Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Operate Temperature:**
56
57 * -40°C ~~ 65°C
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66 * 5V sampling maximum current:500mA
67
68 (% style="color:#037691" %)**Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC.
94
95 ​​​
96
97
98 == 1.3 Features ==
99
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110 == 1.4 Applications ==
111
112
113 * Smart Buildings & Home Automation
114 * Logistics and Supply Chain Management
115 * Smart Metering
116 * Smart Agriculture
117 * Smart Cities
118 * Smart Factory
119
120 == 1.5 Firmware Change log ==
121
122
123 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129
130
131 (((
132 **v1.4**
133 )))
134 )))
135
136 (((
137 (((
138 ~1. Change Power IC to TPS22916
139 )))
140 )))
141
142 (((
143
144 )))
145
146 (((
147 (((
148 **v1.3**
149 )))
150 )))
151
152 (((
153 (((
154 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
155 )))
156 )))
157
158 (((
159
160 )))
161
162 (((
163 (((
164 **v1.2**
165 )))
166 )))
167
168 (((
169 (((
170 Release version ​​​​​
171 )))
172 )))
173
174
175 = 2. Pin mapping and Power ON Device =
176
177
178 (((
179 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
180
181
182 )))
183
184 [[image:1652953055962-143.png||height="387" width="728"]]
185
186
187 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
188
189
190 = 3. Operation Mode =
191
192 == 3.1 How it works? ==
193
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203
204 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
205
206 [[image:1652953414711-647.png||height="337" width="723"]]
207
208
209 (((
210 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
211 )))
212
213 (((
214 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
215
216
217 )))
218
219 (((
220 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
221 )))
222
223 (((
224 Each RS485-BL is shipped with a sticker with unique device EUI:
225 )))
226
227 [[image:image-20230425173638-1.png]]
228
229
230 (((
231 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
232 )))
233
234 (((
235 **Add APP EUI in the application.**
236 )))
237
238
239 [[image:image-20220519174512-1.png]]
240
241 [[image:image-20220519174512-2.png||height="328" width="731"]]
242
243 [[image:image-20220519174512-3.png||height="556" width="724"]]
244
245 [[image:image-20220519174512-4.png]]
246
247
248 You can also choose to create the device manually.
249
250 [[image:1652953542269-423.png||height="710" width="723"]]
251
252
253 Add APP KEY and DEV EUI
254
255 [[image:1652953553383-907.png||height="514" width="724"]]
256
257
258
259 (((
260 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
261
262
263 )))
264
265 [[image:1652953568895-172.png||height="232" width="724"]]
266
267
268 == 3.3 Configure Device to Read RS485 Sensor ==
269
270
271 (((
272 There are plenty of RS485 and TTL level devices in the market and each device has different commands to read the valid data. To support these devices in most flexible, RS485-BL supports flexible command set. User can use [[Dragino RS485 Tool>>url:https://www.dropbox.com/sh/us9qecn39fwt8n1/AABREdqUCzEmJMRrfuWuXasoa?dl=0]],  [[AT Commands or LoRaWAN Downlink>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/#H3.5ConfigureRS485-LBviaATorDownlink]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
273
274
275 === 3.3.1 Method 1 ~-~- via RS485 Configure Tool ===
276
277
278 Use the RS485 Configure tool is the recommand method. Please see the instruction of how to use the tool:
279
280 * **[[RS485 Configure Tool Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/]]**
281
282 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20231127144411-1.png?width=494&height=368&rev=1.1||alt="image-20231127144411-1.png" height="368" width="494"]]
283 )))
284
285
286 === 3.3.2 Method 2 ~-~- via AT Commands ===
287
288 ==== 3.3.2.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ====
289
290
291 (((
292 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
293 )))
294
295
296 (((
297 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
298 )))
299
300 (((
301 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
302 )))
303
304
305 (((
306 (% style="color:blue" %)**2.  TTL mode:**
307 )))
308
309 (((
310 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
311 )))
312
313 (((
314 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
315 )))
316
317 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
318 |=(% style="width: 140px; background-color:#4F81BD;color:white" %)(((
319 (((
320 **AT Commands**
321 )))
322 )))|=(% style="width: 132px; background-color:#4F81BD;color:white" %)(((
323 (((
324 **Description**
325 )))
326 )))|=(% style="width: 238px;background-color:#4F81BD;color:white" %)(((
327 (((
328 **Example**
329 )))
330 )))
331 |(% style="width:120px" %)(((
332 (((
333 AT+BAUDR
334 )))
335 )))|(% style="width:115px" %)(((
336 (((
337 Set the baud rate (for RS485 connection).
338 Default Value is: 9600.
339 )))
340 )))|(% style="width:226px" %)(((
341 (((
342 (((
343 AT+BAUDR=9600
344 )))
345 )))
346
347 (((
348 (((
349 Options: (1200,2400,4800,14400,19200,115200)
350 )))
351 )))
352 )))
353 |(% style="width:120px" %)(((
354 (((
355 AT+PARITY
356 )))
357 )))|(% style="width:115px" %)(((
358 (((
359 (((
360 Set UART parity (for RS485 connection)
361 )))
362 )))
363
364 (((
365 (((
366 Default Value is: no parity.
367 )))
368 )))
369 )))|(% style="width:226px" %)(((
370 (((
371 (((
372 AT+PARITY=0
373 )))
374 )))
375
376 (((
377 (((
378 Option: 0: no parity, 1: odd parity, 2: even parity
379 )))
380 )))
381 )))
382 |(% style="width:120px" %)(((
383 (((
384 AT+STOPBIT
385 )))
386 )))|(% style="width:115px" %)(((
387 (((
388 (((
389 Set serial stopbit (for RS485 connection)
390 )))
391 )))
392
393 (((
394 (((
395 Default Value is: 1bit.
396 )))
397 )))
398 )))|(% style="width:226px" %)(((
399 (((
400 (((
401 AT+STOPBIT=0 for 1bit
402 )))
403 )))
404
405 (((
406 (((
407 AT+STOPBIT=1 for 1.5 bit
408 )))
409 )))
410
411 (((
412 (((
413 AT+STOPBIT=2 for 2 bits
414 )))
415 )))
416 )))
417
418 Example(Soil three-parameter detector):
419
420 (% style="color:blue" %)**Wiring the UART sensor**
421
422 (((
423 **GND <~-~-~-~-~-~-~-~-> GND
424 TX  <~-~-~-~-~-~-~-~->  RX
425 RX  <~-~-~-~-~-~-~-~->  TX
426 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
427 )))
428
429 [[image:image-20230220110129-1.png||height="277" width="395"]]
430
431
432 (% style="color:blue" %)**Set the correct configuration:**
433
434 (% style="color:#037691" %)**AT+BAUDR=9600**
435
436 (% style="color:#037691" %)**AT+PARITY=0**
437
438 (% style="color:#037691" %)**AT+STOPBIT=1**
439
440 If the sensor needs 5v. Need to move the switch position to 5v and then use the command
441
442 (% style="color:blue" %)**AT+5VT=30000**
443
444
445 (% style="color:blue" %)**Configuration read command:**
446
447 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
448
449 **FE:** Station address
450
451 **03:** Function code
452
453 **00 00: **Register start address
454
455 **00 03:** Number of registers
456
457 **11 04:**  Check code
458
459 [[image:image-20230220111709-2.png]]
460
461
462 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
463
464 [[image:image-20230220112421-3.png]]
465
466
467 (% style="color:blue" %)**upload payload:**
468
469 [[image:image-20230220112517-4.png]]
470
471
472 === 3.3.3  Configure sensors ===
473
474
475 (((
476 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
477 )))
478
479 (((
480 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
481 )))
482
483 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 |=(% style="width: 130px;background-color:#4F81BD;color:white" %)**AT Commands**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Example**
485 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
486 (((
487 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
488 )))
489
490 (((
491 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
492 )))
493
494 (((
495 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
496 )))
497 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
498
499 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
500
501
502 === 3.3.4 Configure read commands for each sampling ===
503
504
505 (((
506 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
507 )))
508
509 (((
510 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
511 )))
512
513 (((
514 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
515 )))
516
517 (((
518 This section describes how to achieve above goals.
519 )))
520
521 (((
522 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
523
524
525 )))
526
527 (((
528 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
529 )))
530
531 (((
532 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
533
534
535 )))
536
537 (((
538 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
539 )))
540
541 (((
542 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
543 )))
544
545 * (((
546 (% style="color:blue" %)**AT+DATACUT**
547 )))
548
549 (((
550 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
551
552
553 )))
554
555 * (((
556 (% style="color:blue" %)**AT+SEARCH**
557 )))
558
559 (((
560 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
561 )))
562
563 (((
564
565
566 (% style="color:blue" %)**Define wait timeout:**
567 )))
568
569 (((
570 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
571 )))
572
573 (((
574 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
575 )))
576
577 (((
578
579
580 **Examples:**
581 )))
582
583 (((
584 Below are examples for the how above AT Commands works.
585 )))
586
587 (((
588 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
589
590
591 )))
592
593 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
594 |(% style="width:494px" %)(((
595 (((
596 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
597 )))
598
599 (((
600 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
601 )))
602
603 (((
604 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
605 )))
606 )))
607
608 (((
609 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
610 )))
611
612 (((
613 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
614 )))
615
616 (((
617
618 )))
619
620 (((
621 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
622
623
624 )))
625
626 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
627 |(% style="width:470px" %)(((
628 (((
629 **AT+SEARCHx=aa,xx xx xx xx xx**
630 )))
631
632 * (((
633 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
634 )))
635 * (((
636 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
637 )))
638 )))
639
640 (((
641
642
643 **Examples:**
644 )))
645
646 (((
647 1) For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
648 )))
649
650 (((
651 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
652 )))
653
654 (((
655 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
656 )))
657
658 (((
659 [[image:1653271044481-711.png]]
660
661
662 )))
663
664 (((
665 2) For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
666 )))
667
668 (((
669 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
670 )))
671
672 (((
673 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
674 )))
675
676 (((
677 [[image:1653271276735-972.png]]
678 )))
679
680 (((
681 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
682 )))
683
684 (% style="background-color:#f2f2f2; width:496px" %)
685 |(% style="width:493px" %)(((
686 (((
687 **AT+DATACUTx=a,b,c**
688 )))
689
690 * (((
691 **a: length for the return of AT+COMMAND**
692 )))
693 * (((
694 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
695 )))
696 * (((
697 **c: define the position for valid value.  **
698 )))
699 )))
700
701 (((
702
703
704 **Examples:**
705 )))
706
707 * (((
708 (% style="color:blue" %)**Grab bytes:**
709 )))
710
711 (((
712 [[image:1653271581490-837.png||height="313" width="722"]]
713 )))
714
715 (((
716
717 )))
718
719 * (((
720 (% style="color:blue" %)**Grab a section.**
721 )))
722
723 (((
724 [[image:1653271648378-342.png||height="326" width="720"]]
725 )))
726
727 (((
728
729 )))
730
731 * (((
732 (% style="color:blue" %)**Grab different sections.**
733 )))
734
735 (((
736 [[image:1653271657255-576.png||height="305" width="730"]]
737
738
739 )))
740
741 (((
742 (((
743 (% style="color:red" %)**Note:**
744 )))
745 )))
746
747 (((
748 (((
749 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
750
751
752 )))
753 )))
754
755 (((
756 (((
757 **Example:**
758 )))
759 )))
760
761 (((
762 (((
763 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
764 )))
765 )))
766
767 (((
768 (((
769 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
770 )))
771 )))
772
773 (((
774 (((
775 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
776 )))
777 )))
778
779 (((
780 (((
781 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
782 )))
783 )))
784
785 (((
786 (((
787 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
788 )))
789 )))
790
791 (((
792 (((
793 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
794
795
796 )))
797 )))
798
799 (((
800 [[image:1653271763403-806.png]]
801 )))
802
803
804 === 3.3.4 Compose the uplink payload ===
805
806
807 (((
808 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
809
810
811 )))
812
813 (((
814 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
815 )))
816
817 (((
818 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
819 )))
820
821 (((
822 Final Payload is
823 )))
824
825 (((
826 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
827 )))
828
829 (((
830 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
831 )))
832
833 [[image:1653272787040-634.png||height="515" width="719"]]
834
835
836 (((
837 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
838 )))
839
840 (((
841 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
842 )))
843
844 (((
845 Final Payload is
846 )))
847
848 (((
849 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
850 )))
851
852 1. (((
853 Battery Info (2 bytes): Battery voltage
854 )))
855 1. (((
856 PAYVER (1 byte): Defined by AT+PAYVER
857 )))
858 1. (((
859 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
860 )))
861 1. (((
862 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
863 )))
864 1. (((
865 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
866
867
868 )))
869
870 [[image:1653272817147-600.png||height="437" width="717"]]
871
872 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
873
874
875 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
876
877 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
878
879 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
880
881
882 Below are the uplink payloads:
883
884 [[image:1653272901032-107.png]]
885
886
887 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
888
889 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
890
891 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
892
893 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
894
895 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
896
897 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
898
899 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
900
901 (((
902
903 )))
904
905 * (((
906 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
907 )))
908
909 (% class="wikigeneratedid" %)
910 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
911
912
913 (% class="wikigeneratedid" %)
914 [[image:image-20220824114359-3.png||height="297" width="1106"]]
915
916
917
918 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
919
920
921 [[image:image-20220824114330-2.png]]
922
923
924 === 3.3.5 Uplink on demand ===
925
926
927 (((
928 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
929
930
931 )))
932
933 (((
934 (% style="color:blue" %)** Downlink control command:**
935 )))
936
937 (((
938 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
939 )))
940
941 (((
942 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
943 )))
944
945
946 === 3.3.6 Uplink on Interrupt ===
947
948
949 Put the interrupt sensor between 3.3v_out and GPIO ext.
950
951 [[image:1653273818896-432.png]]
952
953
954 (((
955 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
956 )))
957
958 (((
959 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
960 )))
961
962 (((
963 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. (Default Value)
964 )))
965
966 (((
967 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
968 )))
969
970
971 == 3.4 Uplink Payload ==
972
973
974 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
975 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**1**|(% style="background-color:#4f81bd; color:white; width:270px" %)**Length depends on the return from the commands**
976 |Value|(((
977 Battery(mV) & Interrupt _Flag
978 )))|(((
979 PAYLOAD_VER
980
981
982 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
983
984 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
985
986
987 (((
988 {{{function Decoder(bytes, port) {}}}
989 )))
990
991 (((
992 {{{//Payload Formats of RS485-BL Deceive}}}
993 )))
994
995 (((
996 {{{return {}}}
997 )))
998
999 (((
1000 {{{ //Battery,units:V}}}
1001 )))
1002
1003 (((
1004 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
1005 )))
1006
1007 (((
1008 {{{ //GPIO_EXTI }}}
1009 )))
1010
1011 (((
1012 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
1013 )))
1014
1015 (((
1016 {{{ //payload of version}}}
1017 )))
1018
1019 (((
1020 {{{ Pay_ver:bytes[2],}}}
1021 )))
1022
1023 (((
1024 {{{ }; }}}
1025 )))
1026
1027 (((
1028 **}**
1029
1030
1031 )))
1032
1033 (((
1034 TTN V3 uplink screen shot.
1035 )))
1036
1037 [[image:1653274001211-372.png||height="192" width="732"]]
1038
1039
1040 == 3.5 Configure RS485-BL via AT or Downlink ==
1041
1042
1043 (((
1044 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1045 )))
1046
1047 (((
1048 There are two kinds of Commands:
1049 )))
1050
1051 * (((
1052 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1053 )))
1054
1055 * (((
1056 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1057
1058
1059
1060 )))
1061
1062 === 3.5.1 Common Commands: ===
1063
1064
1065 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1066
1067
1068 === 3.5.2 Sensor related commands: ===
1069
1070
1071
1072 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL) (Since v1.3.3)**(%%) ====
1073
1074
1075 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1076
1077 * (% style="color:#037691" %)**AT Command**
1078
1079 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1080
1081 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1082
1083
1084 * (% style="color:#037691" %)**Downlink Payload**
1085
1086 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1087
1088
1089
1090 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1091
1092
1093 (((
1094 This command is used to configure the RS485 or TTL sensors; they won't be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1095 )))
1096
1097 (((
1098 * (% style="color:#037691" %)**AT Command**
1099
1100 (((
1101 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1102 )))
1103 )))
1104
1105 (((
1106
1107 )))
1108
1109 * (((
1110 (% style="color:#037691" %)**Downlink Payload**
1111 )))
1112
1113 (((
1114 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1115 )))
1116
1117 (((
1118 Where:
1119 )))
1120
1121 * (((
1122 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1123 )))
1124 * (((
1125 NN: The length of RS485 command
1126 )))
1127 * (((
1128 XX XX XX XX: RS485 command total NN bytes
1129 )))
1130 * (((
1131 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1132
1133
1134 )))
1135
1136 (((
1137 (% style="color:blue" %)**Example 1:**
1138 )))
1139
1140 (((
1141 To connect a Modbus Alarm with below commands.
1142 )))
1143
1144 * (((
1145 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1146 )))
1147
1148 * (((
1149 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1150 )))
1151
1152 (((
1153 So if user want to use downlink command to control to RS485 Alarm, he can use:
1154 )))
1155
1156 (((
1157 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1158 )))
1159
1160 (((
1161 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1162 )))
1163
1164 (((
1165 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don't need to acquire output.
1166 )))
1167
1168 (((
1169
1170 )))
1171
1172 (((
1173 (% style="color:blue" %)**Example 2:**
1174 )))
1175
1176 (((
1177 Check TTL Sensor return:
1178 )))
1179
1180 (((
1181 [[image:1654132684752-193.png]]
1182 )))
1183
1184
1185
1186 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1187
1188
1189 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1190
1191 * (% style="color:#037691" %)**AT Command:**
1192
1193 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1194
1195
1196 * (% style="color:#037691" %)**Downlink Payload:**
1197
1198 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1199
1200 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1201
1202
1203
1204 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1205
1206
1207 (((
1208 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1209 )))
1210
1211 (((
1212 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1213 )))
1214
1215 (((
1216
1217 )))
1218
1219 * (((
1220 (% style="color:#037691" %)**AT Command:**
1221 )))
1222
1223 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1224
1225 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1226
1227 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1228
1229
1230 * (((
1231 (% style="color:#037691" %)**Downlink Payload:**
1232 )))
1233
1234 (((
1235 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1236 )))
1237
1238 (((
1239 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1240 )))
1241
1242 (((
1243 Format: AF MM NN LL XX XX XX XX YY
1244 )))
1245
1246 (((
1247 Where:
1248 )))
1249
1250 * (((
1251 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1252 )))
1253 * (((
1254 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1255 )))
1256 * (((
1257 LL:  The length of AT+COMMAND or AT+DATACUT command
1258 )))
1259 * (((
1260 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1261 )))
1262 * (((
1263 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1264 )))
1265
1266 (((
1267
1268
1269
1270 **Example:**
1271 )))
1272
1273 (((
1274 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1275 )))
1276
1277 (((
1278 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1279 )))
1280
1281 (((
1282 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1283 )))
1284
1285 (((
1286
1287 )))
1288
1289 (((
1290 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1291 )))
1292
1293 (((
1294
1295
1296 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1297 )))
1298
1299 * (((
1300 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1301 )))
1302 * (((
1303 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1304 )))
1305
1306 (((
1307 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1308 )))
1309
1310
1311
1312 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1313
1314
1315 (((
1316 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1317 )))
1318
1319 (((
1320 This command is valid since v1.3 firmware version
1321 )))
1322
1323 (((
1324
1325 )))
1326
1327 (((
1328 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1329 )))
1330
1331 * (((
1332 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1333 )))
1334
1335 (((
1336 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1337 )))
1338
1339 * (((
1340 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1341 )))
1342
1343 (((
1344
1345
1346 **Example:**
1347 )))
1348
1349 * (((
1350 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1351 )))
1352 * (((
1353 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1354 )))
1355 * (((
1356 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1357 )))
1358
1359 [[image:1654133913295-597.png]]
1360
1361
1362 [[image:1654133954153-643.png]]
1363
1364
1365 * (((
1366 (% style="color:#037691" %)**Downlink Commands:**
1367 )))
1368
1369 (((
1370 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1371 )))
1372
1373
1374
1375 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1376
1377
1378 (((
1379 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1380 )))
1381
1382 (((
1383 Default value: 0, range:  0 ~~ 5 seconds
1384 )))
1385
1386 (((
1387
1388 )))
1389
1390 (((
1391 * (% style="color:#037691" %)**AT Command:**
1392
1393 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1394
1395
1396 )))
1397
1398 (((
1399 **Example:**
1400 )))
1401
1402 (((
1403 **AT+CMDDL1=1000** to send the open time to 1000ms
1404 )))
1405
1406 (((
1407
1408 )))
1409
1410 * (((
1411 (% style="color:#037691" %)**Downlink Payload:**
1412 )))
1413
1414 (((
1415 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1416 )))
1417
1418 (((
1419
1420
1421 **Example:**
1422 )))
1423
1424 (((
1425 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1426 )))
1427
1428
1429
1430 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1431
1432
1433 (((
1434 Define to use one uplink or multiple uplinks for the sampling.
1435 )))
1436
1437 (((
1438 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1439 )))
1440
1441 (((
1442 * (% style="color:#037691" %)**AT Command:**
1443
1444 (% style="color:#4472c4" %)** AT+DATAUP=0**
1445
1446 (% style="color:#4472c4" %)** AT+DATAUP=1**
1447
1448
1449 )))
1450
1451 (((
1452 (% style="color:#4472c4" %)** AT+DATAUP=2  **(%%)~/~/The external sensor is sent as a separate packet and the data returned by the AT+COMMAND command is sent as a separate packet.
1453
1454 An asterisk ( * ) indicates that it is optional and can be added, refer to instructions (% style="color:red" %)**AT+EXT=a,b,c **(%%) to set up external sensors and pulse counts.
1455
1456 **(FPORT2)**Battery(mV) & Interrupt_Flag + PAYLOAD_VER + *SHT31 temp + *SHT31 Hum + *counting + *DS18B20
1457 **(FPORT3)**PAYLOAD COUNT + PAYLOAD# + Length depends on the return from the commands
1458
1459 (% style="color:red" %)**Note: AT+DATAUP=2 is only valid for the new firmware v1.4.5, which is not released, please contact us for testing.**
1460
1461
1462 )))
1463
1464 * (((
1465 (% style="color:#037691" %)**Downlink Payload:**
1466 )))
1467
1468 (((
1469 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1470 )))
1471
1472 (((
1473 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1474
1475 (% style="color:#4472c4" %)** 0xAD 02   **(%%)**~-~->** Same as AT+DATAUP=2 
1476
1477
1478
1479 )))
1480
1481 (((
1482 * (% style="color:#037691" %)**AT Command:**
1483
1484 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1485 )))
1486
1487 (((
1488
1489 )))
1490
1491 * (((
1492 (% style="color:#037691" %)**Downlink Payload:**
1493 )))
1494
1495 (((
1496 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1497 )))
1498
1499 (((
1500 Each uplink is sent to the server at 20-second intervals when segmented.
1501
1502
1503
1504 )))
1505
1506 ==== (% style="color:blue" %)**Cut data separation processing(Since Version 1.4.2)**(%%) ====
1507
1508
1509 AT+NEWLINE command, which only takes effect when AT+DATAUP=1 or AT+DATAUP=1, timeout.
1510
1511 When not set, each part of AT+DATAUP is sent according to the maximum number of bytes of DR.
1512
1513 When setting, each part of AT+DATAUP is sent according to the value set by AT+NEWLINE.
1514
1515
1516 * (((
1517 (% style="color:#037691" %)** AT Command:**
1518 )))
1519
1520 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   //The data cut out by each AT+COMMANDx command is sent separately as an uplink.
1521
1522 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   equal:  (% style="color:#4472c4" %)**AT+NEWLINE=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15**//
1523
1524
1525 (% style="color:#4472c4" %)//**AT+NEWLINE=a+b+c**//(%%)//  //The data returned by all commands is divided into three parts, COMMAND(1~~a) is the first part, COMMAND(a+1~~b) is the second part,COMMAND(b+1~~c) is the third part.
1526
1527
1528 (% style="color:#4472c4" %)//**AT+NEWLINE=NULL**//(%%)//  //Turn off the functionality of this AT command.
1529
1530
1531 * (((
1532 (% style="color:#037691" %)** Downlink Payload:**
1533 )))
1534
1535 //AT+NEWLINE=ALL  ~-~-->  (% style="color:#4472c4" %)**0xAC 01**//
1536
1537 // AT+NEWLINE= NULL  ~-~-->  (% style="color:#4472c4" %)**0xAC 00**//
1538
1539 //AT+NEWLINE= a+b+c   ~-~-->  (% style="color:#4472c4" %)**0xAC number of bytes a b c**//
1540
1541 //AT+NEWLINE= 1+5+15 ~-~-->  (% style="color:#4472c4" %)**0xAC 03 01 05 0F**//
1542
1543 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1544
1545
1546 Ask device to send an uplink immediately.
1547
1548 * (% style="color:#037691" %)**Downlink Payload:**
1549
1550 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1551
1552
1553
1554 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1555
1556
1557 (((
1558 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1559 )))
1560
1561 (((
1562
1563 )))
1564
1565 * (((
1566 (% style="color:#037691" %)**AT Command:**
1567 )))
1568
1569 (((
1570 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1571 )))
1572
1573 (((
1574 Example screen shot after clear all RS485 commands. 
1575 )))
1576
1577 (((
1578
1579 )))
1580
1581 (((
1582 The uplink screen shot is:
1583 )))
1584
1585 (((
1586 [[image:1654134704555-320.png]]
1587 )))
1588
1589 (((
1590
1591 )))
1592
1593 * (((
1594 (% style="color:#037691" %)**Downlink Payload:**
1595 )))
1596
1597 (((
1598 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1599 )))
1600
1601
1602
1603 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1604
1605
1606 (((
1607 Set the Rs485 serial communication parameters:
1608 )))
1609
1610 * (((
1611 (% style="color:#037691" %)**AT Command:**
1612 )))
1613
1614 (((
1615
1616
1617 * **Set Baud Rate:**
1618 )))
1619
1620 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1621
1622
1623 * **Set UART Parity**
1624
1625 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1626
1627
1628 * **Set STOPBIT**
1629
1630 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1631
1632
1633 * (((
1634 (% style="color:#037691" %)**Downlink Payload:**
1635 )))
1636
1637 (((
1638 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1639 )))
1640
1641 (((
1642
1643
1644 **Example:**
1645 )))
1646
1647 * (((
1648 A7 01 00 60   same as AT+BAUDR=9600
1649 )))
1650 * (((
1651 A7 01 04 80  same as AT+BAUDR=115200
1652 )))
1653
1654 (((
1655 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00, 01 or 02)
1656 )))
1657
1658 (((
1659 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00, 01 or 02)
1660 )))
1661
1662
1663
1664 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1665
1666 * (((
1667 (% style="color:#037691" %)**AT Command:**
1668 )))
1669
1670 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1671
1672 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1673
1674
1675 * (((
1676 (% style="color:#037691" %)**Downlink Payload:**
1677 )))
1678
1679 **~ A7 04 07**: Same as  AT+DATABIT=7
1680
1681 **~ A7 04 08**: Same as  AT+DATABIT=8
1682
1683
1684
1685 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1686
1687 (((
1688
1689 )))
1690
1691 * (((
1692 (% style="color:#037691" %)**AT Command:**
1693 )))
1694
1695 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1696
1697 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1698
1699
1700
1701 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1702
1703 (((
1704
1705 )))
1706
1707 * (((
1708 (% style="color:#037691" %)**AT Command:**
1709 )))
1710
1711 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1712
1713 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1714
1715
1716
1717 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1718
1719 (((
1720
1721 )))
1722
1723 * (((
1724 (% style="color:#037691" %)**AT Command:**
1725 )))
1726
1727 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1728
1729 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1730
1731
1732
1733 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1734
1735 (((
1736
1737 )))
1738
1739 * (((
1740 (% style="color:#037691" %)**AT Command:**
1741 )))
1742
1743 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1744
1745 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1746
1747
1748 * (((
1749 (% style="color:#037691" %)**Downlink Payload**
1750 )))
1751
1752 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1753
1754
1755
1756 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1757
1758 (((
1759
1760 )))
1761
1762 * (((
1763 (% style="color:#037691" %)**AT Command:**
1764 )))
1765
1766 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1767
1768
1769 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1770
1771
1772 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1773
1774
1775
1776 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1777
1778
1779 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1780
1781
1782 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1783
1784
1785
1786 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1787
1788
1789 * (((
1790 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1791 )))
1792
1793 **Example:**
1794
1795
1796 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1797
1798
1799
1800 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1801
1802
1803 (% style="color:red" %)**Before v1.4.4, the maximum settable time of 3V3T and 5VT is 65535 milliseconds. After v1.4.4, the maximum settable time of 3V3T and 5VT is 180 seconds.**
1804
1805 (((
1806 User can set the output power duration before each sampling.
1807 )))
1808
1809 * (((
1810 (% style="color:#037691" %)**AT Command:**
1811 )))
1812
1813 (((
1814 **Example:**
1815 )))
1816
1817 (((
1818 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1819 )))
1820
1821 (((
1822 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1823 )))
1824
1825 (((
1826
1827 )))
1828
1829 * (((
1830 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1831
1832 **Example:**
1833
1834 (% style="color:#037691" %)**When the delay is less than 65 seconds, Downlink can be controlled by 4 bytes or 5 bytes:**
1835 )))
1836
1837 (((
1838 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa<<8 | bb)
1839 )))
1840
1841 (((
1842 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa<<8 | bb)
1843
1844 (((
1845 (% style="color:#4472c4" %)** 07 01 aa bb** **cc**(%%) Same as AT+5VT=(aa<<16 | bb<<8 | cc)
1846 )))
1847
1848 (((
1849 (% style="color:#4472c4" %)** 07 02 aa bb** **cc **(%%)Same as AT+3V3T=(aa<<16 | bb<<8 | cc)
1850
1851 (% style="color:#037691" %)** When the delay is greater than 65 seconds, the Downlink is controlled by 5 bytes:**
1852 )))
1853 )))
1854
1855 (((
1856 (% style="color:#4472c4" %)** 07 01 aa bb** **cc**(%%) Same as AT+5VT=(aa<<16 | bb<<8 | cc)
1857 )))
1858
1859 (((
1860 (% style="color:#4472c4" %)** 07 02 aa bb** **cc **(%%)Same as AT+3V3T=(aa<<16 | bb<<8 | cc)
1861 )))
1862
1863
1864
1865
1866 == 3.6 Connect to external temperature sensor & counting sensor ==
1867
1868
1869 (% style="color:red" %)**Note: This feature is only available for new unreleased firmware v1.4.5, please contact us for testing.**
1870
1871 * (% style="color:#037691" %)**AT Command:**
1872
1873 (% style="color:#4472c4" %)**AT+EXT=a,b,c**(%%)
1874
1875 (% style="color:#4472c4" %)**a:**(%%)  **0:** ignore I2C interface.  ** 1:** Add SHT31 sensor support (4 bytes).
1876 (% style="color:#4472c4" %)**b: **(%%) **0:** ignore pulse interface ( doesn't effect interrupt ).  **1:** Add Counting Support (4 bytes).
1877 (% style="color:#4472c4" %)**c:**(%%)  **0:** ignore one wire interface.  **1:** add DS18B20 support (2 bytes).
1878
1879 **Example:**
1880
1881 (% style="color:#4472c4" %)**AT+EXT=1,1,1**
1882
1883 Device will add SHT31, counting, DS18B20 support.
1884
1885 The payload will be:
1886 Battery(mV) & Interrupt _Flag + PAYLOAD_VER + ***SHT31 temp** + ***SHT31 Hum** + ***counting** + *DS18B20 + Length depends on the return from the commands
1887
1888 (% style="color:#4472c4" %)**AT+EXT=0,1,0**
1889
1890 Device will add counting support.
1891
1892 The payload will be:
1893 Battery(mV) & Interrupt _Flag + PAYLOAD_VER + ***counting** + Length depends on the return from the commands
1894
1895
1896 * (% style="color:#037691" %)**AT Command:**
1897
1898 (% style="color:#4472c4" %)**AT+SETCNT=aa     **(%%)~/~/Set the pulse count value.
1899
1900 **Example:**
1901
1902 AT+SETCNT=0  (% style="display:none" %) (%%)~/~/Set the pulse count to 0.(% style="display:none" %)
1903
1904
1905 (% style="color:blue" %)**Connect DS18B20 sensor**
1906
1907 **RED <~-~-~-~-~-~-~-~--> +3.3V**
1908
1909 **YELLOW <~-~-~-~-> ONE_WIRE**
1910
1911 **BLACK <~-~-~-~-~-~-> GND**
1912
1913 [[image:image-20240105110044-2.jpeg||height="328" width="496"]]
1914
1915
1916 (% style="color:blue" %)**Connect SHT31 sensor**
1917
1918
1919 **RED <~-~-~-~-~-~-~-~--> +3.3V**
1920
1921 **YELLOW <~-~-~-~-> SCL**
1922
1923 **GREEN <~-~-~-~-~-~-> SDA**
1924
1925 **BLACK <~-~-~-~-~-~-> GND**
1926
1927 [[image:image-20240105111233-3.jpeg||height="330" width="492"]]
1928
1929
1930 (% style="color:blue" %)**Connect counting sensor**
1931
1932 The counting sensor cables are connected to the +3.3v pin and GPIO_EXTI pin of the RS485_BL motherboard.
1933
1934 [[image:image-20240105112545-4.jpeg||height="335" width="490"]]
1935
1936
1937 == 3.7 Buttons ==
1938
1939
1940 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:233px" %)
1941 |=(% style="width: 89px;background-color:#4F81BD;color:white" %)**Button**|=(% style="width: 141px;background-color:#4F81BD;color:white" %)**Feature**
1942 |(% style="width:89px" %)RST|(% style="width:141px" %)Reboot RS485-BL
1943
1944 == 3.8 +3V3 Output (Since v1.3.3) ==
1945
1946
1947 (((
1948 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1949 )))
1950
1951 (((
1952 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1953 )))
1954
1955 (((
1956 The +3V3 output time can be controlled by AT Command.
1957 )))
1958
1959 (((
1960
1961 )))
1962
1963 (((
1964 (% style="color:#037691" %)**AT+3V3T=1000**
1965 )))
1966
1967 (((
1968
1969 )))
1970
1971 (((
1972 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1973 )))
1974
1975 (((
1976 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1977 )))
1978
1979
1980 == 3.9 +5V Output (Since v1.3.3) ==
1981
1982
1983 (((
1984 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1985 )))
1986
1987 (((
1988 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1989 )))
1990
1991 (((
1992 The 5V output time can be controlled by AT Command.
1993 )))
1994
1995 (((
1996 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1997 )))
1998
1999 (((
2000 (% style="color:#037691" %)**AT+5VT=1000**
2001 )))
2002
2003 (((
2004
2005 )))
2006
2007 (((
2008 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
2009 )))
2010
2011 (((
2012 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
2013 )))
2014
2015
2016 == 3.10 LEDs ==
2017
2018
2019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:332px" %)
2020 |=(% style="background-color:#4F81BD;color:white" %)**LEDs**|=(% style="width: 274px;background-color:#4F81BD;color:white" %)**Feature**
2021 |LED1|(% style="width:274px" %)Blink when device transmit a packet.
2022
2023 == 3.11 Switch Jumper ==
2024
2025
2026 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
2027 |=(% style="width: 123px;background-color:#4F81BD;color:white" %)**Switch Jumper**|=(% style="width: 340px;background-color:#4F81BD;color:white" %)**Feature**
2028 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
2029 Flash position: Configure device, check running status.
2030 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
2031 3.3v position: set to compatible with 3.3v I/O.,
2032
2033 (((
2034 (% style="color:blue" %)** +3.3V**(%%): is always ON
2035 )))
2036
2037 (((
2038 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
2039
2040
2041 )))
2042
2043 == 3.12 Battery & Power Consumption ==
2044
2045
2046 RS485-BL uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
2047
2048 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
2049
2050
2051 = 4. Case Study =
2052
2053
2054 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
2055
2056
2057 = 5. Use AT Command =
2058
2059 == 5.1 Access AT Command ==
2060
2061
2062 (((
2063 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
2064
2065
2066 )))
2067
2068 [[image:1654135840598-282.png]]
2069
2070
2071 (((
2072 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
2073 )))
2074
2075 [[image:1654136105500-922.png]]
2076
2077
2078 (((
2079 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
2080 )))
2081
2082
2083 == 5.2 Common AT Command Sequence ==
2084
2085 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2086
2087
2088 If device has not joined network yet:
2089
2090 * (% style="color:#037691" %)**AT+FDR**
2091 * (% style="color:#037691" %)**AT+NJM=0**
2092 * (% style="color:#037691" %)**ATZ**
2093
2094 (((
2095
2096
2097 If device already joined network:
2098
2099 * (% style="color:#037691" %)**AT+NJM=0**
2100 * (% style="color:#037691" %)**ATZ**
2101 )))
2102
2103
2104
2105 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
2106
2107
2108 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
2109
2110 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
2111
2112 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
2113
2114 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
2115
2116 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
2117
2118 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
2119
2120 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
2121
2122 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
2123
2124 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2125
2126 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
2127
2128
2129 (% style="color:red" %)**Note:**
2130
2131 (((
2132 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
2133 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
2134 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
2135 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
2136
2137
2138 )))
2139
2140 [[image:1654136435598-589.png]]
2141
2142
2143 = 6. FAQ =
2144
2145 == 6.1 How to upgrade the image? ==
2146
2147
2148 (((
2149 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2150 )))
2151
2152 * (((
2153 Support new features
2154 )))
2155 * (((
2156 For bug fix
2157 )))
2158 * (((
2159 Change LoRaWAN bands.
2160 )))
2161
2162 (((
2163 Below shows the hardware connection for how to upload an image to RS485-BL:
2164 )))
2165
2166 [[image:1654136646995-976.png]]
2167
2168
2169 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2170
2171 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2172
2173 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2174
2175
2176 [[image:image-20220602102605-1.png]]
2177
2178
2179 [[image:image-20220602102637-2.png]]
2180
2181
2182 [[image:image-20220602102715-3.png]]
2183
2184
2185 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2186
2187
2188 (((
2189 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2190 )))
2191
2192
2193 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2194
2195
2196 (((
2197 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2198 )))
2199
2200
2201 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2202
2203
2204 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>http://wiki.dragino.com/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2205
2206
2207 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2208
2209 === 6.5.1 Introduce: ===
2210
2211
2212 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2213
2214 1. Test if Modbus-MTU works with PC commands.
2215 1. Check if RS485-LN sent the expected command to Mobus-MTU
2216 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2217 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2218
2219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2220
2221
2222 (% style="color:blue" %)**Example Connection: **
2223
2224 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2225
2226
2227 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2228
2229
2230 (% style="color:red" %)**Note: Receive and send set to hex mode**
2231
2232 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2233
2234
2235 === 6.5.3 With ModRSsim2: ===
2236
2237
2238 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2239
2240 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2241
2242
2243 (% style="color:blue" %)**(2) Click the serial port icon**
2244
2245 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2246
2247
2248 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2249
2250 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2251
2252
2253 (% style="color:blue" %)**(4) Click the comms.**
2254
2255 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2256
2257 Run RS485-LN/BL command and monitor if it is correct.
2258
2259
2260 === 6.5.4 Example – Test the CFGDEV command ===
2261
2262
2263 RS485-LN sent below command:
2264
2265 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2266
2267 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2268
2269 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2270
2271
2272 We can also use ModRSsim2 to see the output.
2273
2274 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2275
2276
2277 === 6.5.5 Example – Test CMD command sets. ===
2278
2279
2280 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2281
2282 (% style="color:blue" %)**Serial port tool:**
2283
2284 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2285
2286
2287 (% style="color:blue" %)**ModRSsim2:**
2288
2289 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2290
2291
2292 === 6.5.6 Test with PC ===
2293
2294
2295 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2296
2297 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2298
2299 (% style="color:blue" %)**Connection method:**
2300
2301 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2302
2303
2304 (% style="color:blue" %)**Link situation:**
2305
2306 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2307
2308
2309 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2310
2311
2312 == 6.6 Where to get the decoder for RS485-BL? ==
2313
2314
2315 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2316
2317
2318 == 6.7 Why does my TTL sensor have returned data, but after using the command AT+DATACUT, the data in the payload is 0? ==
2319
2320
2321 In TTL mode, you cannot use the node to automatically calculate the check code, you need to manually add the check code.
2322
2323
2324 == 6.8 Where can I get a decoder? ==
2325
2326
2327 Provides two decoders:
2328
2329 [[dragino-end-node-decoder/RS485-BL at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]]
2330
2331 [[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork]]
2332
2333
2334 == 6.9 How to configure RS485 commands more conveniently? ==
2335
2336
2337 Dragino has developed an application for the RS485 series of products.
2338
2339 It can help you configure RS485 sensors more conveniently
2340 Please refer to the link below for specific usage:
2341
2342 [[RS485 Configure Tool - DRAGINO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/#HTableofContentsFF1A]]
2343
2344
2345 = 7. Trouble Shooting =
2346
2347 == 7.1 Downlink doesn't work, how to solve it? ==
2348
2349
2350 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2351
2352
2353 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2354
2355
2356 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2357
2358
2359 = 8. Order Info =
2360
2361
2362 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2363
2364 (% style="color:blue" %)**XXX:**
2365
2366 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2367 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2368 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2369 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2370 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2371 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2372 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2373 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2374 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2375 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2376
2377 = 9. Packing Info =
2378
2379
2380 (((
2381 **Package Includes**:
2382 )))
2383
2384 * (((
2385 RS485-BL x 1
2386 )))
2387 * (((
2388 Stick Antenna for LoRa RF part x 1
2389 )))
2390 * (((
2391 Program cable x 1
2392 )))
2393
2394 (((
2395 **Dimension and weight**:
2396 )))
2397
2398 * (((
2399 Device Size: 13.5 x 7 x 3 cm
2400 )))
2401 * (((
2402 Device Weight: 105g
2403 )))
2404 * (((
2405 Package Size / pcs : 14.5 x 8 x 5 cm
2406 )))
2407 * (((
2408 Weight / pcs : 170g
2409
2410
2411
2412 )))
2413
2414 = 10. Support =
2415
2416
2417 * (((
2418 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2419 )))
2420 * (((
2421 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2422
2423
2424
2425 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0