Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Operate Temperature:**
56
57 * -40°C ~~ 65°C
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66 * 5V sampling maximum current:500mA
67
68 (% style="color:#037691" %)**Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC.
94
95 ​​​
96
97
98 == 1.3 Features ==
99
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110
111
112 == 1.4 Applications ==
113
114
115 * Smart Buildings & Home Automation
116 * Logistics and Supply Chain Management
117 * Smart Metering
118 * Smart Agriculture
119 * Smart Cities
120 * Smart Factory
121
122
123
124 == 1.5 Firmware Change log ==
125
126
127 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
128
129
130 == 1.6 Hardware Change log ==
131
132 (((
133
134
135 (((
136 **v1.4**
137 )))
138 )))
139
140 (((
141 (((
142 ~1. Change Power IC to TPS22916
143 )))
144 )))
145
146 (((
147
148 )))
149
150 (((
151 (((
152 **v1.3**
153 )))
154 )))
155
156 (((
157 (((
158 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
159 )))
160 )))
161
162 (((
163
164 )))
165
166 (((
167 (((
168 **v1.2**
169 )))
170 )))
171
172 (((
173 (((
174 Release version ​​​​​
175 )))
176 )))
177
178
179 = 2. Pin mapping and Power ON Device =
180
181
182 (((
183 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
184
185
186 )))
187
188 [[image:1652953055962-143.png||height="387" width="728"]]
189
190
191 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
192
193
194 = 3. Operation Mode =
195
196 == 3.1 How it works? ==
197
198
199 (((
200 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
201
202
203 )))
204
205 == 3.2 Example to join LoRaWAN network ==
206
207
208 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
209
210 [[image:1652953414711-647.png||height="337" width="723"]]
211
212
213 (((
214 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
215 )))
216
217 (((
218 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
219
220
221 )))
222
223 (((
224 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
225 )))
226
227 (((
228 Each RS485-BL is shipped with a sticker with unique device EUI:
229 )))
230
231 [[image:image-20230425173638-1.png]]
232
233
234 (((
235 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
236 )))
237
238 (((
239 **Add APP EUI in the application.**
240 )))
241
242
243 [[image:image-20220519174512-1.png]]
244
245 [[image:image-20220519174512-2.png||height="328" width="731"]]
246
247 [[image:image-20220519174512-3.png||height="556" width="724"]]
248
249 [[image:image-20220519174512-4.png]]
250
251
252 You can also choose to create the device manually.
253
254 [[image:1652953542269-423.png||height="710" width="723"]]
255
256
257 Add APP KEY and DEV EUI
258
259 [[image:1652953553383-907.png||height="514" width="724"]]
260
261
262
263 (((
264 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
265
266
267 )))
268
269 [[image:1652953568895-172.png||height="232" width="724"]]
270
271
272 == 3.3 Configure Commands to read data ==
273
274
275 (((
276 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
277 )))
278
279
280 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
281
282
283 (((
284 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
285 )))
286
287
288 (((
289 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
290 )))
291
292 (((
293 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
294 )))
295
296
297 (((
298 (% style="color:blue" %)**2.  TTL mode:**
299 )))
300
301 (((
302 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
303 )))
304
305 (((
306 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
307 )))
308
309 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
310 |=(% style="width: 122px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
311 (((
312 **AT Commands**
313 )))
314 )))|=(% style="width: 113px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
315 (((
316 **Description**
317 )))
318 )))|=(% style="width: 215px;background-color:#D9E2F3;color:#0070C0" %)(((
319 (((
320 **Example**
321 )))
322 )))
323 |(% style="width:122px" %)(((
324 (((
325 AT+BAUDR
326 )))
327 )))|(% style="width:113px" %)(((
328 (((
329 Set the baud rate (for RS485 connection).
330
331 Default Value is: 9600.
332 )))
333 )))|(% style="width:226px" %)(((
334 (((
335 (((
336 AT+BAUDR=9600
337 )))
338 )))
339
340 (((
341 (((
342 Options: (1200,2400,4800,14400,19200,115200)
343 )))
344 )))
345 )))
346 |(% style="width:122px" %)(((
347 (((
348 AT+PARITY
349 )))
350 )))|(% style="width:113px" %)(((
351 (((
352 (((
353 Set UART parity (for RS485 connection)
354 )))
355 )))
356
357 (((
358 (((
359 Default Value is: no parity.
360 )))
361 )))
362 )))|(% style="width:226px" %)(((
363 (((
364 (((
365 AT+PARITY=0
366 )))
367 )))
368
369 (((
370 (((
371 Option: 0: no parity, 1: odd parity, 2: even parity
372 )))
373 )))
374 )))
375 |(% style="width:122px" %)(((
376 (((
377 AT+STOPBIT
378 )))
379 )))|(% style="width:113px" %)(((
380 (((
381 (((
382 Set serial stopbit (for RS485 connection)
383 )))
384 )))
385
386 (((
387 (((
388 Default Value is: 1bit.
389 )))
390 )))
391 )))|(% style="width:226px" %)(((
392 (((
393 (((
394 AT+STOPBIT=0 for 1bit
395 )))
396 )))
397
398 (((
399 (((
400 AT+STOPBIT=1 for 1.5 bit
401 )))
402 )))
403
404 (((
405 (((
406 AT+STOPBIT=2 for 2 bits
407 )))
408 )))
409 )))
410
411 Example(Soil three-parameter detector):
412
413 (% style="color:blue" %)**Wiring the UART sensor**
414
415 (((
416 **GND <~-~-~-~-~-~-~-~-> GND
417 TX  <~-~-~-~-~-~-~-~->  RX
418 RX  <~-~-~-~-~-~-~-~->  TX
419 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
420 )))
421
422 [[image:image-20230220110129-1.png||height="277" width="395"]]
423
424
425 (% style="color:blue" %)**Set the correct configuration:**
426
427 (% style="color:#037691" %)**AT+BAUDR=9600**
428
429 (% style="color:#037691" %)**AT+PARITY=0**
430
431 (% style="color:#037691" %)**AT+STOPBIT=1**
432
433 If the sensor needs 5v. Need to move the switch position to 5v and then use the command
434
435 (% style="color:blue" %)**AT+5VT=30000**
436
437
438 (% style="color:blue" %)**Configuration read command:**
439
440 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
441
442 **FE:** Station address
443
444 **03:** Function code
445
446 **00 00:**Register start address
447
448 **00 03:**Number of registers
449
450 **11 04:**  Check code
451
452 [[image:image-20230220111709-2.png]]
453
454
455 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
456
457 [[image:image-20230220112421-3.png]]
458
459
460 (% style="color:blue" %)**upload payload:**
461
462 [[image:image-20230220112517-4.png]]
463
464
465 === 3.3.2 Configure sensors ===
466
467
468 (((
469 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
470 )))
471
472 (((
473 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
474 )))
475
476 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
477 |=(% style="width: 130px;background-color:#D9E2F3;color:#0070C0" %)**AT Commands**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Example**
478 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
479 (((
480 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
481 )))
482
483 (((
484 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
485 )))
486
487 (((
488 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
489 )))
490 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
491
492 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
493
494
495 === 3.3.3 Configure read commands for each sampling ===
496
497
498 (((
499 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
500 )))
501
502 (((
503 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
504 )))
505
506 (((
507 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
508 )))
509
510 (((
511 This section describes how to achieve above goals.
512 )))
513
514 (((
515 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
516
517
518 )))
519
520 (((
521 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
522 )))
523
524 (((
525 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
526
527
528 )))
529
530 (((
531 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
532 )))
533
534 (((
535 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
536 )))
537
538 * (((
539 (% style="color:blue" %)**AT+DATACUT**
540 )))
541
542 (((
543 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
544
545
546 )))
547
548 * (((
549 (% style="color:blue" %)**AT+SEARCH**
550 )))
551
552 (((
553 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
554 )))
555
556 (((
557
558
559 (% style="color:blue" %)**Define wait timeout:**
560 )))
561
562 (((
563 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
564 )))
565
566 (((
567 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
568 )))
569
570 (((
571
572
573 **Examples:**
574 )))
575
576 (((
577 Below are examples for the how above AT Commands works.
578 )))
579
580 (((
581 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
582
583
584 )))
585
586 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
587 |(% style="width:494px" %)(((
588 (((
589 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
590 )))
591
592 (((
593 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
594 )))
595
596 (((
597 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
598 )))
599 )))
600
601 (((
602 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
603 )))
604
605 (((
606 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
607 )))
608
609 (((
610
611 )))
612
613 (((
614 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
615
616
617 )))
618
619 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
620 |(% style="width:470px" %)(((
621 (((
622 **AT+SEARCHx=aa,xx xx xx xx xx**
623 )))
624
625 * (((
626 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
627 )))
628 * (((
629 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
630 )))
631 )))
632
633 (((
634
635
636 **Examples:**
637
638
639 )))
640
641 (((
642 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
643 )))
644
645 (((
646 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
647 )))
648
649 (((
650 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
651
652
653 )))
654
655 (((
656 [[image:1653271044481-711.png]]
657
658
659 )))
660
661 (((
662 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
663 )))
664
665 (((
666 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
667 )))
668
669 (((
670 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
671
672
673 )))
674
675 (((
676 [[image:1653271276735-972.png]]
677
678
679 )))
680
681 (((
682 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
683 )))
684
685 (% style="background-color:#f2f2f2; width:496px" %)
686 |(% style="width:493px" %)(((
687 (((
688 **AT+DATACUTx=a,b,c**
689 )))
690
691 * (((
692 **a: length for the return of AT+COMMAND**
693 )))
694 * (((
695 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
696 )))
697 * (((
698 **c: define the position for valid value.  **
699 )))
700 )))
701
702 (((
703
704
705 **Examples:**
706 )))
707
708 * (((
709 (% style="color:blue" %)**Grab bytes:**
710 )))
711
712 (((
713 [[image:1653271581490-837.png||height="313" width="722"]]
714 )))
715
716 (((
717
718
719
720 )))
721
722 * (((
723 (% style="color:blue" %)**Grab a section.**
724 )))
725
726 (((
727 [[image:1653271648378-342.png||height="326" width="720"]]
728 )))
729
730 (((
731
732
733
734 )))
735
736 * (((
737 (% style="color:blue" %)**Grab different sections.**
738 )))
739
740 (((
741 [[image:1653271657255-576.png||height="305" width="730"]]
742
743
744 )))
745
746 (((
747 (((
748 (% style="color:red" %)**Note:**
749 )))
750 )))
751
752 (((
753 (((
754 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
755
756
757 )))
758 )))
759
760 (((
761 (((
762 **Example:**
763 )))
764 )))
765
766 (((
767 (((
768 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
769 )))
770 )))
771
772 (((
773 (((
774 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
775 )))
776 )))
777
778 (((
779 (((
780 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
781 )))
782 )))
783
784 (((
785 (((
786 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
787 )))
788 )))
789
790 (((
791 (((
792 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
793 )))
794 )))
795
796 (((
797 (((
798 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
799
800
801 )))
802 )))
803
804 (((
805 [[image:1653271763403-806.png]]
806 )))
807
808
809 === 3.3.4 Compose the uplink payload ===
810
811
812 (((
813 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
814
815
816 )))
817
818 (((
819 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
820
821
822 )))
823
824 (((
825 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
826 )))
827
828 (((
829 Final Payload is
830 )))
831
832 (((
833 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
834 )))
835
836 (((
837 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
838 )))
839
840 [[image:1653272787040-634.png||height="515" width="719"]]
841
842
843
844 (((
845 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
846
847
848 )))
849
850 (((
851 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
852 )))
853
854 (((
855 Final Payload is
856 )))
857
858 (((
859 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
860 )))
861
862 1. (((
863 Battery Info (2 bytes): Battery voltage
864 )))
865 1. (((
866 PAYVER (1 byte): Defined by AT+PAYVER
867 )))
868 1. (((
869 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
870 )))
871 1. (((
872 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
873 )))
874 1. (((
875 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
876
877
878 )))
879
880 [[image:1653272817147-600.png||height="437" width="717"]]
881
882 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
883
884
885 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
886
887 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
888
889 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
890
891
892 Below are the uplink payloads:
893
894 [[image:1653272901032-107.png]]
895
896
897 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
898
899 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
900
901 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
902
903 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
904
905 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
906
907 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
908
909 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
910
911 (((
912
913 )))
914
915 * (((
916 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
917 )))
918
919 (% class="wikigeneratedid" %)
920 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
921
922
923 (% class="wikigeneratedid" %)
924 [[image:image-20220824114359-3.png||height="297" width="1106"]]
925
926
927
928 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
929
930
931 [[image:image-20220824114330-2.png]]
932
933
934 === 3.3.5 Uplink on demand ===
935
936
937 (((
938 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
939
940
941 )))
942
943 (((
944 (% style="color:blue" %)** Downlink control command:**
945 )))
946
947 (((
948 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
949 )))
950
951 (((
952 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
953 )))
954
955
956 === 3.3.6 Uplink on Interrupt ===
957
958
959 Put the interrupt sensor between 3.3v_out and GPIO ext.
960
961 [[image:1653273818896-432.png]]
962
963
964 (((
965 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
966 )))
967
968 (((
969 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
970 )))
971
972 (((
973 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
974 )))
975
976 (((
977 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
978 )))
979
980
981 == 3.4 Uplink Payload ==
982
983
984
985 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
986 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:270px" %)**Length depends on the return from the commands**
987 |Value|(((
988 Battery(mV) & Interrupt _Flag
989 )))|(((
990 PAYLOAD_VER
991
992
993 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
994
995 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
996
997
998 (((
999 {{{function Decoder(bytes, port) {}}}
1000 )))
1001
1002 (((
1003 {{{//Payload Formats of RS485-BL Deceive}}}
1004 )))
1005
1006 (((
1007 {{{return {}}}
1008 )))
1009
1010 (((
1011 {{{ //Battery,units:V}}}
1012 )))
1013
1014 (((
1015 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
1016 )))
1017
1018 (((
1019 {{{ //GPIO_EXTI }}}
1020 )))
1021
1022 (((
1023 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
1024 )))
1025
1026 (((
1027 {{{ //payload of version}}}
1028 )))
1029
1030 (((
1031 {{{ Pay_ver:bytes[2],}}}
1032 )))
1033
1034 (((
1035 {{{ }; }}}
1036 )))
1037
1038 (((
1039 **}**
1040
1041
1042 )))
1043
1044 (((
1045 TTN V3 uplink screen shot.
1046 )))
1047
1048 [[image:1653274001211-372.png||height="192" width="732"]]
1049
1050
1051 == 3.5 Configure RS485-BL via AT or Downlink ==
1052
1053
1054 (((
1055 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1056 )))
1057
1058 (((
1059 There are two kinds of Commands:
1060 )))
1061
1062 * (((
1063 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1064 )))
1065
1066 * (((
1067 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1068
1069
1070
1071 )))
1072
1073 === 3.5.1 Common Commands: ===
1074
1075
1076 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1077
1078
1079 === 3.5.2 Sensor related commands: ===
1080
1081
1082
1083 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1084
1085
1086 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1087
1088 * (% style="color:#037691" %)**AT Command**
1089
1090 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1091
1092 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1093
1094
1095 * (% style="color:#037691" %)**Downlink Payload**
1096
1097 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1098
1099
1100
1101 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1102
1103
1104 (((
1105 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1106 )))
1107
1108 (((
1109 * (% style="color:#037691" %)**AT Command**
1110
1111 (((
1112 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1113 )))
1114 )))
1115
1116 (((
1117
1118 )))
1119
1120 * (((
1121 (% style="color:#037691" %)**Downlink Payload**
1122 )))
1123
1124 (((
1125 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1126 )))
1127
1128 (((
1129 Where:
1130 )))
1131
1132 * (((
1133 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1134 )))
1135 * (((
1136 NN: The length of RS485 command
1137 )))
1138 * (((
1139 XX XX XX XX: RS485 command total NN bytes
1140 )))
1141 * (((
1142 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1143
1144
1145
1146 )))
1147
1148 (((
1149 (% style="color:blue" %)**Example 1:**
1150 )))
1151
1152 (((
1153 To connect a Modbus Alarm with below commands.
1154 )))
1155
1156 * (((
1157 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1158 )))
1159
1160 * (((
1161 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1162 )))
1163
1164 (((
1165 So if user want to use downlink command to control to RS485 Alarm, he can use:
1166 )))
1167
1168 (((
1169 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1170 )))
1171
1172 (((
1173 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1174 )))
1175
1176 (((
1177 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1178 )))
1179
1180 (((
1181
1182
1183
1184 )))
1185
1186 (((
1187 (% style="color:blue" %)**Example 2:**
1188 )))
1189
1190 (((
1191 Check TTL Sensor return:
1192 )))
1193
1194 (((
1195 [[image:1654132684752-193.png]]
1196 )))
1197
1198
1199
1200 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1201
1202
1203 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1204
1205 * (% style="color:#037691" %)**AT Command:**
1206
1207 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1208
1209
1210 * (% style="color:#037691" %)**Downlink Payload:**
1211
1212 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1213
1214 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1215
1216
1217
1218 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1219
1220
1221 (((
1222 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1223 )))
1224
1225 (((
1226 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1227 )))
1228
1229 (((
1230
1231 )))
1232
1233 * (((
1234 (% style="color:#037691" %)**AT Command:**
1235 )))
1236
1237 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1238
1239 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1240
1241 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1242
1243
1244 * (((
1245 (% style="color:#037691" %)**Downlink Payload:**
1246 )))
1247
1248 (((
1249 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1250 )))
1251
1252 (((
1253 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1254 )))
1255
1256 (((
1257 Format: AF MM NN LL XX XX XX XX YY
1258 )))
1259
1260 (((
1261 Where:
1262 )))
1263
1264 * (((
1265 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1266 )))
1267 * (((
1268 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1269 )))
1270 * (((
1271 LL:  The length of AT+COMMAND or AT+DATACUT command
1272 )))
1273 * (((
1274 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1275 )))
1276 * (((
1277 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1278 )))
1279
1280 (((
1281
1282
1283
1284 **Example:**
1285 )))
1286
1287 (((
1288 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1289 )))
1290
1291 (((
1292 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1293 )))
1294
1295 (((
1296 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1297 )))
1298
1299 (((
1300
1301 )))
1302
1303 (((
1304 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1305 )))
1306
1307 (((
1308
1309
1310 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1311 )))
1312
1313 * (((
1314 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1315 )))
1316 * (((
1317 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1318 )))
1319
1320 (((
1321 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1322 )))
1323
1324
1325
1326 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1327
1328
1329 (((
1330 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1331 )))
1332
1333 (((
1334 This command is valid since v1.3 firmware version
1335 )))
1336
1337 (((
1338
1339 )))
1340
1341 (((
1342 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1343 )))
1344
1345 * (((
1346 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1347 )))
1348
1349 (((
1350 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1351 )))
1352
1353 * (((
1354 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1355 )))
1356
1357 (((
1358
1359
1360 **Example:**
1361 )))
1362
1363 * (((
1364 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1365 )))
1366 * (((
1367 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1368 )))
1369 * (((
1370 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1371 )))
1372
1373 [[image:1654133913295-597.png]]
1374
1375
1376 [[image:1654133954153-643.png]]
1377
1378
1379 * (((
1380 (% style="color:#037691" %)**Downlink Commands:**
1381 )))
1382
1383 (((
1384 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1385 )))
1386
1387
1388
1389 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1390
1391
1392 (((
1393 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1394 )))
1395
1396 (((
1397 Default value: 0, range:  0 ~~ 5 seconds
1398 )))
1399
1400 (((
1401
1402 )))
1403
1404 (((
1405 * (% style="color:#037691" %)**AT Command:**
1406
1407 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1408
1409
1410 )))
1411
1412 (((
1413 **Example:**
1414 )))
1415
1416 (((
1417 **AT+CMDDL1=1000** to send the open time to 1000ms
1418 )))
1419
1420 (((
1421
1422 )))
1423
1424 * (((
1425 (% style="color:#037691" %)**Downlink Payload:**
1426 )))
1427
1428 (((
1429 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1430 )))
1431
1432 (((
1433
1434
1435 **Example:**
1436 )))
1437
1438 (((
1439 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1440 )))
1441
1442
1443
1444 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1445
1446
1447 (((
1448 Define to use one uplink or multiple uplinks for the sampling.
1449 )))
1450
1451 (((
1452 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1453 )))
1454
1455 (((
1456 * (% style="color:#037691" %)**AT Command:**
1457
1458 (% style="color:#4472c4" %)** AT+DATAUP=0**
1459
1460 (% style="color:#4472c4" %)** AT+DATAUP=1**
1461 )))
1462
1463 (((
1464
1465 )))
1466
1467 * (((
1468 (% style="color:#037691" %)**Downlink Payload:**
1469 )))
1470
1471 (((
1472 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1473 )))
1474
1475 (((
1476 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1477
1478
1479 )))
1480
1481 (((
1482 * (% style="color:#037691" %)**AT Command:**
1483
1484 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1485 )))
1486
1487 (((
1488
1489 )))
1490
1491 * (((
1492 (% style="color:#037691" %)**Downlink Payload:**
1493 )))
1494
1495 (((
1496 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1497 )))
1498
1499 (((
1500 Each uplink is sent to the server at 20-second intervals when segmented.
1501 )))
1502
1503
1504
1505 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1506
1507
1508 Ask device to send an uplink immediately.
1509
1510 * (% style="color:#037691" %)**Downlink Payload:**
1511
1512 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1513
1514
1515
1516 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1517
1518
1519 (((
1520 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1521 )))
1522
1523 (((
1524
1525 )))
1526
1527 * (((
1528 (% style="color:#037691" %)**AT Command:**
1529 )))
1530
1531 (((
1532 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1533 )))
1534
1535 (((
1536 Example screen shot after clear all RS485 commands. 
1537 )))
1538
1539 (((
1540
1541 )))
1542
1543 (((
1544 The uplink screen shot is:
1545 )))
1546
1547 (((
1548 [[image:1654134704555-320.png]]
1549 )))
1550
1551 (((
1552
1553 )))
1554
1555 * (((
1556 (% style="color:#037691" %)**Downlink Payload:**
1557 )))
1558
1559 (((
1560 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1561 )))
1562
1563
1564
1565 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1566
1567
1568 (((
1569 Set the Rs485 serial communication parameters:
1570 )))
1571
1572 * (((
1573 (% style="color:#037691" %)**AT Command:**
1574 )))
1575
1576 (((
1577
1578
1579 * **Set Baud Rate:**
1580 )))
1581
1582 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1583
1584
1585 * **Set UART Parity**
1586
1587 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1588
1589
1590 * **Set STOPBIT**
1591
1592 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1593
1594
1595 * (((
1596 (% style="color:#037691" %)**Downlink Payload:**
1597 )))
1598
1599 (((
1600 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1601 )))
1602
1603 (((
1604
1605
1606 **Example:**
1607 )))
1608
1609 * (((
1610 A7 01 00 60   same as AT+BAUDR=9600
1611 )))
1612 * (((
1613 A7 01 04 80  same as AT+BAUDR=115200
1614 )))
1615
1616 (((
1617 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1618 )))
1619
1620 (((
1621 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1622 )))
1623
1624
1625
1626 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1627
1628 * (((
1629 (% style="color:#037691" %)**AT Command:**
1630 )))
1631
1632 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1633
1634 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1635
1636
1637 * (((
1638 (% style="color:#037691" %)**Downlink Payload:**
1639 )))
1640
1641 **~ A7 04 07**: Same as  AT+DATABIT=7
1642
1643 **~ A7 04 08**: Same as  AT+DATABIT=8
1644
1645
1646
1647 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1648
1649 (((
1650
1651 )))
1652
1653 * (((
1654 (% style="color:#037691" %)**AT Command:**
1655 )))
1656
1657 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1658
1659 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1660
1661
1662
1663 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1664
1665 (((
1666
1667 )))
1668
1669 * (((
1670 (% style="color:#037691" %)**AT Command:**
1671 )))
1672
1673 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1674
1675 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1676
1677
1678
1679 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1680
1681 (((
1682
1683 )))
1684
1685 * (((
1686 (% style="color:#037691" %)**AT Command:**
1687 )))
1688
1689 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1690
1691 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1692
1693
1694
1695 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1696
1697 (((
1698
1699 )))
1700
1701 * (((
1702 (% style="color:#037691" %)**AT Command:**
1703 )))
1704
1705 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1706
1707 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1708
1709
1710 * (((
1711 (% style="color:#037691" %)**Downlink Payload**
1712 )))
1713
1714 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1715
1716
1717
1718 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1719
1720 (((
1721
1722 )))
1723
1724 * (((
1725 (% style="color:#037691" %)**AT Command:**
1726 )))
1727
1728 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1729
1730
1731 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1732
1733
1734 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1735
1736
1737
1738 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1739
1740
1741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1742
1743
1744 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1745
1746
1747
1748 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1749
1750
1751 * (((
1752 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1753 )))
1754
1755 **Example:**
1756
1757
1758 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1759
1760
1761
1762 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1763
1764
1765 (((
1766 User can set the output power duration before each sampling.
1767 )))
1768
1769 * (((
1770 (% style="color:#037691" %)**AT Command:**
1771 )))
1772
1773 (((
1774 **Example:**
1775 )))
1776
1777 (((
1778 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1779 )))
1780
1781 (((
1782 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1783 )))
1784
1785 (((
1786
1787 )))
1788
1789 * (((
1790 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1791 )))
1792
1793 (((
1794 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1795 )))
1796
1797 (((
1798 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1799 )))
1800
1801
1802 == 3.6 Buttons ==
1803
1804
1805 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:233px" %)
1806 |=(% style="width: 89px;background-color:#D9E2F3;color:#0070C0" %)**Button**|=(% style="width: 141px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1807 |(% style="width:89px" %)RST|(% style="width:141px" %)Reboot RS485-BL
1808
1809
1810 == 3.7 +3V3 Output(Since v1.3.3) ==
1811
1812
1813 (((
1814 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1815 )))
1816
1817 (((
1818 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1819 )))
1820
1821 (((
1822 The +3V3 output time can be controlled by AT Command.
1823 )))
1824
1825 (((
1826
1827 )))
1828
1829 (((
1830 (% style="color:#037691" %)**AT+3V3T=1000**
1831 )))
1832
1833 (((
1834
1835 )))
1836
1837 (((
1838 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1839 )))
1840
1841 (((
1842 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1843 )))
1844
1845
1846 == 3.8 +5V Output(Since v1.3.3) ==
1847
1848
1849 (((
1850 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1851 )))
1852
1853 (((
1854 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1855 )))
1856
1857 (((
1858 The 5V output time can be controlled by AT Command.
1859 )))
1860
1861 (((
1862 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1863 )))
1864
1865 (((
1866 (% style="color:#037691" %)**AT+5VT=1000**
1867 )))
1868
1869 (((
1870
1871 )))
1872
1873 (((
1874 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1875 )))
1876
1877 (((
1878 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1879 )))
1880
1881
1882 == 3.9 LEDs ==
1883
1884
1885 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:332px" %)
1886 |=(% style="background-color:#D9E2F3;color:#0070C0" %)**LEDs**|=(% style="width: 274px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1887 |LED1|(% style="width:274px" %)Blink when device transmit a packet.
1888
1889
1890 == 3.10 Switch Jumper ==
1891
1892
1893 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
1894 |=(% style="width: 123px;background-color:#D9E2F3;color:#0070C0" %)**Switch Jumper**|=(% style="width: 340px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1895 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1896 Flash position: Configure device, check running status.
1897 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1898 3.3v position: set to compatible with 3.3v I/O.,
1899
1900 (((
1901 (% style="color:blue" %)** +3.3V**(%%): is always ON
1902 )))
1903
1904 (((
1905 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1906
1907
1908 )))
1909
1910 == 3.11 Battery & Power Consumption ==
1911
1912
1913 RS485-BL uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1914
1915 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1916
1917
1918 = 4. Case Study =
1919
1920
1921 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1922
1923
1924 = 5. Use AT Command =
1925
1926 == 5.1 Access AT Command ==
1927
1928
1929 (((
1930 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1931
1932
1933 )))
1934
1935 [[image:1654135840598-282.png]]
1936
1937
1938 (((
1939 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1940 )))
1941
1942 [[image:1654136105500-922.png]]
1943
1944
1945 (((
1946 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1947 )))
1948
1949
1950 == 5.2 Common AT Command Sequence ==
1951
1952 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1953
1954
1955 If device has not joined network yet:
1956
1957 * (% style="color:#037691" %)**AT+FDR**
1958 * (% style="color:#037691" %)**AT+NJM=0**
1959 * (% style="color:#037691" %)**ATZ**
1960
1961 (((
1962
1963
1964 If device already joined network:
1965
1966 * (% style="color:#037691" %)**AT+NJM=0**
1967 * (% style="color:#037691" %)**ATZ**
1968 )))
1969
1970
1971
1972 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1973
1974
1975 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1976
1977 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1978
1979 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1980
1981 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1982
1983 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1984
1985 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1986
1987 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1988
1989 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1990
1991 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1992
1993 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1994
1995
1996 (% style="color:red" %)**Note:**
1997
1998 (((
1999 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
2000 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
2001 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
2002 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
2003
2004
2005 )))
2006
2007 [[image:1654136435598-589.png]]
2008
2009
2010 = 6. FAQ =
2011
2012 == 6.1 How to upgrade the image? ==
2013
2014
2015 (((
2016 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2017 )))
2018
2019 * (((
2020 Support new features
2021 )))
2022 * (((
2023 For bug fix
2024 )))
2025 * (((
2026 Change LoRaWAN bands.
2027 )))
2028
2029 (((
2030 Below shows the hardware connection for how to upload an image to RS485-BL:
2031 )))
2032
2033 [[image:1654136646995-976.png]]
2034
2035
2036 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2037
2038 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2039
2040 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2041
2042
2043 [[image:image-20220602102605-1.png]]
2044
2045
2046 [[image:image-20220602102637-2.png]]
2047
2048
2049 [[image:image-20220602102715-3.png]]
2050
2051
2052 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2053
2054
2055 (((
2056 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2057 )))
2058
2059
2060 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2061
2062
2063 (((
2064 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2065 )))
2066
2067
2068 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2069
2070
2071 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>http://wiki.dragino.com/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2072
2073
2074 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2075
2076 === 6.5.1 Introduce: ===
2077
2078
2079 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2080
2081 1. Test if Modbus-MTU works with PC commands.
2082 1. Check if RS485-LN sent the expected command to Mobus-MTU
2083 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2084 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2085
2086 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2087
2088
2089 (% style="color:blue" %)**Example Connection: **
2090
2091 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2092
2093
2094 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2095
2096
2097 (% style="color:red" %)**Note: Receive and send set to hex mode**
2098
2099 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2100
2101
2102 === 6.5.3 With ModRSsim2: ===
2103
2104
2105 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2106
2107 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2108
2109
2110 (% style="color:blue" %)**(2) Click the serial port icon**
2111
2112 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2113
2114
2115 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2116
2117 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2118
2119
2120 (% style="color:blue" %)**(4) Click the comms.**
2121
2122 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2123
2124 Run RS485-LN/BL command and monitor if it is correct.
2125
2126
2127 === 6.5.4 Example – Test the CFGDEV command ===
2128
2129
2130 RS485-LN sent below command:
2131
2132 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2133
2134 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2135
2136 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2137
2138
2139 We can also use ModRSsim2 to see the output.
2140
2141 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2142
2143
2144 === 6.5.5 Example – Test CMD command sets. ===
2145
2146
2147 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2148
2149 (% style="color:blue" %)**Serial port tool:**
2150
2151 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2152
2153
2154 (% style="color:blue" %)**ModRSsim2:**
2155
2156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2157
2158
2159 === 6.5.6 Test with PC ===
2160
2161
2162 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2163
2164 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2165
2166 (% style="color:blue" %)**Connection method:**
2167
2168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2169
2170
2171 (% style="color:blue" %)**Link situation:**
2172
2173 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2174
2175
2176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2177
2178
2179 == 6.6 Where to get the decoder for RS485-BL? ==
2180
2181
2182 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2183
2184
2185 == 6.7 Why does my TTL sensor have returned data, but after using the command AT+DATACUT, the data in the payload is 0? ==
2186
2187
2188 In TTL mode, you cannot use the node to automatically calculate the check code, you need to manually add the check code.
2189
2190
2191 == 6.8 Where can I get a decoder? ==
2192
2193
2194 Provides two decoders:
2195
2196 [[dragino-end-node-decoder/RS485-BL at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]]
2197
2198 [[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork]]
2199
2200
2201 = 7. Trouble Shooting =
2202
2203 == 7.1 Downlink doesn't work, how to solve it? ==
2204
2205
2206 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2207
2208
2209 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2210
2211
2212 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2213
2214
2215 = 8. Order Info =
2216
2217
2218 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2219
2220 (% style="color:blue" %)**XXX:**
2221
2222 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2223 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2224 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2225 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2226 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2227 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2228 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2229 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2230 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2231 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2232
2233
2234
2235 = 9. Packing Info =
2236
2237
2238 (((
2239 **Package Includes**:
2240 )))
2241
2242 * (((
2243 RS485-BL x 1
2244 )))
2245 * (((
2246 Stick Antenna for LoRa RF part x 1
2247 )))
2248 * (((
2249 Program cable x 1
2250 )))
2251
2252 (((
2253 **Dimension and weight**:
2254 )))
2255
2256 * (((
2257 Device Size: 13.5 x 7 x 3 cm
2258 )))
2259 * (((
2260 Device Weight: 105g
2261 )))
2262 * (((
2263 Package Size / pcs : 14.5 x 8 x 5 cm
2264 )))
2265 * (((
2266 Weight / pcs : 170g
2267
2268
2269
2270 )))
2271
2272 = 10. Support =
2273
2274
2275 * (((
2276 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2277 )))
2278 * (((
2279 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2280
2281
2282
2283 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0