Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Operate Temperature:**
56
57 * -40°C ~~ 65°C
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66 * 5V sampling maximum current:500mA
67
68 (% style="color:#037691" %)**Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC.
94
95 ​​​
96
97
98 == 1.3 Features ==
99
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110
111 == 1.4 Applications ==
112
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122 == 1.5 Firmware Change log ==
123
124
125 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
126
127
128 == 1.6 Hardware Change log ==
129
130 (((
131
132
133 (((
134 **v1.4**
135 )))
136 )))
137
138 (((
139 (((
140 ~1. Change Power IC to TPS22916
141 )))
142 )))
143
144 (((
145
146 )))
147
148 (((
149 (((
150 **v1.3**
151 )))
152 )))
153
154 (((
155 (((
156 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
157 )))
158 )))
159
160 (((
161
162 )))
163
164 (((
165 (((
166 **v1.2**
167 )))
168 )))
169
170 (((
171 (((
172 Release version ​​​​​
173 )))
174 )))
175
176
177 = 2. Pin mapping and Power ON Device =
178
179
180 (((
181 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
182
183
184 )))
185
186 [[image:1652953055962-143.png||height="387" width="728"]]
187
188
189 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
190
191
192 = 3. Operation Mode =
193
194 == 3.1 How it works? ==
195
196
197 (((
198 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
199
200
201 )))
202
203 == 3.2 Example to join LoRaWAN network ==
204
205
206 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
207
208 [[image:1652953414711-647.png||height="337" width="723"]]
209
210
211 (((
212 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
213 )))
214
215 (((
216 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
217
218
219 )))
220
221 (((
222 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
223 )))
224
225 (((
226 Each RS485-BL is shipped with a sticker with unique device EUI:
227 )))
228
229 [[image:image-20230425173638-1.png]]
230
231
232 (((
233 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
234 )))
235
236 (((
237 **Add APP EUI in the application.**
238 )))
239
240
241 [[image:image-20220519174512-1.png]]
242
243 [[image:image-20220519174512-2.png||height="328" width="731"]]
244
245 [[image:image-20220519174512-3.png||height="556" width="724"]]
246
247 [[image:image-20220519174512-4.png]]
248
249
250 You can also choose to create the device manually.
251
252 [[image:1652953542269-423.png||height="710" width="723"]]
253
254
255 Add APP KEY and DEV EUI
256
257 [[image:1652953553383-907.png||height="514" width="724"]]
258
259
260
261 (((
262 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
263
264
265 )))
266
267 [[image:1652953568895-172.png||height="232" width="724"]]
268
269
270 == 3.3 Configure Commands to read data ==
271
272
273 (((
274 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
275 )))
276
277
278 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
279
280
281 (((
282 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
283 )))
284
285
286 (((
287 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
288 )))
289
290 (((
291 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
292 )))
293
294
295 (((
296 (% style="color:blue" %)**2.  TTL mode:**
297 )))
298
299 (((
300 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
301 )))
302
303 (((
304 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
305 )))
306
307 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
308 |=(% style="width: 122px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
309 (((
310 **AT Commands**
311 )))
312 )))|=(% style="width: 113px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
313 (((
314 **Description**
315 )))
316 )))|=(% style="width: 215px;background-color:#D9E2F3;color:#0070C0" %)(((
317 (((
318 **Example**
319 )))
320 )))
321 |(% style="width:122px" %)(((
322 (((
323 AT+BAUDR
324 )))
325 )))|(% style="width:113px" %)(((
326 (((
327 Set the baud rate (for RS485 connection).
328
329 Default Value is: 9600.
330 )))
331 )))|(% style="width:226px" %)(((
332 (((
333 (((
334 AT+BAUDR=9600
335 )))
336 )))
337
338 (((
339 (((
340 Options: (1200,2400,4800,14400,19200,115200)
341 )))
342 )))
343 )))
344 |(% style="width:122px" %)(((
345 (((
346 AT+PARITY
347 )))
348 )))|(% style="width:113px" %)(((
349 (((
350 (((
351 Set UART parity (for RS485 connection)
352 )))
353 )))
354
355 (((
356 (((
357 Default Value is: no parity.
358 )))
359 )))
360 )))|(% style="width:226px" %)(((
361 (((
362 (((
363 AT+PARITY=0
364 )))
365 )))
366
367 (((
368 (((
369 Option: 0: no parity, 1: odd parity, 2: even parity
370 )))
371 )))
372 )))
373 |(% style="width:122px" %)(((
374 (((
375 AT+STOPBIT
376 )))
377 )))|(% style="width:113px" %)(((
378 (((
379 (((
380 Set serial stopbit (for RS485 connection)
381 )))
382 )))
383
384 (((
385 (((
386 Default Value is: 1bit.
387 )))
388 )))
389 )))|(% style="width:226px" %)(((
390 (((
391 (((
392 AT+STOPBIT=0 for 1bit
393 )))
394 )))
395
396 (((
397 (((
398 AT+STOPBIT=1 for 1.5 bit
399 )))
400 )))
401
402 (((
403 (((
404 AT+STOPBIT=2 for 2 bits
405 )))
406 )))
407 )))
408
409 Example(Soil three-parameter detector):
410
411 (% style="color:blue" %)**Wiring the UART sensor**
412
413 (((
414 **GND <~-~-~-~-~-~-~-~-> GND
415 TX  <~-~-~-~-~-~-~-~->  RX
416 RX  <~-~-~-~-~-~-~-~->  TX
417 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
418 )))
419
420 [[image:image-20230220110129-1.png||height="277" width="395"]]
421
422
423 (% style="color:blue" %)**Set the correct configuration:**
424
425 (% style="color:#037691" %)**AT+BAUDR=9600**
426
427 (% style="color:#037691" %)**AT+PARITY=0**
428
429 (% style="color:#037691" %)**AT+STOPBIT=1**
430
431 If the sensor needs 5v. Need to move the switch position to 5v and then use the command
432
433 (% style="color:blue" %)**AT+5VT=30000**
434
435
436 (% style="color:blue" %)**Configuration read command:**
437
438 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
439
440 **FE:** Station address
441
442 **03:** Function code
443
444 **00 00:**Register start address
445
446 **00 03:**Number of registers
447
448 **11 04:**  Check code
449
450 [[image:image-20230220111709-2.png]]
451
452
453 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
454
455 [[image:image-20230220112421-3.png]]
456
457
458 (% style="color:blue" %)**upload payload:**
459
460 [[image:image-20230220112517-4.png]]
461
462
463 === 3.3.2 Configure sensors ===
464
465
466 (((
467 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
468 )))
469
470 (((
471 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
472 )))
473
474 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
475 |=(% style="width: 130px;background-color:#D9E2F3;color:#0070C0" %)**AT Commands**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Example**
476 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
477 (((
478 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
479 )))
480
481 (((
482 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
483 )))
484
485 (((
486 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
487 )))
488 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
489
490 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
491
492
493 === 3.3.3 Configure read commands for each sampling ===
494
495
496 (((
497 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
498 )))
499
500 (((
501 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
502 )))
503
504 (((
505 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
506 )))
507
508 (((
509 This section describes how to achieve above goals.
510 )))
511
512 (((
513 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
514
515
516 )))
517
518 (((
519 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
520 )))
521
522 (((
523 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
524
525
526 )))
527
528 (((
529 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
530 )))
531
532 (((
533 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
534 )))
535
536 * (((
537 (% style="color:blue" %)**AT+DATACUT**
538 )))
539
540 (((
541 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
542
543
544 )))
545
546 * (((
547 (% style="color:blue" %)**AT+SEARCH**
548 )))
549
550 (((
551 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
552 )))
553
554 (((
555
556
557 (% style="color:blue" %)**Define wait timeout:**
558 )))
559
560 (((
561 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
562 )))
563
564 (((
565 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
566 )))
567
568 (((
569
570
571 **Examples:**
572 )))
573
574 (((
575 Below are examples for the how above AT Commands works.
576 )))
577
578 (((
579 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
580
581
582 )))
583
584 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
585 |(% style="width:494px" %)(((
586 (((
587 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
588 )))
589
590 (((
591 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
592 )))
593
594 (((
595 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
596 )))
597 )))
598
599 (((
600 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
601 )))
602
603 (((
604 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
605 )))
606
607 (((
608
609 )))
610
611 (((
612 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
613
614
615 )))
616
617 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
618 |(% style="width:470px" %)(((
619 (((
620 **AT+SEARCHx=aa,xx xx xx xx xx**
621 )))
622
623 * (((
624 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
625 )))
626 * (((
627 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
628 )))
629 )))
630
631 (((
632
633
634 **Examples:**
635
636
637 )))
638
639 (((
640 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
641 )))
642
643 (((
644 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
645 )))
646
647 (((
648 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
649
650
651 )))
652
653 (((
654 [[image:1653271044481-711.png]]
655
656
657 )))
658
659 (((
660 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
661 )))
662
663 (((
664 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
665 )))
666
667 (((
668 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
669
670
671 )))
672
673 (((
674 [[image:1653271276735-972.png]]
675
676
677 )))
678
679 (((
680 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
681 )))
682
683 (% style="background-color:#f2f2f2; width:496px" %)
684 |(% style="width:493px" %)(((
685 (((
686 **AT+DATACUTx=a,b,c**
687 )))
688
689 * (((
690 **a: length for the return of AT+COMMAND**
691 )))
692 * (((
693 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
694 )))
695 * (((
696 **c: define the position for valid value.  **
697 )))
698 )))
699
700 (((
701
702
703 **Examples:**
704 )))
705
706 * (((
707 (% style="color:blue" %)**Grab bytes:**
708 )))
709
710 (((
711 [[image:1653271581490-837.png||height="313" width="722"]]
712 )))
713
714 (((
715
716
717
718 )))
719
720 * (((
721 (% style="color:blue" %)**Grab a section.**
722 )))
723
724 (((
725 [[image:1653271648378-342.png||height="326" width="720"]]
726 )))
727
728 (((
729
730
731
732 )))
733
734 * (((
735 (% style="color:blue" %)**Grab different sections.**
736 )))
737
738 (((
739 [[image:1653271657255-576.png||height="305" width="730"]]
740
741
742 )))
743
744 (((
745 (((
746 (% style="color:red" %)**Note:**
747 )))
748 )))
749
750 (((
751 (((
752 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
753
754
755 )))
756 )))
757
758 (((
759 (((
760 **Example:**
761 )))
762 )))
763
764 (((
765 (((
766 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
767 )))
768 )))
769
770 (((
771 (((
772 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
773 )))
774 )))
775
776 (((
777 (((
778 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
779 )))
780 )))
781
782 (((
783 (((
784 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
785 )))
786 )))
787
788 (((
789 (((
790 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
791 )))
792 )))
793
794 (((
795 (((
796 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
797
798
799 )))
800 )))
801
802 (((
803 [[image:1653271763403-806.png]]
804 )))
805
806
807 === 3.3.4 Compose the uplink payload ===
808
809
810 (((
811 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
812
813
814 )))
815
816 (((
817 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
818
819
820 )))
821
822 (((
823 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
824 )))
825
826 (((
827 Final Payload is
828 )))
829
830 (((
831 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
832 )))
833
834 (((
835 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
836 )))
837
838 [[image:1653272787040-634.png||height="515" width="719"]]
839
840
841
842 (((
843 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
844
845
846 )))
847
848 (((
849 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
850 )))
851
852 (((
853 Final Payload is
854 )))
855
856 (((
857 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
858 )))
859
860 1. (((
861 Battery Info (2 bytes): Battery voltage
862 )))
863 1. (((
864 PAYVER (1 byte): Defined by AT+PAYVER
865 )))
866 1. (((
867 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
868 )))
869 1. (((
870 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
871 )))
872 1. (((
873 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
874
875
876 )))
877
878 [[image:1653272817147-600.png||height="437" width="717"]]
879
880 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
881
882
883 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
884
885 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
886
887 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
888
889
890 Below are the uplink payloads:
891
892 [[image:1653272901032-107.png]]
893
894
895 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
896
897 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
898
899 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
900
901 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
902
903 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
904
905 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
906
907 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
908
909 (((
910
911 )))
912
913 * (((
914 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
915 )))
916
917 (% class="wikigeneratedid" %)
918 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
919
920
921 (% class="wikigeneratedid" %)
922 [[image:image-20220824114359-3.png||height="297" width="1106"]]
923
924
925
926 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
927
928
929 [[image:image-20220824114330-2.png]]
930
931
932 === 3.3.5 Uplink on demand ===
933
934
935 (((
936 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
937
938
939 )))
940
941 (((
942 (% style="color:blue" %)** Downlink control command:**
943 )))
944
945 (((
946 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
947 )))
948
949 (((
950 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
951 )))
952
953
954 === 3.3.6 Uplink on Interrupt ===
955
956
957 Put the interrupt sensor between 3.3v_out and GPIO ext.
958
959 [[image:1653273818896-432.png]]
960
961
962 (((
963 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
964 )))
965
966 (((
967 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
968 )))
969
970 (((
971 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
972 )))
973
974 (((
975 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
976 )))
977
978
979 == 3.4 Uplink Payload ==
980
981
982
983 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
984 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:270px" %)**Length depends on the return from the commands**
985 |Value|(((
986 Battery(mV) & Interrupt _Flag
987 )))|(((
988 PAYLOAD_VER
989
990
991 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
992
993 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
994
995
996 (((
997 {{{function Decoder(bytes, port) {}}}
998 )))
999
1000 (((
1001 {{{//Payload Formats of RS485-BL Deceive}}}
1002 )))
1003
1004 (((
1005 {{{return {}}}
1006 )))
1007
1008 (((
1009 {{{ //Battery,units:V}}}
1010 )))
1011
1012 (((
1013 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
1014 )))
1015
1016 (((
1017 {{{ //GPIO_EXTI }}}
1018 )))
1019
1020 (((
1021 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
1022 )))
1023
1024 (((
1025 {{{ //payload of version}}}
1026 )))
1027
1028 (((
1029 {{{ Pay_ver:bytes[2],}}}
1030 )))
1031
1032 (((
1033 {{{ }; }}}
1034 )))
1035
1036 (((
1037 **}**
1038
1039
1040 )))
1041
1042 (((
1043 TTN V3 uplink screen shot.
1044 )))
1045
1046 [[image:1653274001211-372.png||height="192" width="732"]]
1047
1048
1049 == 3.5 Configure RS485-BL via AT or Downlink ==
1050
1051
1052 (((
1053 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1054 )))
1055
1056 (((
1057 There are two kinds of Commands:
1058 )))
1059
1060 * (((
1061 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1062 )))
1063
1064 * (((
1065 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1066
1067
1068
1069 )))
1070
1071 === 3.5.1 Common Commands: ===
1072
1073
1074 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1075
1076
1077 === 3.5.2 Sensor related commands: ===
1078
1079
1080
1081 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1082
1083
1084 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1085
1086 * (% style="color:#037691" %)**AT Command**
1087
1088 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1089
1090 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1091
1092
1093 * (% style="color:#037691" %)**Downlink Payload**
1094
1095 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1096
1097
1098
1099 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1100
1101
1102 (((
1103 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1104 )))
1105
1106 (((
1107 * (% style="color:#037691" %)**AT Command**
1108
1109 (((
1110 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1111 )))
1112 )))
1113
1114 (((
1115
1116 )))
1117
1118 * (((
1119 (% style="color:#037691" %)**Downlink Payload**
1120 )))
1121
1122 (((
1123 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1124 )))
1125
1126 (((
1127 Where:
1128 )))
1129
1130 * (((
1131 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1132 )))
1133 * (((
1134 NN: The length of RS485 command
1135 )))
1136 * (((
1137 XX XX XX XX: RS485 command total NN bytes
1138 )))
1139 * (((
1140 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1141
1142
1143
1144 )))
1145
1146 (((
1147 (% style="color:blue" %)**Example 1:**
1148 )))
1149
1150 (((
1151 To connect a Modbus Alarm with below commands.
1152 )))
1153
1154 * (((
1155 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1156 )))
1157
1158 * (((
1159 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1160 )))
1161
1162 (((
1163 So if user want to use downlink command to control to RS485 Alarm, he can use:
1164 )))
1165
1166 (((
1167 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1168 )))
1169
1170 (((
1171 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1172 )))
1173
1174 (((
1175 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1176 )))
1177
1178 (((
1179
1180
1181
1182 )))
1183
1184 (((
1185 (% style="color:blue" %)**Example 2:**
1186 )))
1187
1188 (((
1189 Check TTL Sensor return:
1190 )))
1191
1192 (((
1193 [[image:1654132684752-193.png]]
1194 )))
1195
1196
1197
1198 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1199
1200
1201 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1202
1203 * (% style="color:#037691" %)**AT Command:**
1204
1205 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1206
1207
1208 * (% style="color:#037691" %)**Downlink Payload:**
1209
1210 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1211
1212 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1213
1214
1215
1216 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1217
1218
1219 (((
1220 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1221 )))
1222
1223 (((
1224 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1225 )))
1226
1227 (((
1228
1229 )))
1230
1231 * (((
1232 (% style="color:#037691" %)**AT Command:**
1233 )))
1234
1235 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1236
1237 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1238
1239 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1240
1241
1242 * (((
1243 (% style="color:#037691" %)**Downlink Payload:**
1244 )))
1245
1246 (((
1247 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1248 )))
1249
1250 (((
1251 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1252 )))
1253
1254 (((
1255 Format: AF MM NN LL XX XX XX XX YY
1256 )))
1257
1258 (((
1259 Where:
1260 )))
1261
1262 * (((
1263 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1264 )))
1265 * (((
1266 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1267 )))
1268 * (((
1269 LL:  The length of AT+COMMAND or AT+DATACUT command
1270 )))
1271 * (((
1272 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1273 )))
1274 * (((
1275 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1276 )))
1277
1278 (((
1279
1280
1281
1282 **Example:**
1283 )))
1284
1285 (((
1286 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1287 )))
1288
1289 (((
1290 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1291 )))
1292
1293 (((
1294 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1295 )))
1296
1297 (((
1298
1299 )))
1300
1301 (((
1302 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1303 )))
1304
1305 (((
1306
1307
1308 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1309 )))
1310
1311 * (((
1312 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1313 )))
1314 * (((
1315 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1316 )))
1317
1318 (((
1319 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1320 )))
1321
1322
1323
1324 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1325
1326
1327 (((
1328 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1329 )))
1330
1331 (((
1332 This command is valid since v1.3 firmware version
1333 )))
1334
1335 (((
1336
1337 )))
1338
1339 (((
1340 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1341 )))
1342
1343 * (((
1344 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1345 )))
1346
1347 (((
1348 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1349 )))
1350
1351 * (((
1352 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1353 )))
1354
1355 (((
1356
1357
1358 **Example:**
1359 )))
1360
1361 * (((
1362 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1363 )))
1364 * (((
1365 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1366 )))
1367 * (((
1368 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1369 )))
1370
1371 [[image:1654133913295-597.png]]
1372
1373
1374 [[image:1654133954153-643.png]]
1375
1376
1377 * (((
1378 (% style="color:#037691" %)**Downlink Commands:**
1379 )))
1380
1381 (((
1382 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1383 )))
1384
1385
1386
1387 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1388
1389
1390 (((
1391 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1392 )))
1393
1394 (((
1395 Default value: 0, range:  0 ~~ 5 seconds
1396 )))
1397
1398 (((
1399
1400 )))
1401
1402 (((
1403 * (% style="color:#037691" %)**AT Command:**
1404
1405 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1406
1407
1408 )))
1409
1410 (((
1411 **Example:**
1412 )))
1413
1414 (((
1415 **AT+CMDDL1=1000** to send the open time to 1000ms
1416 )))
1417
1418 (((
1419
1420 )))
1421
1422 * (((
1423 (% style="color:#037691" %)**Downlink Payload:**
1424 )))
1425
1426 (((
1427 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1428 )))
1429
1430 (((
1431
1432
1433 **Example:**
1434 )))
1435
1436 (((
1437 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1438 )))
1439
1440
1441
1442 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1443
1444
1445 (((
1446 Define to use one uplink or multiple uplinks for the sampling.
1447 )))
1448
1449 (((
1450 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1451 )))
1452
1453 (((
1454 * (% style="color:#037691" %)**AT Command:**
1455
1456 (% style="color:#4472c4" %)** AT+DATAUP=0**
1457
1458 (% style="color:#4472c4" %)** AT+DATAUP=1**
1459 )))
1460
1461 (((
1462
1463 )))
1464
1465 * (((
1466 (% style="color:#037691" %)**Downlink Payload:**
1467 )))
1468
1469 (((
1470 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1471 )))
1472
1473 (((
1474 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1475
1476
1477 )))
1478
1479 (((
1480 * (% style="color:#037691" %)**AT Command:**
1481
1482 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1483 )))
1484
1485 (((
1486
1487 )))
1488
1489 * (((
1490 (% style="color:#037691" %)**Downlink Payload:**
1491 )))
1492
1493 (((
1494 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1495 )))
1496
1497 (((
1498 Each uplink is sent to the server at 20-second intervals when segmented.
1499 )))
1500
1501
1502
1503 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1504
1505
1506 Ask device to send an uplink immediately.
1507
1508 * (% style="color:#037691" %)**Downlink Payload:**
1509
1510 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1511
1512
1513
1514 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1515
1516
1517 (((
1518 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1519 )))
1520
1521 (((
1522
1523 )))
1524
1525 * (((
1526 (% style="color:#037691" %)**AT Command:**
1527 )))
1528
1529 (((
1530 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1531 )))
1532
1533 (((
1534 Example screen shot after clear all RS485 commands. 
1535 )))
1536
1537 (((
1538
1539 )))
1540
1541 (((
1542 The uplink screen shot is:
1543 )))
1544
1545 (((
1546 [[image:1654134704555-320.png]]
1547 )))
1548
1549 (((
1550
1551 )))
1552
1553 * (((
1554 (% style="color:#037691" %)**Downlink Payload:**
1555 )))
1556
1557 (((
1558 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1559 )))
1560
1561
1562
1563 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1564
1565
1566 (((
1567 Set the Rs485 serial communication parameters:
1568 )))
1569
1570 * (((
1571 (% style="color:#037691" %)**AT Command:**
1572 )))
1573
1574 (((
1575
1576
1577 * **Set Baud Rate:**
1578 )))
1579
1580 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1581
1582
1583 * **Set UART Parity**
1584
1585 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1586
1587
1588 * **Set STOPBIT**
1589
1590 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1591
1592
1593 * (((
1594 (% style="color:#037691" %)**Downlink Payload:**
1595 )))
1596
1597 (((
1598 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1599 )))
1600
1601 (((
1602
1603
1604 **Example:**
1605 )))
1606
1607 * (((
1608 A7 01 00 60   same as AT+BAUDR=9600
1609 )))
1610 * (((
1611 A7 01 04 80  same as AT+BAUDR=115200
1612 )))
1613
1614 (((
1615 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1616 )))
1617
1618 (((
1619 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1620 )))
1621
1622
1623
1624 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1625
1626 * (((
1627 (% style="color:#037691" %)**AT Command:**
1628 )))
1629
1630 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1631
1632 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1633
1634
1635 * (((
1636 (% style="color:#037691" %)**Downlink Payload:**
1637 )))
1638
1639 **~ A7 04 07**: Same as  AT+DATABIT=7
1640
1641 **~ A7 04 08**: Same as  AT+DATABIT=8
1642
1643
1644
1645 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1646
1647 (((
1648
1649 )))
1650
1651 * (((
1652 (% style="color:#037691" %)**AT Command:**
1653 )))
1654
1655 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1656
1657 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1658
1659
1660
1661 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1662
1663 (((
1664
1665 )))
1666
1667 * (((
1668 (% style="color:#037691" %)**AT Command:**
1669 )))
1670
1671 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1672
1673 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1674
1675
1676
1677 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1678
1679 (((
1680
1681 )))
1682
1683 * (((
1684 (% style="color:#037691" %)**AT Command:**
1685 )))
1686
1687 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1688
1689 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1690
1691
1692
1693 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1694
1695 (((
1696
1697 )))
1698
1699 * (((
1700 (% style="color:#037691" %)**AT Command:**
1701 )))
1702
1703 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1704
1705 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1706
1707
1708 * (((
1709 (% style="color:#037691" %)**Downlink Payload**
1710 )))
1711
1712 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1713
1714
1715
1716 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1717
1718 (((
1719
1720 )))
1721
1722 * (((
1723 (% style="color:#037691" %)**AT Command:**
1724 )))
1725
1726 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1727
1728
1729 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1730
1731
1732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1733
1734
1735
1736 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1737
1738
1739 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1740
1741
1742 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1743
1744
1745
1746 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1747
1748
1749 * (((
1750 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1751 )))
1752
1753 **Example:**
1754
1755
1756 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1757
1758
1759
1760 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1761
1762
1763 (((
1764 User can set the output power duration before each sampling.
1765 )))
1766
1767 * (((
1768 (% style="color:#037691" %)**AT Command:**
1769 )))
1770
1771 (((
1772 **Example:**
1773 )))
1774
1775 (((
1776 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1777 )))
1778
1779 (((
1780 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1781 )))
1782
1783 (((
1784
1785 )))
1786
1787 * (((
1788 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1789 )))
1790
1791 (((
1792 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1793 )))
1794
1795 (((
1796 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1797 )))
1798
1799
1800 == 3.6 Buttons ==
1801
1802
1803 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:233px" %)
1804 |=(% style="width: 89px;background-color:#D9E2F3;color:#0070C0" %)**Button**|=(% style="width: 141px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1805 |(% style="width:89px" %)RST|(% style="width:141px" %)Reboot RS485-BL
1806
1807 == 3.7 +3V3 Output(Since v1.3.3) ==
1808
1809
1810 (((
1811 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1812 )))
1813
1814 (((
1815 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1816 )))
1817
1818 (((
1819 The +3V3 output time can be controlled by AT Command.
1820 )))
1821
1822 (((
1823
1824 )))
1825
1826 (((
1827 (% style="color:#037691" %)**AT+3V3T=1000**
1828 )))
1829
1830 (((
1831
1832 )))
1833
1834 (((
1835 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1836 )))
1837
1838 (((
1839 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1840 )))
1841
1842
1843 == 3.8 +5V Output(Since v1.3.3) ==
1844
1845
1846 (((
1847 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1848 )))
1849
1850 (((
1851 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1852 )))
1853
1854 (((
1855 The 5V output time can be controlled by AT Command.
1856 )))
1857
1858 (((
1859 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1860 )))
1861
1862 (((
1863 (% style="color:#037691" %)**AT+5VT=1000**
1864 )))
1865
1866 (((
1867
1868 )))
1869
1870 (((
1871 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1872 )))
1873
1874 (((
1875 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1876 )))
1877
1878
1879 == 3.9 LEDs ==
1880
1881
1882 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:332px" %)
1883 |=(% style="background-color:#D9E2F3;color:#0070C0" %)**LEDs**|=(% style="width: 274px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1884 |LED1|(% style="width:274px" %)Blink when device transmit a packet.
1885
1886 == 3.10 Switch Jumper ==
1887
1888
1889 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
1890 |=(% style="width: 123px;background-color:#D9E2F3;color:#0070C0" %)**Switch Jumper**|=(% style="width: 340px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1891 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1892 Flash position: Configure device, check running status.
1893 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1894 3.3v position: set to compatible with 3.3v I/O.,
1895
1896 (((
1897 (% style="color:blue" %)** +3.3V**(%%): is always ON
1898 )))
1899
1900 (((
1901 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1902
1903
1904 )))
1905
1906 == 3.11 Battery & Power Consumption ==
1907
1908
1909 RS485-BL uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1910
1911 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1912
1913
1914 = 4. Case Study =
1915
1916
1917 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1918
1919
1920 = 5. Use AT Command =
1921
1922 == 5.1 Access AT Command ==
1923
1924
1925 (((
1926 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1927
1928
1929 )))
1930
1931 [[image:1654135840598-282.png]]
1932
1933
1934 (((
1935 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1936 )))
1937
1938 [[image:1654136105500-922.png]]
1939
1940
1941 (((
1942 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1943 )))
1944
1945
1946 == 5.2 Common AT Command Sequence ==
1947
1948 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1949
1950
1951 If device has not joined network yet:
1952
1953 * (% style="color:#037691" %)**AT+FDR**
1954 * (% style="color:#037691" %)**AT+NJM=0**
1955 * (% style="color:#037691" %)**ATZ**
1956
1957 (((
1958
1959
1960 If device already joined network:
1961
1962 * (% style="color:#037691" %)**AT+NJM=0**
1963 * (% style="color:#037691" %)**ATZ**
1964 )))
1965
1966
1967
1968 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1969
1970
1971 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1972
1973 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1974
1975 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1976
1977 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1978
1979 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1980
1981 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1982
1983 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1984
1985 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1986
1987 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1988
1989 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1990
1991
1992 (% style="color:red" %)**Note:**
1993
1994 (((
1995 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1996 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1997 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1998 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1999
2000
2001 )))
2002
2003 [[image:1654136435598-589.png]]
2004
2005
2006 = 6. FAQ =
2007
2008 == 6.1 How to upgrade the image? ==
2009
2010
2011 (((
2012 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2013 )))
2014
2015 * (((
2016 Support new features
2017 )))
2018 * (((
2019 For bug fix
2020 )))
2021 * (((
2022 Change LoRaWAN bands.
2023 )))
2024
2025 (((
2026 Below shows the hardware connection for how to upload an image to RS485-BL:
2027 )))
2028
2029 [[image:1654136646995-976.png]]
2030
2031
2032 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2033
2034 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2035
2036 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2037
2038
2039 [[image:image-20220602102605-1.png]]
2040
2041
2042 [[image:image-20220602102637-2.png]]
2043
2044
2045 [[image:image-20220602102715-3.png]]
2046
2047
2048 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2049
2050
2051 (((
2052 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2053 )))
2054
2055
2056 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2057
2058
2059 (((
2060 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2061 )))
2062
2063
2064 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2065
2066
2067 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>http://wiki.dragino.com/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2068
2069
2070 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2071
2072 === 6.5.1 Introduce: ===
2073
2074
2075 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2076
2077 1. Test if Modbus-MTU works with PC commands.
2078 1. Check if RS485-LN sent the expected command to Mobus-MTU
2079 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2080 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2081
2082 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2083
2084
2085 (% style="color:blue" %)**Example Connection: **
2086
2087 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2088
2089
2090 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2091
2092
2093 (% style="color:red" %)**Note: Receive and send set to hex mode**
2094
2095 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2096
2097
2098 === 6.5.3 With ModRSsim2: ===
2099
2100
2101 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2102
2103 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2104
2105
2106 (% style="color:blue" %)**(2) Click the serial port icon**
2107
2108 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2109
2110
2111 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2112
2113 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2114
2115
2116 (% style="color:blue" %)**(4) Click the comms.**
2117
2118 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2119
2120 Run RS485-LN/BL command and monitor if it is correct.
2121
2122
2123 === 6.5.4 Example – Test the CFGDEV command ===
2124
2125
2126 RS485-LN sent below command:
2127
2128 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2129
2130 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2131
2132 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2133
2134
2135 We can also use ModRSsim2 to see the output.
2136
2137 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2138
2139
2140 === 6.5.5 Example – Test CMD command sets. ===
2141
2142
2143 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2144
2145 (% style="color:blue" %)**Serial port tool:**
2146
2147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2148
2149
2150 (% style="color:blue" %)**ModRSsim2:**
2151
2152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2153
2154
2155 === 6.5.6 Test with PC ===
2156
2157
2158 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2159
2160 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2161
2162 (% style="color:blue" %)**Connection method:**
2163
2164 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2165
2166
2167 (% style="color:blue" %)**Link situation:**
2168
2169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2170
2171
2172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2173
2174
2175 == 6.6 Where to get the decoder for RS485-BL? ==
2176
2177
2178 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2179
2180
2181 == 6.7 Why does my TTL sensor have returned data, but after using the command AT+DATACUT, the data in the payload is 0? ==
2182
2183
2184 In TTL mode, you cannot use the node to automatically calculate the check code, you need to manually add the check code.
2185
2186
2187 == 6.8 Where can I get a decoder? ==
2188
2189
2190 Provides two decoders:
2191
2192 [[dragino-end-node-decoder/RS485-BL at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]]
2193
2194 [[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork]]
2195
2196
2197 == 6.9 How to configure RS485 commands more conveniently? ==
2198
2199
2200 Dragino has developed an application for the RS485 series of products.
2201
2202 It can help you configure RS485 sensors more conveniently
2203 Please refer to the link below for specific usage:
2204
2205 [[RS485 Configure Tool - DRAGINO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/#HTableofContentsFF1A]]
2206
2207 (% class="wikigeneratedid" %)
2208 = =
2209
2210 = 7. Trouble Shooting =
2211
2212 == 7.1 Downlink doesn't work, how to solve it? ==
2213
2214
2215 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2216
2217
2218 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2219
2220
2221 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2222
2223
2224 = 8. Order Info =
2225
2226
2227 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2228
2229 (% style="color:blue" %)**XXX:**
2230
2231 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2232 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2233 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2234 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2235 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2236 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2237 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2238 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2239 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2240 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2241
2242
2243 = 9. Packing Info =
2244
2245
2246 (((
2247 **Package Includes**:
2248 )))
2249
2250 * (((
2251 RS485-BL x 1
2252 )))
2253 * (((
2254 Stick Antenna for LoRa RF part x 1
2255 )))
2256 * (((
2257 Program cable x 1
2258 )))
2259
2260 (((
2261 **Dimension and weight**:
2262 )))
2263
2264 * (((
2265 Device Size: 13.5 x 7 x 3 cm
2266 )))
2267 * (((
2268 Device Weight: 105g
2269 )))
2270 * (((
2271 Package Size / pcs : 14.5 x 8 x 5 cm
2272 )))
2273 * (((
2274 Weight / pcs : 170g
2275
2276
2277
2278 )))
2279
2280 = 10. Support =
2281
2282
2283 * (((
2284 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2285 )))
2286 * (((
2287 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2288
2289
2290
2291 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0