Command:**
1852
1853 (% style="color:#4472c4" %)**AT+SETCNT=aa     **
1854
1855 **Example:**
1856
1857 AT+SETCNT=0  (% style="display:none" %) (%%)~/~/Set the pulse count to 0.(% style="display:none" %)
1858
1859
1860
1861 == 3.6 Buttons ==
1862
1863
1864 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:233px" %)
1865 |=(% style="width: 89px;background-color:#D9E2F3;color:#0070C0" %)**Button**|=(% style="width: 141px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1866 |(% style="width:89px" %)RST|(% style="width:141px" %)Reboot RS485-BL
1867
1868 == 3.7 +3V3 Output (Since v1.3.3) ==
1869
1870
1871 (((
1872 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1873 )))
1874
1875 (((
1876 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1877 )))
1878
1879 (((
1880 The +3V3 output time can be controlled by AT Command.
1881 )))
1882
1883 (((
1884
1885 )))
1886
1887 (((
1888 (% style="color:#037691" %)**AT+3V3T=1000**
1889 )))
1890
1891 (((
1892
1893 )))
1894
1895 (((
1896 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1897 )))
1898
1899 (((
1900 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1901 )))
1902
1903
1904 == 3.8 +5V Output (Since v1.3.3) ==
1905
1906
1907 (((
1908 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1909 )))
1910
1911 (((
1912 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1913 )))
1914
1915 (((
1916 The 5V output time can be controlled by AT Command.
1917 )))
1918
1919 (((
1920 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1921 )))
1922
1923 (((
1924 (% style="color:#037691" %)**AT+5VT=1000**
1925 )))
1926
1927 (((
1928
1929 )))
1930
1931 (((
1932 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1933 )))
1934
1935 (((
1936 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1937 )))
1938
1939
1940 == 3.9 LEDs ==
1941
1942
1943 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:332px" %)
1944 |=(% style="background-color:#D9E2F3;color:#0070C0" %)**LEDs**|=(% style="width: 274px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1945 |LED1|(% style="width:274px" %)Blink when device transmit a packet.
1946
1947 == 3.10 Switch Jumper ==
1948
1949
1950 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
1951 |=(% style="width: 123px;background-color:#D9E2F3;color:#0070C0" %)**Switch Jumper**|=(% style="width: 340px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1952 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1953 Flash position: Configure device, check running status.
1954 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1955 3.3v position: set to compatible with 3.3v I/O.,
1956
1957 (((
1958 (% style="color:blue" %)** +3.3V**(%%): is always ON
1959 )))
1960
1961 (((
1962 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1963
1964
1965 )))
1966
1967 == 3.11 Battery & Power Consumption ==
1968
1969
1970 RS485-BL uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1971
1972 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1973
1974
1975 = 4. Case Study =
1976
1977
1978 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1979
1980
1981 = 5. Use AT Command =
1982
1983 == 5.1 Access AT Command ==
1984
1985
1986 (((
1987 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1988
1989
1990 )))
1991
1992 [[image:1654135840598-282.png]]
1993
1994
1995 (((
1996 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1997 )))
1998
1999 [[image:1654136105500-922.png]]
2000
2001
2002 (((
2003 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
2004 )))
2005
2006
2007 == 5.2 Common AT Command Sequence ==
2008
2009 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2010
2011
2012 If device has not joined network yet:
2013
2014 * (% style="color:#037691" %)**AT+FDR**
2015 * (% style="color:#037691" %)**AT+NJM=0**
2016 * (% style="color:#037691" %)**ATZ**
2017
2018 (((
2019
2020
2021 If device already joined network:
2022
2023 * (% style="color:#037691" %)**AT+NJM=0**
2024 * (% style="color:#037691" %)**ATZ**
2025 )))
2026
2027
2028
2029 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
2030
2031
2032 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
2033
2034 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
2035
2036 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
2037
2038 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
2039
2040 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
2041
2042 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
2043
2044 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
2045
2046 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
2047
2048 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2049
2050 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
2051
2052
2053 (% style="color:red" %)**Note:**
2054
2055 (((
2056 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
2057 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
2058 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
2059 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
2060
2061
2062 )))
2063
2064 [[image:1654136435598-589.png]]
2065
2066
2067 = 6. FAQ =
2068
2069 == 6.1 How to upgrade the image? ==
2070
2071
2072 (((
2073 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2074 )))
2075
2076 * (((
2077 Support new features
2078 )))
2079 * (((
2080 For bug fix
2081 )))
2082 * (((
2083 Change LoRaWAN bands.
2084 )))
2085
2086 (((
2087 Below shows the hardware connection for how to upload an image to RS485-BL:
2088 )))
2089
2090 [[image:1654136646995-976.png]]
2091
2092
2093 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2094
2095 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2096
2097 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2098
2099
2100 [[image:image-20220602102605-1.png]]
2101
2102
2103 [[image:image-20220602102637-2.png]]
2104
2105
2106 [[image:image-20220602102715-3.png]]
2107
2108
2109 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2110
2111
2112 (((
2113 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2114 )))
2115
2116
2117 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2118
2119
2120 (((
2121 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2122 )))
2123
2124
2125 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2126
2127
2128 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>http://wiki.dragino.com/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2129
2130
2131 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2132
2133 === 6.5.1 Introduce: ===
2134
2135
2136 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2137
2138 1. Test if Modbus-MTU works with PC commands.
2139 1. Check if RS485-LN sent the expected command to Mobus-MTU
2140 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2141 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2142
2143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2144
2145
2146 (% style="color:blue" %)**Example Connection: **
2147
2148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2149
2150
2151 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2152
2153
2154 (% style="color:red" %)**Note: Receive and send set to hex mode**
2155
2156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2157
2158
2159 === 6.5.3 With ModRSsim2: ===
2160
2161
2162 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2163
2164 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2165
2166
2167 (% style="color:blue" %)**(2) Click the serial port icon**
2168
2169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2170
2171
2172 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2173
2174 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2175
2176
2177 (% style="color:blue" %)**(4) Click the comms.**
2178
2179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2180
2181 Run RS485-LN/BL command and monitor if it is correct.
2182
2183
2184 === 6.5.4 Example – Test the CFGDEV command ===
2185
2186
2187 RS485-LN sent below command:
2188
2189 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2190
2191 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2192
2193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2194
2195
2196 We can also use ModRSsim2 to see the output.
2197
2198 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2199
2200
2201 === 6.5.5 Example – Test CMD command sets. ===
2202
2203
2204 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2205
2206 (% style="color:blue" %)**Serial port tool:**
2207
2208 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2209
2210
2211 (% style="color:blue" %)**ModRSsim2:**
2212
2213 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2214
2215
2216 === 6.5.6 Test with PC ===
2217
2218
2219 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2220
2221 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2222
2223 (% style="color:blue" %)**Connection method:**
2224
2225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2226
2227
2228 (% style="color:blue" %)**Link situation:**
2229
2230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2231
2232
2233 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2234
2235
2236 == 6.6 Where to get the decoder for RS485-BL? ==
2237
2238
2239 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2240
2241
2242 == 6.7 Why does my TTL sensor have returned data, but after using the command AT+DATACUT, the data in the payload is 0? ==
2243
2244
2245 In TTL mode, you cannot use the node to automatically calculate the check code, you need to manually add the check code.
2246
2247
2248 == 6.8 Where can I get a decoder? ==
2249
2250
2251 Provides two decoders:
2252
2253 [[dragino-end-node-decoder/RS485-BL at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]]
2254
2255 [[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork]]
2256
2257
2258 == 6.9 How to configure RS485 commands more conveniently? ==
2259
2260
2261 Dragino has developed an application for the RS485 series of products.
2262
2263 It can help you configure RS485 sensors more conveniently
2264 Please refer to the link below for specific usage:
2265
2266 [[RS485 Configure Tool - DRAGINO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/#HTableofContentsFF1A]]
2267
2268
2269 = 7. Trouble Shooting =
2270
2271 == 7.1 Downlink doesn't work, how to solve it? ==
2272
2273
2274 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2275
2276
2277 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2278
2279
2280 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2281
2282
2283 = 8. Order Info =
2284
2285
2286 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2287
2288 (% style="color:blue" %)**XXX:**
2289
2290 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2291 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2292 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2293 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2294 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2295 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2296 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2297 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2298 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2299 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2300
2301 = 9. Packing Info =
2302
2303
2304 (((
2305 **Package Includes**:
2306 )))
2307
2308 * (((
2309 RS485-BL x 1
2310 )))
2311 * (((
2312 Stick Antenna for LoRa RF part x 1
2313 )))
2314 * (((
2315 Program cable x 1
2316 )))
2317
2318 (((
2319 **Dimension and weight**:
2320 )))
2321
2322 * (((
2323 Device Size: 13.5 x 7 x 3 cm
2324 )))
2325 * (((
2326 Device Weight: 105g
2327 )))
2328 * (((
2329 Package Size / pcs : 14.5 x 8 x 5 cm
2330 )))
2331 * (((
2332 Weight / pcs : 170g
2333
2334
2335
2336 )))
2337
2338 = 10. Support =
2339
2340
2341 * (((
2342 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2343 )))
2344 * (((
2345 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2346
2347
2348
2349 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0