Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Operate Temperature:**
56
57 * -40°C ~~ 65°C
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66 * 5V sampling maximum current:500mA
67
68 (% style="color:#037691" %)**Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC.
94
95 ​​​
96
97 == 1.3 Features ==
98
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110 == 1.4 Applications ==
111
112
113 * Smart Buildings & Home Automation
114 * Logistics and Supply Chain Management
115 * Smart Metering
116 * Smart Agriculture
117 * Smart Cities
118 * Smart Factory
119
120
121 == 1.5 Firmware Change log ==
122
123
124 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
125
126
127 == 1.6 Hardware Change log ==
128
129 (((
130
131
132 (((
133 **v1.4**
134 )))
135 )))
136
137 (((
138 (((
139 ~1. Change Power IC to TPS22916
140 )))
141 )))
142
143 (((
144
145 )))
146
147 (((
148 (((
149 **v1.3**
150 )))
151 )))
152
153 (((
154 (((
155 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
156 )))
157 )))
158
159 (((
160
161 )))
162
163 (((
164 (((
165 **v1.2**
166 )))
167 )))
168
169 (((
170 (((
171 Release version ​​​​​
172 )))
173 )))
174
175
176 = 2. Pin mapping and Power ON Device =
177
178
179 (((
180 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
181
182
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195
196 (((
197 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
198
199
200 )))
201
202 == 3.2 Example to join LoRaWAN network ==
203
204
205 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
206
207 [[image:1652953414711-647.png||height="337" width="723"]]
208
209
210 (((
211 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
212 )))
213
214 (((
215 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
216
217
218 )))
219
220 (((
221 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
222 )))
223
224 (((
225 Each RS485-BL is shipped with a sticker with unique device EUI:
226 )))
227
228 [[image:image-20230425173638-1.png]]
229
230
231 (((
232 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
233 )))
234
235 (((
236 **Add APP EUI in the application.**
237 )))
238
239
240 [[image:image-20220519174512-1.png]]
241
242 [[image:image-20220519174512-2.png||height="328" width="731"]]
243
244 [[image:image-20220519174512-3.png||height="556" width="724"]]
245
246 [[image:image-20220519174512-4.png]]
247
248
249 You can also choose to create the device manually.
250
251 [[image:1652953542269-423.png||height="710" width="723"]]
252
253
254 Add APP KEY and DEV EUI
255
256 [[image:1652953553383-907.png||height="514" width="724"]]
257
258
259
260 (((
261 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
262
263
264 )))
265
266 [[image:1652953568895-172.png||height="232" width="724"]]
267
268
269 == 3.3 Configure Commands to read data ==
270
271
272 (((
273 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
274 )))
275
276
277 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
278
279
280 (((
281 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
282 )))
283
284
285 (((
286 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
287 )))
288
289
290 (((
291 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
292 )))
293
294
295 (((
296 (% style="color:blue" %)**2.  TTL mode:**
297 )))
298
299
300 (((
301 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
302 )))
303
304 (((
305 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
306 )))
307
308
309 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
310 |=(% style="width: 122px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
311 (((
312 **AT Commands**
313 )))
314 )))|=(% style="width: 113px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
315 (((
316 **Description**
317 )))
318 )))|=(% style="width: 215px;background-color:#D9E2F3;color:#0070C0" %)(((
319 (((
320 **Example**
321 )))
322 )))
323 |(% style="width:122px" %)(((
324 (((
325 AT+BAUDR
326 )))
327 )))|(% style="width:113px" %)(((
328 (((
329 Set the baud rate (for RS485 connection).
330
331 Default Value is: 9600.
332 )))
333 )))|(% style="width:226px" %)(((
334 (((
335 (((
336 AT+BAUDR=9600
337 )))
338 )))
339
340 (((
341 (((
342 Options: (1200,2400,4800,14400,19200,115200)
343 )))
344 )))
345 )))
346 |(% style="width:122px" %)(((
347 (((
348 AT+PARITY
349 )))
350 )))|(% style="width:113px" %)(((
351 (((
352 (((
353 Set UART parity (for RS485 connection)
354 )))
355 )))
356
357 (((
358 (((
359 Default Value is: no parity.
360 )))
361 )))
362 )))|(% style="width:226px" %)(((
363 (((
364 (((
365 AT+PARITY=0
366 )))
367 )))
368
369 (((
370 (((
371 Option: 0: no parity, 1: odd parity, 2: even parity
372 )))
373 )))
374 )))
375 |(% style="width:122px" %)(((
376 (((
377 AT+STOPBIT
378 )))
379 )))|(% style="width:113px" %)(((
380 (((
381 (((
382 Set serial stopbit (for RS485 connection)
383 )))
384 )))
385
386 (((
387 (((
388 Default Value is: 1bit.
389 )))
390 )))
391 )))|(% style="width:226px" %)(((
392 (((
393 (((
394 AT+STOPBIT=0 for 1bit
395 )))
396 )))
397
398 (((
399 (((
400 AT+STOPBIT=1 for 1.5 bit
401 )))
402 )))
403
404 (((
405 (((
406 AT+STOPBIT=2 for 2 bits
407 )))
408 )))
409 )))
410
411 Example(Soil three-parameter detector):
412
413 (% style="color:blue" %)**Wiring the UART sensor**
414
415 (((
416 **GND <~-~-~-~-~-~-~-~-> GND
417 TX  <~-~-~-~-~-~-~-~->  RX
418 RX  <~-~-~-~-~-~-~-~->  TX
419 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
420 )))
421
422 [[image:image-20230220110129-1.png||height="277" width="395"]]
423
424
425 (% style="color:blue" %)**Set the correct configuration:**
426
427 (% style="color:#037691" %)**AT+BAUDR=9600**
428
429 (% style="color:#037691" %)**AT+PARITY=0**
430
431 (% style="color:#037691" %)**AT+STOPBIT=1**
432
433 If the sensor needs 5v. Need to move the switch position to 5v and then use the command
434
435 (% style="color:blue" %)**AT+5VT=30000**
436
437
438 (% style="color:blue" %)**Configuration read command:**
439
440 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
441
442 **FE:** Station address
443
444 **03:** Function code
445
446 **00 00:**Register start address
447
448 **00 03:**Number of registers
449
450 **11 04:**  Check code
451
452 [[image:image-20230220111709-2.png]]
453
454
455 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
456
457 [[image:image-20230220112421-3.png]]
458
459
460 (% style="color:blue" %)**upload payload:**
461
462 [[image:image-20230220112517-4.png]]
463
464
465 === 3.3.2 Configure sensors ===
466
467
468 (((
469 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
470 )))
471
472 (((
473 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
474 )))
475
476 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
477 |=(% style="width: 130px;background-color:#D9E2F3;color:#0070C0" %)**AT Commands**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Example**
478 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
479 (((
480 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
481 )))
482
483 (((
484 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
485 )))
486
487 (((
488 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
489 )))
490 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
491
492 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
493
494
495 === 3.3.3 Configure read commands for each sampling ===
496
497
498 (((
499 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
500 )))
501
502 (((
503 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
504 )))
505
506 (((
507 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
508 )))
509
510 (((
511 This section describes how to achieve above goals.
512 )))
513
514 (((
515 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
516
517
518 )))
519
520 (((
521 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
522 )))
523
524 (((
525 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
526
527
528 )))
529
530 (((
531 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
532 )))
533
534 (((
535 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
536 )))
537
538 * (((
539 (% style="color:blue" %)**AT+DATACUT**
540 )))
541
542 (((
543 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
544
545
546 )))
547
548 * (((
549 (% style="color:blue" %)**AT+SEARCH**
550 )))
551
552 (((
553 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
554 )))
555
556 (((
557
558
559 (% style="color:blue" %)**Define wait timeout:**
560 )))
561
562 (((
563 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
564 )))
565
566 (((
567 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
568 )))
569
570 (((
571
572
573 **Examples:**
574 )))
575
576 (((
577 Below are examples for the how above AT Commands works.
578 )))
579
580 (((
581 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
582
583
584 )))
585
586 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
587 |(% style="width:494px" %)(((
588 (((
589 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
590 )))
591
592 (((
593 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
594 )))
595
596 (((
597 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
598 )))
599 )))
600
601 (((
602 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
603 )))
604
605 (((
606 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
607 )))
608
609 (((
610
611 )))
612
613 (((
614 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
615
616
617 )))
618
619 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
620 |(% style="width:470px" %)(((
621 (((
622 **AT+SEARCHx=aa,xx xx xx xx xx**
623 )))
624
625 * (((
626 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
627 )))
628 * (((
629 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
630 )))
631 )))
632
633 (((
634
635
636 **Examples:**
637
638
639 )))
640
641 (((
642 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
643 )))
644
645 (((
646 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
647 )))
648
649 (((
650 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
651
652
653 )))
654
655 (((
656 [[image:1653271044481-711.png]]
657
658
659 )))
660
661 (((
662 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
663 )))
664
665 (((
666 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
667 )))
668
669 (((
670 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
671
672
673 )))
674
675 (((
676 [[image:1653271276735-972.png]]
677
678
679 )))
680
681 (((
682 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
683 )))
684
685 (% style="background-color:#f2f2f2; width:496px" %)
686 |(% style="width:493px" %)(((
687 (((
688 **AT+DATACUTx=a,b,c**
689 )))
690
691 * (((
692 **a: length for the return of AT+COMMAND**
693 )))
694 * (((
695 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
696 )))
697 * (((
698 **c: define the position for valid value.  **
699 )))
700 )))
701
702 (((
703
704
705 **Examples:**
706 )))
707
708 * (((
709 (% style="color:blue" %)**Grab bytes:**
710 )))
711
712 (((
713 [[image:1653271581490-837.png||height="313" width="722"]]
714 )))
715
716 (((
717
718
719
720 )))
721
722 * (((
723 (% style="color:blue" %)**Grab a section.**
724 )))
725
726 (((
727 [[image:1653271648378-342.png||height="326" width="720"]]
728 )))
729
730 (((
731
732
733
734 )))
735
736 * (((
737 (% style="color:blue" %)**Grab different sections.**
738 )))
739
740 (((
741 [[image:1653271657255-576.png||height="305" width="730"]]
742
743
744 )))
745
746 (((
747 (((
748 (% style="color:red" %)**Note:**
749 )))
750 )))
751
752 (((
753 (((
754 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
755
756
757 )))
758 )))
759
760 (((
761 (((
762 **Example:**
763 )))
764 )))
765
766 (((
767 (((
768 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
769 )))
770 )))
771
772 (((
773 (((
774 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
775 )))
776 )))
777
778 (((
779 (((
780 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
781 )))
782 )))
783
784 (((
785 (((
786 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
787 )))
788 )))
789
790 (((
791 (((
792 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
793 )))
794 )))
795
796 (((
797 (((
798 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
799
800
801 )))
802 )))
803
804 (((
805 [[image:1653271763403-806.png]]
806 )))
807
808
809 === 3.3.4 Compose the uplink payload ===
810
811
812 (((
813 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
814
815
816 )))
817
818 (((
819 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
820
821
822 )))
823
824 (((
825 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
826 )))
827
828 (((
829 Final Payload is
830 )))
831
832 (((
833 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
834 )))
835
836 (((
837 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
838 )))
839
840 [[image:1653272787040-634.png||height="515" width="719"]]
841
842
843
844 (((
845 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
846
847
848 )))
849
850 (((
851 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
852 )))
853
854 (((
855 Final Payload is
856 )))
857
858 (((
859 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
860 )))
861
862 1. (((
863 Battery Info (2 bytes): Battery voltage
864 )))
865 1. (((
866 PAYVER (1 byte): Defined by AT+PAYVER
867 )))
868 1. (((
869 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
870 )))
871 1. (((
872 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
873 )))
874 1. (((
875 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
876
877
878 )))
879
880 [[image:1653272817147-600.png||height="437" width="717"]]
881
882 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
883
884
885 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
886
887 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
888
889 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
890
891
892 Below are the uplink payloads:
893
894 [[image:1653272901032-107.png]]
895
896
897 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
898
899 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
900
901 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
902
903 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
904
905 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
906
907 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
908
909 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
910
911 (((
912
913 )))
914
915 * (((
916 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
917
918
919
920 )))
921
922 (% class="wikigeneratedid" %)
923 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
924
925
926 (% class="wikigeneratedid" %)
927 [[image:image-20220824114359-3.png||height="297" width="1106"]]
928
929
930
931 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
932
933
934 [[image:image-20220824114330-2.png]]
935
936
937 === 3.3.5 Uplink on demand ===
938
939
940 (((
941 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
942
943
944 )))
945
946 (((
947 (% style="color:blue" %)** Downlink control command:**
948 )))
949
950 (((
951 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
952 )))
953
954 (((
955 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
956 )))
957
958
959 === 3.3.6 Uplink on Interrupt ===
960
961
962 Put the interrupt sensor between 3.3v_out and GPIO ext.
963
964 [[image:1653273818896-432.png]]
965
966
967 (((
968 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
969 )))
970
971 (((
972 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
973 )))
974
975 (((
976 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
977 )))
978
979 (((
980 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
981 )))
982
983
984 == 3.4 Uplink Payload ==
985
986
987
988 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
989 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:270px" %)**Length depends on the return from the commands**
990 |Value|(((
991 Battery(mV) & Interrupt _Flag
992 )))|(((
993 PAYLOAD_VER
994
995
996 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
997
998 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
999
1000
1001 (((
1002 {{{function Decoder(bytes, port) {}}}
1003 )))
1004
1005 (((
1006 {{{//Payload Formats of RS485-BL Deceive}}}
1007 )))
1008
1009 (((
1010 {{{return {}}}
1011 )))
1012
1013 (((
1014 {{{ //Battery,units:V}}}
1015 )))
1016
1017 (((
1018 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
1019 )))
1020
1021 (((
1022 {{{ //GPIO_EXTI }}}
1023 )))
1024
1025 (((
1026 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
1027 )))
1028
1029 (((
1030 {{{ //payload of version}}}
1031 )))
1032
1033 (((
1034 {{{ Pay_ver:bytes[2],}}}
1035 )))
1036
1037 (((
1038 {{{ }; }}}
1039 )))
1040
1041 (((
1042 **}**
1043
1044
1045 )))
1046
1047 (((
1048 TTN V3 uplink screen shot.
1049 )))
1050
1051 [[image:1653274001211-372.png||height="192" width="732"]]
1052
1053
1054 == 3.5 Configure RS485-BL via AT or Downlink ==
1055
1056
1057 (((
1058 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1059 )))
1060
1061 (((
1062 There are two kinds of Commands:
1063 )))
1064
1065 * (((
1066 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1067 )))
1068
1069 * (((
1070 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1071
1072
1073
1074 )))
1075
1076 === 3.5.1 Common Commands: ===
1077
1078
1079 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1080
1081
1082 === 3.5.2 Sensor related commands: ===
1083
1084
1085
1086 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1087
1088
1089 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1090
1091 * (% style="color:#037691" %)**AT Command**
1092
1093 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1094
1095 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1096
1097
1098 * (% style="color:#037691" %)**Downlink Payload**
1099
1100 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1101
1102
1103
1104 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1105
1106
1107 (((
1108 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1109 )))
1110
1111 (((
1112 * (% style="color:#037691" %)**AT Command**
1113
1114 (((
1115 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1116 )))
1117 )))
1118
1119 (((
1120
1121 )))
1122
1123 * (((
1124 (% style="color:#037691" %)**Downlink Payload**
1125 )))
1126
1127 (((
1128 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1129 )))
1130
1131 (((
1132 Where:
1133 )))
1134
1135 * (((
1136 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1137 )))
1138 * (((
1139 NN: The length of RS485 command
1140 )))
1141 * (((
1142 XX XX XX XX: RS485 command total NN bytes
1143 )))
1144 * (((
1145 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1146
1147
1148
1149 )))
1150
1151 (((
1152 (% style="color:blue" %)**Example 1:**
1153 )))
1154
1155 (((
1156 To connect a Modbus Alarm with below commands.
1157 )))
1158
1159 * (((
1160 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1161 )))
1162
1163 * (((
1164 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1165 )))
1166
1167 (((
1168 So if user want to use downlink command to control to RS485 Alarm, he can use:
1169 )))
1170
1171 (((
1172 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1173 )))
1174
1175 (((
1176 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1177 )))
1178
1179 (((
1180 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1181 )))
1182
1183 (((
1184
1185
1186
1187 )))
1188
1189 (((
1190 (% style="color:blue" %)**Example 2:**
1191 )))
1192
1193 (((
1194 Check TTL Sensor return:
1195 )))
1196
1197 (((
1198 [[image:1654132684752-193.png]]
1199 )))
1200
1201
1202
1203 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1204
1205
1206 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1207
1208 * (% style="color:#037691" %)**AT Command:**
1209
1210 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1211
1212
1213 * (% style="color:#037691" %)**Downlink Payload:**
1214
1215 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1216
1217 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1218
1219
1220
1221 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1222
1223
1224 (((
1225 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1226 )))
1227
1228 (((
1229 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1230 )))
1231
1232 (((
1233
1234 )))
1235
1236 * (((
1237 (% style="color:#037691" %)**AT Command:**
1238 )))
1239
1240 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1241
1242 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1243
1244 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1245
1246
1247 * (((
1248 (% style="color:#037691" %)**Downlink Payload:**
1249 )))
1250
1251 (((
1252 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1253 )))
1254
1255 (((
1256 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1257 )))
1258
1259 (((
1260 Format: AF MM NN LL XX XX XX XX YY
1261 )))
1262
1263 (((
1264 Where:
1265 )))
1266
1267 * (((
1268 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1269 )))
1270 * (((
1271 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1272 )))
1273 * (((
1274 LL:  The length of AT+COMMAND or AT+DATACUT command
1275 )))
1276 * (((
1277 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1278 )))
1279 * (((
1280 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1281 )))
1282
1283 (((
1284
1285
1286
1287 **Example:**
1288 )))
1289
1290 (((
1291 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1292 )))
1293
1294 (((
1295 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1296 )))
1297
1298 (((
1299 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1300 )))
1301
1302 (((
1303
1304 )))
1305
1306 (((
1307 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1308 )))
1309
1310 (((
1311
1312
1313 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1314 )))
1315
1316 * (((
1317 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1318 )))
1319 * (((
1320 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1321 )))
1322
1323 (((
1324 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1325 )))
1326
1327
1328
1329 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1330
1331
1332 (((
1333 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1334 )))
1335
1336 (((
1337 This command is valid since v1.3 firmware version
1338 )))
1339
1340 (((
1341
1342 )))
1343
1344 (((
1345 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1346 )))
1347
1348 * (((
1349 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1350 )))
1351
1352 (((
1353 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1354 )))
1355
1356 * (((
1357 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1358 )))
1359
1360 (((
1361
1362
1363 **Example:**
1364 )))
1365
1366 * (((
1367 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1368 )))
1369 * (((
1370 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1371 )))
1372 * (((
1373 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1374 )))
1375
1376 [[image:1654133913295-597.png]]
1377
1378
1379 [[image:1654133954153-643.png]]
1380
1381
1382 * (((
1383 (% style="color:#037691" %)**Downlink Commands:**
1384 )))
1385
1386 (((
1387 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1388 )))
1389
1390
1391
1392 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1393
1394
1395 (((
1396 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1397 )))
1398
1399 (((
1400 Default value: 0, range:  0 ~~ 5 seconds
1401 )))
1402
1403 (((
1404
1405 )))
1406
1407 (((
1408 * (% style="color:#037691" %)**AT Command:**
1409
1410 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1411
1412
1413 )))
1414
1415 (((
1416 **Example:**
1417 )))
1418
1419 (((
1420 **AT+CMDDL1=1000** to send the open time to 1000ms
1421 )))
1422
1423 (((
1424
1425 )))
1426
1427 * (((
1428 (% style="color:#037691" %)**Downlink Payload:**
1429 )))
1430
1431 (((
1432 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1433 )))
1434
1435 (((
1436
1437
1438 **Example:**
1439 )))
1440
1441 (((
1442 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1443 )))
1444
1445
1446
1447 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1448
1449
1450 (((
1451 Define to use one uplink or multiple uplinks for the sampling.
1452 )))
1453
1454 (((
1455 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1456 )))
1457
1458 (((
1459 * (% style="color:#037691" %)**AT Command:**
1460
1461 (% style="color:#4472c4" %)** AT+DATAUP=0**
1462
1463 (% style="color:#4472c4" %)** AT+DATAUP=1**
1464 )))
1465
1466 (((
1467
1468 )))
1469
1470 * (((
1471 (% style="color:#037691" %)**Downlink Payload:**
1472 )))
1473
1474 (((
1475 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1476 )))
1477
1478 (((
1479 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1480
1481
1482 )))
1483
1484 (((
1485 * (% style="color:#037691" %)**AT Command:**
1486
1487 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1488 )))
1489
1490 (((
1491
1492 )))
1493
1494 * (((
1495 (% style="color:#037691" %)**Downlink Payload:**
1496 )))
1497
1498 (((
1499 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1500 )))
1501
1502 (((
1503 Each uplink is sent to the server at 20-second intervals when segmented.
1504 )))
1505
1506
1507
1508 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1509
1510
1511 Ask device to send an uplink immediately.
1512
1513 * (% style="color:#037691" %)**Downlink Payload:**
1514
1515 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1516
1517
1518
1519 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1520
1521
1522 (((
1523 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1524 )))
1525
1526 (((
1527
1528 )))
1529
1530 * (((
1531 (% style="color:#037691" %)**AT Command:**
1532 )))
1533
1534 (((
1535 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1536 )))
1537
1538 (((
1539 Example screen shot after clear all RS485 commands. 
1540 )))
1541
1542 (((
1543
1544 )))
1545
1546 (((
1547 The uplink screen shot is:
1548 )))
1549
1550 (((
1551 [[image:1654134704555-320.png]]
1552 )))
1553
1554 (((
1555
1556 )))
1557
1558 * (((
1559 (% style="color:#037691" %)**Downlink Payload:**
1560 )))
1561
1562 (((
1563 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1564 )))
1565
1566
1567
1568 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1569
1570
1571 (((
1572 Set the Rs485 serial communication parameters:
1573 )))
1574
1575 * (((
1576 (% style="color:#037691" %)**AT Command:**
1577 )))
1578
1579 (((
1580
1581
1582 * **Set Baud Rate:**
1583 )))
1584
1585 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1586
1587
1588 * **Set UART Parity**
1589
1590 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1591
1592
1593 * **Set STOPBIT**
1594
1595 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1596
1597
1598 * (((
1599 (% style="color:#037691" %)**Downlink Payload:**
1600 )))
1601
1602 (((
1603 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1604 )))
1605
1606 (((
1607
1608
1609 **Example:**
1610 )))
1611
1612 * (((
1613 A7 01 00 60   same as AT+BAUDR=9600
1614 )))
1615 * (((
1616 A7 01 04 80  same as AT+BAUDR=115200
1617 )))
1618
1619 (((
1620 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1621 )))
1622
1623 (((
1624 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1625 )))
1626
1627
1628
1629 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1630
1631 * (((
1632 (% style="color:#037691" %)**AT Command:**
1633 )))
1634
1635 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1636
1637 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1638
1639
1640 * (((
1641 (% style="color:#037691" %)**Downlink Payload:**
1642 )))
1643
1644 **~ A7 04 07**: Same as  AT+DATABIT=7
1645
1646 **~ A7 04 08**: Same as  AT+DATABIT=8
1647
1648
1649
1650 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1651
1652 (((
1653
1654 )))
1655
1656 * (((
1657 (% style="color:#037691" %)**AT Command:**
1658 )))
1659
1660 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1661
1662 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1663
1664
1665
1666 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1667
1668 (((
1669
1670 )))
1671
1672 * (((
1673 (% style="color:#037691" %)**AT Command:**
1674 )))
1675
1676 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1677
1678 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1679
1680
1681
1682 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1683
1684 (((
1685
1686 )))
1687
1688 * (((
1689 (% style="color:#037691" %)**AT Command:**
1690 )))
1691
1692 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1693
1694 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1695
1696
1697
1698 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1699
1700 (((
1701
1702 )))
1703
1704 * (((
1705 (% style="color:#037691" %)**AT Command:**
1706 )))
1707
1708 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1709
1710 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1711
1712
1713 * (((
1714 (% style="color:#037691" %)**Downlink Payload**
1715 )))
1716
1717 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1718
1719
1720
1721 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1722
1723 (((
1724
1725 )))
1726
1727 * (((
1728 (% style="color:#037691" %)**AT Command:**
1729 )))
1730
1731 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1732
1733
1734 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1735
1736
1737 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1738
1739
1740
1741 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1742
1743
1744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1745
1746
1747 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1748
1749
1750
1751 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1752
1753
1754 * (((
1755 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1756 )))
1757
1758 **Example:**
1759
1760
1761 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1762
1763
1764
1765 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1766
1767
1768 (((
1769 User can set the output power duration before each sampling.
1770 )))
1771
1772 * (((
1773 (% style="color:#037691" %)**AT Command:**
1774 )))
1775
1776 (((
1777 **Example:**
1778 )))
1779
1780 (((
1781 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1782 )))
1783
1784 (((
1785 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1786 )))
1787
1788 (((
1789
1790 )))
1791
1792 * (((
1793 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1794 )))
1795
1796 (((
1797 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1798 )))
1799
1800 (((
1801 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1802 )))
1803
1804
1805 == 3.6 Buttons ==
1806
1807
1808 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:233px" %)
1809 |=(% style="width: 89px;background-color:#D9E2F3;color:#0070C0" %)**Button**|=(% style="width: 141px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1810 |(% style="width:89px" %)RST|(% style="width:141px" %)Reboot RS485-BL
1811
1812
1813 == 3.7 +3V3 Output(Since v1.3.3) ==
1814
1815
1816 (((
1817 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1818 )))
1819
1820 (((
1821 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1822 )))
1823
1824 (((
1825 The +3V3 output time can be controlled by AT Command.
1826 )))
1827
1828 (((
1829
1830 )))
1831
1832 (((
1833 (% style="color:#037691" %)**AT+3V3T=1000**
1834 )))
1835
1836 (((
1837
1838 )))
1839
1840 (((
1841 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1842 )))
1843
1844 (((
1845 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1846 )))
1847
1848
1849 == 3.8 +5V Output(Since v1.3.3) ==
1850
1851
1852 (((
1853 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1854 )))
1855
1856 (((
1857 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1858 )))
1859
1860 (((
1861 The 5V output time can be controlled by AT Command.
1862 )))
1863
1864 (((
1865 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1866 )))
1867
1868 (((
1869 (% style="color:#037691" %)**AT+5VT=1000**
1870 )))
1871
1872 (((
1873
1874 )))
1875
1876 (((
1877 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1878 )))
1879
1880 (((
1881 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1882 )))
1883
1884
1885 == 3.9 LEDs ==
1886
1887
1888 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:332px" %)
1889 |=(% style="background-color:#D9E2F3;color:#0070C0" %)**LEDs**|=(% style="width: 274px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1890 |LED1|(% style="width:274px" %)Blink when device transmit a packet.
1891
1892
1893 == 3.10 Switch Jumper ==
1894
1895
1896 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
1897 |=(% style="width: 123px;background-color:#D9E2F3;color:#0070C0" %)**Switch Jumper**|=(% style="width: 340px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1898 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1899 Flash position: Configure device, check running status.
1900 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1901 3.3v position: set to compatible with 3.3v I/O.,
1902
1903 (((
1904 (% style="color:blue" %)** +3.3V**(%%): is always ON
1905 )))
1906
1907 (((
1908 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1909
1910
1911 )))
1912
1913 == 3.11 Battery & Power Consumption ==
1914
1915
1916 RS485-BL uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1917
1918 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1919
1920
1921 = 4. Case Study =
1922
1923
1924 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1925
1926
1927 = 5. Use AT Command =
1928
1929 == 5.1 Access AT Command ==
1930
1931
1932 (((
1933 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1934
1935
1936 )))
1937
1938 [[image:1654135840598-282.png]]
1939
1940
1941 (((
1942 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1943
1944
1945 )))
1946
1947 [[image:1654136105500-922.png]]
1948
1949
1950 (((
1951 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1952 )))
1953
1954
1955 == 5.2 Common AT Command Sequence ==
1956
1957 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1958
1959
1960 If device has not joined network yet:
1961
1962 * (% style="color:#037691" %)**AT+FDR**
1963 * (% style="color:#037691" %)**AT+NJM=0**
1964 * (% style="color:#037691" %)**ATZ**
1965
1966 (((
1967
1968
1969 If device already joined network:
1970
1971 * (% style="color:#037691" %)**AT+NJM=0**
1972 * (% style="color:#037691" %)**ATZ**
1973 )))
1974
1975
1976
1977 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1978
1979
1980 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1981
1982 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1983
1984 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1985
1986 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1987
1988 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1989
1990 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1991
1992 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1993
1994 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1995
1996 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1997
1998 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1999
2000
2001 (% style="color:red" %)**Note:**
2002
2003 (((
2004 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
2005 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
2006 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
2007 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
2008
2009
2010 )))
2011
2012 [[image:1654136435598-589.png]]
2013
2014
2015 = 6. FAQ =
2016
2017 == 6.1 How to upgrade the image? ==
2018
2019
2020 (((
2021 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2022 )))
2023
2024 * (((
2025 Support new features
2026 )))
2027 * (((
2028 For bug fix
2029 )))
2030 * (((
2031 Change LoRaWAN bands.
2032 )))
2033
2034 (((
2035 Below shows the hardware connection for how to upload an image to RS485-BL:
2036 )))
2037
2038 [[image:1654136646995-976.png]]
2039
2040
2041 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2042
2043 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2044
2045 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2046
2047
2048 [[image:image-20220602102605-1.png]]
2049
2050
2051 [[image:image-20220602102637-2.png]]
2052
2053
2054 [[image:image-20220602102715-3.png]]
2055
2056
2057 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2058
2059
2060 (((
2061 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2062 )))
2063
2064
2065 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2066
2067
2068 (((
2069 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2070 )))
2071
2072
2073 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2074
2075
2076 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2077
2078
2079 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2080
2081 === 6.5.1 Introduce: ===
2082
2083
2084 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2085
2086 1. Test if Modbus-MTU works with PC commands.
2087 1. Check if RS485-LN sent the expected command to Mobus-MTU
2088 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2089 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2090
2091 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2092
2093
2094 (% style="color:blue" %)**Example Connection: **
2095
2096 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2097
2098
2099 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2100
2101
2102 (% style="color:red" %)**Note: Receive and send set to hex mode**
2103
2104 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2105
2106
2107 === 6.5.3 With ModRSsim2: ===
2108
2109
2110 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2111
2112 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2113
2114
2115 (% style="color:blue" %)**(2) Click the serial port icon**
2116
2117 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2118
2119
2120 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2121
2122 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2123
2124
2125 (% style="color:blue" %)**(4) Click the comms.**
2126
2127 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2128
2129 Run RS485-LN/BL command and monitor if it is correct.
2130
2131
2132 === 6.5.4 Example – Test the CFGDEV command ===
2133
2134
2135 RS485-LN sent below command:
2136
2137 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2138
2139 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2140
2141 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2142
2143
2144 We can also use ModRSsim2 to see the output.
2145
2146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2147
2148
2149 === 6.5.5 Example – Test CMD command sets. ===
2150
2151
2152 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2153
2154 (% style="color:blue" %)**Serial port tool:**
2155
2156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2157
2158
2159 (% style="color:blue" %)**ModRSsim2:**
2160
2161 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2162
2163
2164 === 6.5.6 Test with PC ===
2165
2166
2167 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2168
2169 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2170
2171 (% style="color:blue" %)**Connection method:**
2172
2173 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2174
2175
2176 (% style="color:blue" %)**Link situation:**
2177
2178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2179
2180
2181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2182
2183
2184 == 6.6 Where to get the decoder for RS485-BL? ==
2185
2186
2187 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2188
2189
2190 == 6.7 Why does my TTL sensor have returned data, but after using the command AT+DATACUT, the data in the payload is 0? ==
2191
2192
2193 In TTL mode, you cannot use the node to automatically calculate the check code, you need to manually add the check code.
2194
2195
2196
2197 == 6.8 Where can I get a decoder? ==
2198
2199 Provides two decoders:
2200
2201 [[dragino-end-node-decoder/RS485-BL at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]]
2202
2203 [[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork]]
2204
2205 = 7. Trouble Shooting =
2206
2207 == 7.1 Downlink doesn't work, how to solve it? ==
2208
2209
2210 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2211
2212
2213 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2214
2215
2216 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2217
2218
2219 = 8. Order Info =
2220
2221
2222 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2223
2224 (% style="color:blue" %)**XXX:**
2225
2226 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2227 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2228 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2229 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2230 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2231 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2232 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2233 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2234 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2235 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2236
2237
2238 = 9. Packing Info =
2239
2240
2241 (((
2242 **Package Includes**:
2243 )))
2244
2245 * (((
2246 RS485-BL x 1
2247 )))
2248 * (((
2249 Stick Antenna for LoRa RF part x 1
2250 )))
2251 * (((
2252 Program cable x 1
2253 )))
2254
2255 (((
2256 **Dimension and weight**:
2257 )))
2258
2259 * (((
2260 Device Size: 13.5 x 7 x 3 cm
2261 )))
2262 * (((
2263 Device Weight: 105g
2264 )))
2265 * (((
2266 Package Size / pcs : 14.5 x 8 x 5 cm
2267 )))
2268 * (((
2269 Weight / pcs : 170g
2270
2271
2272
2273 )))
2274
2275 = 10. Support =
2276
2277
2278 * (((
2279 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2280 )))
2281 * (((
2282 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2283
2284
2285
2286 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0