Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Operate Temperature:**
56
57 * -40°C ~~ 65°C
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66 * 5V sampling maximum current:500mA
67
68 (% style="color:#037691" %)**Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC.
94
95
96 ​​​
97
98 == 1.3 Features ==
99
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110
111
112 == 1.4 Applications ==
113
114
115 * Smart Buildings & Home Automation
116 * Logistics and Supply Chain Management
117 * Smart Metering
118 * Smart Agriculture
119 * Smart Cities
120 * Smart Factory
121
122
123
124 == 1.5 Firmware Change log ==
125
126
127 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
128
129
130 == 1.6 Hardware Change log ==
131
132 (((
133
134
135 (((
136 **v1.4**
137 )))
138 )))
139
140 (((
141 (((
142 ~1. Change Power IC to TPS22916
143 )))
144 )))
145
146 (((
147
148 )))
149
150 (((
151 (((
152 **v1.3**
153 )))
154 )))
155
156 (((
157 (((
158 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
159 )))
160 )))
161
162 (((
163
164 )))
165
166 (((
167 (((
168 **v1.2**
169 )))
170 )))
171
172 (((
173 (((
174 Release version ​​​​​
175 )))
176 )))
177
178
179 = 2. Pin mapping and Power ON Device =
180
181
182 (((
183 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
184
185
186 )))
187
188 [[image:1652953055962-143.png||height="387" width="728"]]
189
190
191 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
192
193
194 = 3. Operation Mode =
195
196 == 3.1 How it works? ==
197
198
199 (((
200 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
201
202
203 )))
204
205 == 3.2 Example to join LoRaWAN network ==
206
207
208 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
209
210 [[image:1652953414711-647.png||height="337" width="723"]]
211
212
213 (((
214 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
215 )))
216
217 (((
218 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
219
220
221 )))
222
223 (((
224 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
225 )))
226
227 (((
228 Each RS485-BL is shipped with a sticker with unique device EUI:
229 )))
230
231 [[image:image-20230425173638-1.png]]
232
233
234 (((
235 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
236 )))
237
238 (((
239 **Add APP EUI in the application.**
240 )))
241
242
243 [[image:image-20220519174512-1.png]]
244
245 [[image:image-20220519174512-2.png||height="328" width="731"]]
246
247 [[image:image-20220519174512-3.png||height="556" width="724"]]
248
249 [[image:image-20220519174512-4.png]]
250
251
252 You can also choose to create the device manually.
253
254 [[image:1652953542269-423.png||height="710" width="723"]]
255
256
257 Add APP KEY and DEV EUI
258
259 [[image:1652953553383-907.png||height="514" width="724"]]
260
261
262
263 (((
264 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
265
266
267 )))
268
269 [[image:1652953568895-172.png||height="232" width="724"]]
270
271
272 == 3.3 Configure Commands to read data ==
273
274
275 (((
276 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
277 )))
278
279
280 === 3.3.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ===
281
282
283 (((
284 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
285 )))
286
287
288 (((
289 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
290 )))
291
292
293 (((
294 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
295 )))
296
297
298 (((
299 (% style="color:blue" %)**2.  TTL mode:**
300 )))
301
302
303 (((
304 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
305 )))
306
307 (((
308 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
309 )))
310
311
312 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
313 |=(% style="width: 122px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
314 (((
315 **AT Commands**
316 )))
317 )))|=(% style="width: 113px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)(((
318 (((
319 **Description**
320 )))
321 )))|=(% style="width: 215px;background-color:#D9E2F3;color:#0070C0" %)(((
322 (((
323 **Example**
324 )))
325 )))
326 |(% style="width:122px" %)(((
327 (((
328 AT+BAUDR
329 )))
330 )))|(% style="width:113px" %)(((
331 (((
332 Set the baud rate (for RS485 connection).
333
334 Default Value is: 9600.
335 )))
336 )))|(% style="width:226px" %)(((
337 (((
338 (((
339 AT+BAUDR=9600
340 )))
341 )))
342
343 (((
344 (((
345 Options: (1200,2400,4800,14400,19200,115200)
346 )))
347 )))
348 )))
349 |(% style="width:122px" %)(((
350 (((
351 AT+PARITY
352 )))
353 )))|(% style="width:113px" %)(((
354 (((
355 (((
356 Set UART parity (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: no parity.
363 )))
364 )))
365 )))|(% style="width:226px" %)(((
366 (((
367 (((
368 AT+PARITY=0
369 )))
370 )))
371
372 (((
373 (((
374 Option: 0: no parity, 1: odd parity, 2: even parity
375 )))
376 )))
377 )))
378 |(% style="width:122px" %)(((
379 (((
380 AT+STOPBIT
381 )))
382 )))|(% style="width:113px" %)(((
383 (((
384 (((
385 Set serial stopbit (for RS485 connection)
386 )))
387 )))
388
389 (((
390 (((
391 Default Value is: 1bit.
392 )))
393 )))
394 )))|(% style="width:226px" %)(((
395 (((
396 (((
397 AT+STOPBIT=0 for 1bit
398 )))
399 )))
400
401 (((
402 (((
403 AT+STOPBIT=1 for 1.5 bit
404 )))
405 )))
406
407 (((
408 (((
409 AT+STOPBIT=2 for 2 bits
410 )))
411 )))
412 )))
413
414 Example(Soil three-parameter detector):
415
416 (% style="color:blue" %)**Wiring the UART sensor**
417
418 (((
419 **GND <~-~-~-~-~-~-~-~-> GND
420 TX  <~-~-~-~-~-~-~-~->  RX
421 RX  <~-~-~-~-~-~-~-~->  TX
422 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
423 )))
424
425 [[image:image-20230220110129-1.png||height="277" width="395"]]
426
427
428 (% style="color:blue" %)**Set the correct configuration:**
429
430 (% style="color:#037691" %)**AT+BAUDR=9600**
431
432 (% style="color:#037691" %)**AT+PARITY=0**
433
434 (% style="color:#037691" %)**AT+STOPBIT=1**
435
436 If the sensor needs 5v. Need to move the switch position to 5v and then use the command
437
438 (% style="color:blue" %)**AT+5VT=30000**
439
440
441 (% style="color:blue" %)**Configuration read command:**
442
443 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
444
445 **FE:** Station address
446
447 **03:** Function code
448
449 **00 00:**Register start address
450
451 **00 03:**Number of registers
452
453 **11 04:**  Check code
454
455 [[image:image-20230220111709-2.png]]
456
457
458 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
459
460 [[image:image-20230220112421-3.png]]
461
462
463 (% style="color:blue" %)**upload payload:**
464
465 [[image:image-20230220112517-4.png]]
466
467
468 === 3.3.2 Configure sensors ===
469
470
471 (((
472 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
473 )))
474
475 (((
476 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
477 )))
478
479 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
480 |=(% style="width: 130px;background-color:#D9E2F3;color:#0070C0" %)**AT Commands**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Example**
481 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
482 (((
483 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
484 )))
485
486 (((
487 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
488 )))
489
490 (((
491 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
492 )))
493 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
494
495 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
496
497
498 === 3.3.3 Configure read commands for each sampling ===
499
500
501 (((
502 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
503 )))
504
505 (((
506 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
507 )))
508
509 (((
510 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
511 )))
512
513 (((
514 This section describes how to achieve above goals.
515 )))
516
517 (((
518 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
519
520
521 )))
522
523 (((
524 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
525 )))
526
527 (((
528 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
529
530
531 )))
532
533 (((
534 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
535 )))
536
537 (((
538 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
539 )))
540
541 * (((
542 (% style="color:blue" %)**AT+DATACUT**
543 )))
544
545 (((
546 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
547
548
549 )))
550
551 * (((
552 (% style="color:blue" %)**AT+SEARCH**
553 )))
554
555 (((
556 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
557 )))
558
559 (((
560
561
562 (% style="color:blue" %)**Define wait timeout:**
563 )))
564
565 (((
566 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
567 )))
568
569 (((
570 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
571 )))
572
573 (((
574
575
576 **Examples:**
577 )))
578
579 (((
580 Below are examples for the how above AT Commands works.
581 )))
582
583 (((
584 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
585
586
587 )))
588
589 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
590 |(% style="width:494px" %)(((
591 (((
592 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
593 )))
594
595 (((
596 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
597 )))
598
599 (((
600 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
601 )))
602 )))
603
604 (((
605 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
606 )))
607
608 (((
609 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
610 )))
611
612 (((
613
614 )))
615
616 (((
617 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
618
619
620 )))
621
622 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
623 |(% style="width:470px" %)(((
624 (((
625 **AT+SEARCHx=aa,xx xx xx xx xx**
626 )))
627
628 * (((
629 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
630 )))
631 * (((
632 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
633 )))
634 )))
635
636 (((
637
638
639 **Examples:**
640
641
642 )))
643
644 (((
645 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
646 )))
647
648 (((
649 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
650 )))
651
652 (((
653 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
654
655
656 )))
657
658 (((
659 [[image:1653271044481-711.png]]
660
661
662 )))
663
664 (((
665 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
666 )))
667
668 (((
669 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
670 )))
671
672 (((
673 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
674
675
676 )))
677
678 (((
679 [[image:1653271276735-972.png]]
680
681
682 )))
683
684 (((
685 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
686 )))
687
688 (% style="background-color:#f2f2f2; width:496px" %)
689 |(% style="width:493px" %)(((
690 (((
691 **AT+DATACUTx=a,b,c**
692 )))
693
694 * (((
695 **a: length for the return of AT+COMMAND**
696 )))
697 * (((
698 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
699 )))
700 * (((
701 **c: define the position for valid value.  **
702 )))
703 )))
704
705 (((
706
707
708 **Examples:**
709 )))
710
711 * (((
712 (% style="color:blue" %)**Grab bytes:**
713 )))
714
715 (((
716 [[image:1653271581490-837.png||height="313" width="722"]]
717 )))
718
719 (((
720
721
722
723 )))
724
725 * (((
726 (% style="color:blue" %)**Grab a section.**
727 )))
728
729 (((
730 [[image:1653271648378-342.png||height="326" width="720"]]
731 )))
732
733 (((
734
735
736
737 )))
738
739 * (((
740 (% style="color:blue" %)**Grab different sections.**
741 )))
742
743 (((
744 [[image:1653271657255-576.png||height="305" width="730"]]
745
746
747 )))
748
749 (((
750 (((
751 (% style="color:red" %)**Note:**
752 )))
753 )))
754
755 (((
756 (((
757 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
758
759
760 )))
761 )))
762
763 (((
764 (((
765 **Example:**
766 )))
767 )))
768
769 (((
770 (((
771 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
772 )))
773 )))
774
775 (((
776 (((
777 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
778 )))
779 )))
780
781 (((
782 (((
783 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
784 )))
785 )))
786
787 (((
788 (((
789 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
790 )))
791 )))
792
793 (((
794 (((
795 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
796 )))
797 )))
798
799 (((
800 (((
801 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
802
803
804 )))
805 )))
806
807 (((
808 [[image:1653271763403-806.png]]
809 )))
810
811
812 === 3.3.4 Compose the uplink payload ===
813
814
815 (((
816 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
817
818
819 )))
820
821 (((
822 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
823
824
825 )))
826
827 (((
828 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
829 )))
830
831 (((
832 Final Payload is
833 )))
834
835 (((
836 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
837 )))
838
839 (((
840 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
841 )))
842
843 [[image:1653272787040-634.png||height="515" width="719"]]
844
845
846
847 (((
848 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
849
850
851 )))
852
853 (((
854 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
855 )))
856
857 (((
858 Final Payload is
859 )))
860
861 (((
862 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
863 )))
864
865 1. (((
866 Battery Info (2 bytes): Battery voltage
867 )))
868 1. (((
869 PAYVER (1 byte): Defined by AT+PAYVER
870 )))
871 1. (((
872 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
873 )))
874 1. (((
875 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
876 )))
877 1. (((
878 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
879
880
881 )))
882
883 [[image:1653272817147-600.png||height="437" width="717"]]
884
885 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
886
887
888 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
889
890 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
891
892 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
893
894
895 Below are the uplink payloads:
896
897 [[image:1653272901032-107.png]]
898
899
900 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
901
902 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
903
904 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
905
906 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
907
908 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
909
910 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
911
912 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
913
914 (((
915
916 )))
917
918 * (((
919 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**
920
921
922
923 )))
924
925 (% class="wikigeneratedid" %)
926 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
927
928
929 (% class="wikigeneratedid" %)
930 [[image:image-20220824114359-3.png||height="297" width="1106"]]
931
932
933
934 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
935
936
937 [[image:image-20220824114330-2.png]]
938
939
940 === 3.3.5 Uplink on demand ===
941
942
943 (((
944 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
945
946
947 )))
948
949 (((
950 (% style="color:blue" %)** Downlink control command:**
951 )))
952
953 (((
954 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
955 )))
956
957 (((
958 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
959 )))
960
961
962 === 3.3.6 Uplink on Interrupt ===
963
964
965 Put the interrupt sensor between 3.3v_out and GPIO ext.
966
967 [[image:1653273818896-432.png]]
968
969
970 (((
971 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
972 )))
973
974 (((
975 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
976 )))
977
978 (((
979 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
980 )))
981
982 (((
983 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
984 )))
985
986
987 == 3.4 Uplink Payload ==
988
989
990
991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:270px" %)**Length depends on the return from the commands**
993 |Value|(((
994 Battery(mV) & Interrupt _Flag
995 )))|(((
996 PAYLOAD_VER
997
998
999 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
1000
1001 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
1002
1003
1004 (((
1005 {{{function Decoder(bytes, port) {}}}
1006 )))
1007
1008 (((
1009 {{{//Payload Formats of RS485-BL Deceive}}}
1010 )))
1011
1012 (((
1013 {{{return {}}}
1014 )))
1015
1016 (((
1017 {{{ //Battery,units:V}}}
1018 )))
1019
1020 (((
1021 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
1022 )))
1023
1024 (((
1025 {{{ //GPIO_EXTI }}}
1026 )))
1027
1028 (((
1029 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
1030 )))
1031
1032 (((
1033 {{{ //payload of version}}}
1034 )))
1035
1036 (((
1037 {{{ Pay_ver:bytes[2],}}}
1038 )))
1039
1040 (((
1041 {{{ }; }}}
1042 )))
1043
1044 (((
1045 **}**
1046
1047
1048 )))
1049
1050 (((
1051 TTN V3 uplink screen shot.
1052 )))
1053
1054 [[image:1653274001211-372.png||height="192" width="732"]]
1055
1056
1057 == 3.5 Configure RS485-BL via AT or Downlink ==
1058
1059
1060 (((
1061 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1062 )))
1063
1064 (((
1065 There are two kinds of Commands:
1066 )))
1067
1068 * (((
1069 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1070 )))
1071
1072 * (((
1073 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1074
1075
1076
1077 )))
1078
1079 === 3.5.1 Common Commands: ===
1080
1081
1082 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1083
1084
1085 === 3.5.2 Sensor related commands: ===
1086
1087
1088
1089 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)(Since v1.3.3)**(%%) ====
1090
1091
1092 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1093
1094 * (% style="color:#037691" %)**AT Command**
1095
1096 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1097
1098 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1099
1100
1101 * (% style="color:#037691" %)**Downlink Payload**
1102
1103 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1104
1105
1106
1107 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1108
1109
1110 (((
1111 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1112 )))
1113
1114 (((
1115 * (% style="color:#037691" %)**AT Command**
1116
1117 (((
1118 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1119 )))
1120 )))
1121
1122 (((
1123
1124 )))
1125
1126 * (((
1127 (% style="color:#037691" %)**Downlink Payload**
1128 )))
1129
1130 (((
1131 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1132 )))
1133
1134 (((
1135 Where:
1136 )))
1137
1138 * (((
1139 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1140 )))
1141 * (((
1142 NN: The length of RS485 command
1143 )))
1144 * (((
1145 XX XX XX XX: RS485 command total NN bytes
1146 )))
1147 * (((
1148 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1149
1150
1151
1152 )))
1153
1154 (((
1155 (% style="color:blue" %)**Example 1:**
1156 )))
1157
1158 (((
1159 To connect a Modbus Alarm with below commands.
1160 )))
1161
1162 * (((
1163 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1164 )))
1165
1166 * (((
1167 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1168 )))
1169
1170 (((
1171 So if user want to use downlink command to control to RS485 Alarm, he can use:
1172 )))
1173
1174 (((
1175 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1176 )))
1177
1178 (((
1179 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1180 )))
1181
1182 (((
1183 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1184 )))
1185
1186 (((
1187
1188
1189
1190 )))
1191
1192 (((
1193 (% style="color:blue" %)**Example 2:**
1194 )))
1195
1196 (((
1197 Check TTL Sensor return:
1198 )))
1199
1200 (((
1201 [[image:1654132684752-193.png]]
1202 )))
1203
1204
1205
1206 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1207
1208
1209 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1210
1211 * (% style="color:#037691" %)**AT Command:**
1212
1213 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1214
1215
1216 * (% style="color:#037691" %)**Downlink Payload:**
1217
1218 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1219
1220 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1221
1222
1223
1224 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1225
1226
1227 (((
1228 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1229 )))
1230
1231 (((
1232 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1233 )))
1234
1235 (((
1236
1237 )))
1238
1239 * (((
1240 (% style="color:#037691" %)**AT Command:**
1241 )))
1242
1243 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1244
1245 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1246
1247 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1248
1249
1250 * (((
1251 (% style="color:#037691" %)**Downlink Payload:**
1252 )))
1253
1254 (((
1255 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1256 )))
1257
1258 (((
1259 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1260 )))
1261
1262 (((
1263 Format: AF MM NN LL XX XX XX XX YY
1264 )))
1265
1266 (((
1267 Where:
1268 )))
1269
1270 * (((
1271 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1272 )))
1273 * (((
1274 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1275 )))
1276 * (((
1277 LL:  The length of AT+COMMAND or AT+DATACUT command
1278 )))
1279 * (((
1280 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1281 )))
1282 * (((
1283 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1284 )))
1285
1286 (((
1287
1288
1289
1290 **Example:**
1291 )))
1292
1293 (((
1294 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1295 )))
1296
1297 (((
1298 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1299 )))
1300
1301 (((
1302 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1303 )))
1304
1305 (((
1306
1307 )))
1308
1309 (((
1310 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1311 )))
1312
1313 (((
1314
1315
1316 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1317 )))
1318
1319 * (((
1320 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1321 )))
1322 * (((
1323 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1324 )))
1325
1326 (((
1327 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1328 )))
1329
1330
1331
1332 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1333
1334
1335 (((
1336 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1337 )))
1338
1339 (((
1340 This command is valid since v1.3 firmware version
1341 )))
1342
1343 (((
1344
1345 )))
1346
1347 (((
1348 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1349 )))
1350
1351 * (((
1352 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1353 )))
1354
1355 (((
1356 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1357 )))
1358
1359 * (((
1360 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1361 )))
1362
1363 (((
1364
1365
1366 **Example:**
1367 )))
1368
1369 * (((
1370 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1371 )))
1372 * (((
1373 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1374 )))
1375 * (((
1376 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1377 )))
1378
1379 [[image:1654133913295-597.png]]
1380
1381
1382 [[image:1654133954153-643.png]]
1383
1384
1385 * (((
1386 (% style="color:#037691" %)**Downlink Commands:**
1387 )))
1388
1389 (((
1390 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1391 )))
1392
1393
1394
1395 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1396
1397
1398 (((
1399 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1400 )))
1401
1402 (((
1403 Default value: 0, range:  0 ~~ 5 seconds
1404 )))
1405
1406 (((
1407
1408 )))
1409
1410 (((
1411 * (% style="color:#037691" %)**AT Command:**
1412
1413 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1414
1415
1416 )))
1417
1418 (((
1419 **Example:**
1420 )))
1421
1422 (((
1423 **AT+CMDDL1=1000** to send the open time to 1000ms
1424 )))
1425
1426 (((
1427
1428 )))
1429
1430 * (((
1431 (% style="color:#037691" %)**Downlink Payload:**
1432 )))
1433
1434 (((
1435 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1436 )))
1437
1438 (((
1439
1440
1441 **Example:**
1442 )))
1443
1444 (((
1445 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1446 )))
1447
1448
1449
1450 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1451
1452
1453 (((
1454 Define to use one uplink or multiple uplinks for the sampling.
1455 )))
1456
1457 (((
1458 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1459 )))
1460
1461 (((
1462 * (% style="color:#037691" %)**AT Command:**
1463
1464 (% style="color:#4472c4" %)** AT+DATAUP=0**
1465
1466 (% style="color:#4472c4" %)** AT+DATAUP=1**
1467 )))
1468
1469 (((
1470
1471 )))
1472
1473 * (((
1474 (% style="color:#037691" %)**Downlink Payload:**
1475 )))
1476
1477 (((
1478 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1479 )))
1480
1481 (((
1482 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1483
1484
1485 )))
1486
1487 (((
1488 * (% style="color:#037691" %)**AT Command:**
1489
1490 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1491 )))
1492
1493 (((
1494
1495 )))
1496
1497 * (((
1498 (% style="color:#037691" %)**Downlink Payload:**
1499 )))
1500
1501 (((
1502 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1503 )))
1504
1505 (((
1506 Each uplink is sent to the server at 20-second intervals when segmented.
1507 )))
1508
1509
1510
1511 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1512
1513
1514 Ask device to send an uplink immediately.
1515
1516 * (% style="color:#037691" %)**Downlink Payload:**
1517
1518 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1519
1520
1521
1522 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1523
1524
1525 (((
1526 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1527 )))
1528
1529 (((
1530
1531 )))
1532
1533 * (((
1534 (% style="color:#037691" %)**AT Command:**
1535 )))
1536
1537 (((
1538 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1539 )))
1540
1541 (((
1542 Example screen shot after clear all RS485 commands. 
1543 )))
1544
1545 (((
1546
1547 )))
1548
1549 (((
1550 The uplink screen shot is:
1551 )))
1552
1553 (((
1554 [[image:1654134704555-320.png]]
1555 )))
1556
1557 (((
1558
1559 )))
1560
1561 * (((
1562 (% style="color:#037691" %)**Downlink Payload:**
1563 )))
1564
1565 (((
1566 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1567 )))
1568
1569
1570
1571 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1572
1573
1574 (((
1575 Set the Rs485 serial communication parameters:
1576 )))
1577
1578 * (((
1579 (% style="color:#037691" %)**AT Command:**
1580 )))
1581
1582 (((
1583
1584
1585 * **Set Baud Rate:**
1586 )))
1587
1588 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1589
1590
1591 * **Set UART Parity**
1592
1593 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1594
1595
1596 * **Set STOPBIT**
1597
1598 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1599
1600
1601 * (((
1602 (% style="color:#037691" %)**Downlink Payload:**
1603 )))
1604
1605 (((
1606 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1607 )))
1608
1609 (((
1610
1611
1612 **Example:**
1613 )))
1614
1615 * (((
1616 A7 01 00 60   same as AT+BAUDR=9600
1617 )))
1618 * (((
1619 A7 01 04 80  same as AT+BAUDR=115200
1620 )))
1621
1622 (((
1623 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1624 )))
1625
1626 (((
1627 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1628 )))
1629
1630
1631
1632 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1633
1634 * (((
1635 (% style="color:#037691" %)**AT Command:**
1636 )))
1637
1638 **~ AT+DATABIT=7  **~/~/ Set the data bits to 7
1639
1640 **~ AT+DATABIT=8  **~/~/Set the data bits to 8
1641
1642
1643 * (((
1644 (% style="color:#037691" %)**Downlink Payload:**
1645 )))
1646
1647 **~ A7 04 07**: Same as  AT+DATABIT=7
1648
1649 **~ A7 04 08**: Same as  AT+DATABIT=8
1650
1651
1652
1653 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1654
1655 (((
1656
1657 )))
1658
1659 * (((
1660 (% style="color:#037691" %)**AT Command:**
1661 )))
1662
1663 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1664
1665 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1666
1667
1668
1669 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1670
1671 (((
1672
1673 )))
1674
1675 * (((
1676 (% style="color:#037691" %)**AT Command:**
1677 )))
1678
1679 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1680
1681 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1682
1683
1684
1685 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1686
1687 (((
1688
1689 )))
1690
1691 * (((
1692 (% style="color:#037691" %)**AT Command:**
1693 )))
1694
1695 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1696
1697 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1698
1699
1700
1701 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1702
1703 (((
1704
1705 )))
1706
1707 * (((
1708 (% style="color:#037691" %)**AT Command:**
1709 )))
1710
1711 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1712
1713 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1714
1715
1716 * (((
1717 (% style="color:#037691" %)**Downlink Payload**
1718 )))
1719
1720 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1721
1722
1723
1724 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1725
1726 (((
1727
1728 )))
1729
1730 * (((
1731 (% style="color:#037691" %)**AT Command:**
1732 )))
1733
1734 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1735
1736
1737 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1738
1739
1740 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1741
1742
1743
1744 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1745
1746
1747 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1748
1749
1750 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1751
1752
1753
1754 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1755
1756
1757 * (((
1758 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1759 )))
1760
1761 **Example:**
1762
1763
1764 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1765
1766
1767
1768 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1769
1770
1771 (((
1772 User can set the output power duration before each sampling.
1773 )))
1774
1775 * (((
1776 (% style="color:#037691" %)**AT Command:**
1777 )))
1778
1779 (((
1780 **Example:**
1781 )))
1782
1783 (((
1784 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1785 )))
1786
1787 (((
1788 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1789 )))
1790
1791 (((
1792
1793 )))
1794
1795 * (((
1796 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1797 )))
1798
1799 (((
1800 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa bb)
1801 )))
1802
1803 (((
1804 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa bb)
1805 )))
1806
1807
1808 == 3.6 Buttons ==
1809
1810
1811 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:233px" %)
1812 |=(% style="width: 89px;background-color:#D9E2F3;color:#0070C0" %)**Button**|=(% style="width: 141px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1813 |(% style="width:89px" %)RST|(% style="width:141px" %)Reboot RS485-BL
1814
1815
1816
1817 == 3.7 +3V3 Output(Since v1.3.3) ==
1818
1819
1820 (((
1821 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1822 )))
1823
1824 (((
1825 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1826 )))
1827
1828 (((
1829 The +3V3 output time can be controlled by AT Command.
1830 )))
1831
1832 (((
1833
1834 )))
1835
1836 (((
1837 (% style="color:#037691" %)**AT+3V3T=1000**
1838 )))
1839
1840 (((
1841
1842 )))
1843
1844 (((
1845 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1846 )))
1847
1848 (((
1849 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1850 )))
1851
1852
1853 == 3.8 +5V Output(Since v1.3.3) ==
1854
1855
1856 (((
1857 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1858 )))
1859
1860 (((
1861 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1862 )))
1863
1864 (((
1865 The 5V output time can be controlled by AT Command.
1866 )))
1867
1868 (((
1869 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1870 )))
1871
1872 (((
1873 (% style="color:#037691" %)**AT+5VT=1000**
1874 )))
1875
1876 (((
1877
1878 )))
1879
1880 (((
1881 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1882 )))
1883
1884 (((
1885 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1886 )))
1887
1888
1889 == 3.9 LEDs ==
1890
1891
1892 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:332px" %)
1893 |=(% style="background-color:#D9E2F3;color:#0070C0" %)**LEDs**|=(% style="width: 274px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1894 |LED1|(% style="width:274px" %)Blink when device transmit a packet.
1895
1896
1897
1898 == 3.10 Switch Jumper ==
1899
1900
1901 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
1902 |=(% style="width: 123px;background-color:#D9E2F3;color:#0070C0" %)**Switch Jumper**|=(% style="width: 340px;background-color:#D9E2F3;color:#0070C0" %)**Feature**
1903 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1904 Flash position: Configure device, check running status.
1905 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1906 3.3v position: set to compatible with 3.3v I/O.,
1907
1908 (((
1909 (% style="color:blue" %)** +3.3V**(%%): is always ON
1910 )))
1911
1912 (((
1913 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
1914
1915
1916 )))
1917
1918 == 3.11 Battery & Power Consumption ==
1919
1920
1921 RS485-BL uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1922
1923 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1924
1925
1926 = 4. Case Study =
1927
1928
1929 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1930
1931
1932 = 5. Use AT Command =
1933
1934 == 5.1 Access AT Command ==
1935
1936
1937 (((
1938 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1939
1940
1941 )))
1942
1943 [[image:1654135840598-282.png]]
1944
1945
1946 (((
1947 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1948
1949
1950 )))
1951
1952 [[image:1654136105500-922.png]]
1953
1954
1955 (((
1956 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1957 )))
1958
1959
1960 == 5.2 Common AT Command Sequence ==
1961
1962 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1963
1964
1965 If device has not joined network yet:
1966
1967 * (% style="color:#037691" %)**AT+FDR**
1968 * (% style="color:#037691" %)**AT+NJM=0**
1969 * (% style="color:#037691" %)**ATZ**
1970
1971 (((
1972
1973
1974 If device already joined network:
1975
1976 * (% style="color:#037691" %)**AT+NJM=0**
1977 * (% style="color:#037691" %)**ATZ**
1978 )))
1979
1980
1981
1982 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1983
1984
1985 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1986
1987 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1988
1989 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1990
1991 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1992
1993 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1994
1995 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1996
1997 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1998
1999 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
2000
2001 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2002
2003 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
2004
2005
2006 (% style="color:red" %)**Note:**
2007
2008 (((
2009 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
2010 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
2011 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
2012 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
2013
2014
2015 )))
2016
2017 [[image:1654136435598-589.png]]
2018
2019
2020 = 6. FAQ =
2021
2022 == 6.1 How to upgrade the image? ==
2023
2024
2025 (((
2026 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2027 )))
2028
2029 * (((
2030 Support new features
2031 )))
2032 * (((
2033 For bug fix
2034 )))
2035 * (((
2036 Change LoRaWAN bands.
2037 )))
2038
2039 (((
2040 Below shows the hardware connection for how to upload an image to RS485-BL:
2041 )))
2042
2043 [[image:1654136646995-976.png]]
2044
2045
2046 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2047
2048 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2049
2050 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2051
2052
2053 [[image:image-20220602102605-1.png]]
2054
2055
2056 [[image:image-20220602102637-2.png]]
2057
2058
2059 [[image:image-20220602102715-3.png]]
2060
2061
2062 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2063
2064
2065 (((
2066 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2067 )))
2068
2069
2070 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2071
2072
2073 (((
2074 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2075 )))
2076
2077
2078 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2079
2080
2081 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2082
2083
2084 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2085
2086 === 6.5.1 Introduce: ===
2087
2088
2089 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2090
2091 1. Test if Modbus-MTU works with PC commands.
2092 1. Check if RS485-LN sent the expected command to Mobus-MTU
2093 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2094 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
2095
2096 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2097
2098
2099 (% style="color:blue" %)**Example Connection: **
2100
2101 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2102
2103
2104 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2105
2106
2107 (% style="color:red" %)**Note: Receive and send set to hex mode**
2108
2109 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2110
2111
2112 === 6.5.3 With ModRSsim2: ===
2113
2114
2115 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2116
2117 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2118
2119
2120 (% style="color:blue" %)**(2) Click the serial port icon**
2121
2122 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2123
2124
2125 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2126
2127 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2128
2129
2130 (% style="color:blue" %)**(4) Click the comms.**
2131
2132 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2133
2134 Run RS485-LN/BL command and monitor if it is correct.
2135
2136
2137 === 6.5.4 Example – Test the CFGDEV command ===
2138
2139
2140 RS485-LN sent below command:
2141
2142 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2143
2144 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2145
2146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2147
2148
2149 We can also use ModRSsim2 to see the output.
2150
2151 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2152
2153
2154 === 6.5.5 Example – Test CMD command sets. ===
2155
2156
2157 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2158
2159 (% style="color:blue" %)**Serial port tool:**
2160
2161 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2162
2163
2164 (% style="color:blue" %)**ModRSsim2:**
2165
2166 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2167
2168
2169 === 6.5.6 Test with PC ===
2170
2171
2172 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2173
2174 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2175
2176 (% style="color:blue" %)**Connection method:**
2177
2178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2179
2180
2181 (% style="color:blue" %)**Link situation:**
2182
2183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2184
2185
2186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2187
2188
2189 == 6.6 Where to get the decoder for RS485-BL? ==
2190
2191
2192 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2193
2194
2195 == 6.7 Why does my TTL sensor have returned data, but after using the command AT+DATACUT, the data in the payload is 0? ==
2196
2197
2198 In TTL mode, you cannot use the node to automatically calculate the check code, you need to manually add the check code.
2199
2200
2201 = 7. Trouble Shooting =
2202
2203 == 7.1 Downlink doesn't work, how to solve it? ==
2204
2205
2206 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2207
2208
2209 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2210
2211
2212 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2213
2214
2215 = 8. Order Info =
2216
2217
2218 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2219
2220 (% style="color:blue" %)**XXX:**
2221
2222 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2223 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2224 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2225 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2226 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2227 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2228 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2229 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2230 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2231 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2232
2233
2234
2235 = 9. Packing Info =
2236
2237
2238 (((
2239 **Package Includes**:
2240 )))
2241
2242 * (((
2243 RS485-BL x 1
2244 )))
2245 * (((
2246 Stick Antenna for LoRa RF part x 1
2247 )))
2248 * (((
2249 Program cable x 1
2250 )))
2251
2252 (((
2253 **Dimension and weight**:
2254 )))
2255
2256 * (((
2257 Device Size: 13.5 x 7 x 3 cm
2258 )))
2259 * (((
2260 Device Weight: 105g
2261 )))
2262 * (((
2263 Package Size / pcs : 14.5 x 8 x 5 cm
2264 )))
2265 * (((
2266 Weight / pcs : 170g
2267
2268
2269
2270 )))
2271
2272 = 10. Support =
2273
2274
2275 * (((
2276 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2277 )))
2278 * (((
2279 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2280
2281
2282
2283 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0