Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20240103095714-2.png]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23
24
25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26
27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28
29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30
31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
32
33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34
35 == 1.2 ​Features ==
36
37
38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
40 * Open-Source hardware/software
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 * Solar panel + 3000mAh Li-on battery (SN50v3-LS)
48
49 == 1.3 Specification ==
50
51
52 (% style="color:#037691" %)**Common DC Characteristics:**
53
54 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
55 * Operating Temperature: -40 ~~ 85°C
56
57 (% style="color:#037691" %)**I/O Interface:**
58
59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
88
89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
97 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
98
99 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
115 SN50v3-LB/LS supports BLE remote configure.
116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
127 == 1.7 Pin Definitions ==
128
129
130 [[image:image-20230610163213-1.png||height="404" width="699"]]
131
132
133 == 1.8 Mechanical ==
134
135 === 1.8.1 for LB version ===
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139
140
141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142
143 === 1.8.2 for LS version ===
144
145 [[image:image-20231231203439-3.png||height="385" width="886"]]
146
147
148 == 1.9 Hole Option ==
149
150
151 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152
153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154
155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156
157
158 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
159
160 == 2.1 How it works ==
161
162
163 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164
165
166 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
167
168
169 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170
171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172
173
174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
175
176 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
177
178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
198
199
200 (% style="color:blue" %)**Add APP KEY**
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203
204 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205
206 Press the button for 5 seconds to activate the SN50v3-LB/LS.
207
208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209
210 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
211
212
213 == 2.3 ​Uplink Payload ==
214
215 === 2.3.1 Device Status, FPORT~=5 ===
216
217
218 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
219
220 The Payload format is as below.
221
222
223 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
225 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
226 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
227
228 Example parse in TTNv3
229
230
231 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
232
233 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234
235 (% style="color:#037691" %)**Frequency Band**:
236
237 0x01: EU868
238
239 0x02: US915
240
241 0x03: IN865
242
243 0x04: AU915
244
245 0x05: KZ865
246
247 0x06: RU864
248
249 0x07: AS923
250
251 0x08: AS923-1
252
253 0x09: AS923-2
254
255 0x0a: AS923-3
256
257 0x0b: CN470
258
259 0x0c: EU433
260
261 0x0d: KR920
262
263 0x0e: MA869
264
265
266 (% style="color:#037691" %)**Sub-Band**:
267
268 AU915 and US915:value 0x00 ~~ 0x08
269
270 CN470: value 0x0B ~~ 0x0C
271
272 Other Bands: Always 0x00
273
274
275 (% style="color:#037691" %)**Battery Info**:
276
277 Check the battery voltage.
278
279 Ex1: 0x0B45 = 2885mV
280
281 Ex2: 0x0B49 = 2889mV
282
283
284 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
285
286
287 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
288
289 For example:
290
291 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
292
293
294 (% style="color:red" %) **Important Notice:**
295
296 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
297
298 2. All modes share the same Payload Explanation from HERE.
299
300 3. By default, the device will send an uplink message every 20 minutes.
301
302
303 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
304
305
306 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307
308 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
310 |Value|Bat|(% style="width:191px" %)(((
311 Temperature(DS18B20)(PC13)
312 )))|(% style="width:78px" %)(((
313 ADC(PA4)
314 )))|(% style="width:216px" %)(((
315 Digital in(PB15)&Digital Interrupt(PA8)
316 )))|(% style="width:308px" %)(((
317 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
318 )))|(% style="width:154px" %)(((
319 Humidity(SHT20 or SHT31)
320 )))
321
322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323
324
325 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326
327
328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329
330 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
332 |Value|BAT|(% style="width:196px" %)(((
333 Temperature(DS18B20)(PC13)
334 )))|(% style="width:87px" %)(((
335 ADC(PA4)
336 )))|(% style="width:189px" %)(((
337 Digital in(PB15) & Digital Interrupt(PA8)
338 )))|(% style="width:208px" %)(((
339 Distance measure by: 1) LIDAR-Lite V3HP
340 Or 2) Ultrasonic Sensor
341 )))|(% style="width:117px" %)Reserved
342
343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344
345
346 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
347
348 [[image:image-20230512173758-5.png||height="563" width="712"]]
349
350
351 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352
353 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
354
355 [[image:image-20230512173903-6.png||height="596" width="715"]]
356
357
358 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359
360 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
362 |Value|BAT|(% style="width:183px" %)(((
363 Temperature(DS18B20)(PC13)
364 )))|(% style="width:173px" %)(((
365 Digital in(PB15) & Digital Interrupt(PA8)
366 )))|(% style="width:84px" %)(((
367 ADC(PA4)
368 )))|(% style="width:323px" %)(((
369 Distance measure by:1)TF-Mini plus LiDAR
370 Or 2) TF-Luna LiDAR
371 )))|(% style="width:188px" %)Distance signal  strength
372
373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374
375
376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377
378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379
380 [[image:image-20230512180609-7.png||height="555" width="802"]]
381
382
383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384
385 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386
387 [[image:image-20230610170047-1.png||height="452" width="799"]]
388
389
390 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391
392
393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394
395 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
397 **Size(bytes)**
398 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
399 |Value|(% style="width:68px" %)(((
400 ADC1(PA4)
401 )))|(% style="width:75px" %)(((
402 ADC2(PA5)
403 )))|(((
404 ADC3(PA8)
405 )))|(((
406 Digital Interrupt(PB15)
407 )))|(% style="width:304px" %)(((
408 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 )))|(% style="width:163px" %)(((
410 Humidity(SHT20 or SHT31)
411 )))|(% style="width:53px" %)Bat
412
413 [[image:image-20230513110214-6.png]]
414
415
416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417
418
419 This mode has total 11 bytes. As shown below:
420
421 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
423 |Value|BAT|(% style="width:186px" %)(((
424 Temperature1(DS18B20)(PC13)
425 )))|(% style="width:82px" %)(((
426 ADC(PA4)
427 )))|(% style="width:210px" %)(((
428 Digital in(PB15) & Digital Interrupt(PA8) 
429 )))|(% style="width:191px" %)Temperature2(DS18B20)
430 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
434
435 [[image:image-20230513134006-1.png||height="559" width="736"]]
436
437
438 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439
440
441 [[image:image-20230512164658-2.png||height="532" width="729"]]
442
443 Each HX711 need to be calibrated before used. User need to do below two steps:
444
445 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
447 1. (((
448 Weight has 4 bytes, the unit is g.
449
450
451
452 )))
453
454 For example:
455
456 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
462 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
464 **Size(bytes)**
465 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
466 |Value|BAT|(% style="width:193px" %)(((
467 Temperature(DS18B20)(PC13)
468 )))|(% style="width:85px" %)(((
469 ADC(PA4)
470 )))|(% style="width:186px" %)(((
471 Digital in(PB15) & Digital Interrupt(PA8)
472 )))|(% style="width:100px" %)Weight
473
474 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475
476
477 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478
479
480 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481
482 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483
484 [[image:image-20230512181814-9.png||height="543" width="697"]]
485
486
487 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488
489 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
491 |Value|BAT|(% style="width:256px" %)(((
492 Temperature(DS18B20)(PC13)
493 )))|(% style="width:108px" %)(((
494 ADC(PA4)
495 )))|(% style="width:126px" %)(((
496 Digital in(PB15)
497 )))|(% style="width:145px" %)(((
498 Count(PA8)
499 )))
500
501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502
503
504 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505
506
507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
509 **Size(bytes)**
510 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
511 |Value|BAT|(% style="width:188px" %)(((
512 Temperature(DS18B20)
513 (PC13)
514 )))|(% style="width:83px" %)(((
515 ADC(PA5)
516 )))|(% style="width:184px" %)(((
517 Digital Interrupt1(PA8)
518 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
519
520 [[image:image-20230513111203-7.png||height="324" width="975"]]
521
522
523 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524
525
526 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
528 **Size(bytes)**
529 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
530 |Value|BAT|(% style="width:207px" %)(((
531 Temperature(DS18B20)
532 (PC13)
533 )))|(% style="width:94px" %)(((
534 ADC1(PA4)
535 )))|(% style="width:198px" %)(((
536 Digital Interrupt(PB15)
537 )))|(% style="width:84px" %)(((
538 ADC2(PA5)
539 )))|(% style="width:82px" %)(((
540 ADC3(PA8)
541 )))
542
543 [[image:image-20230513111231-8.png||height="335" width="900"]]
544
545
546 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547
548
549 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
551 **Size(bytes)**
552 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
553 |Value|BAT|(((
554 Temperature
555 (DS18B20)(PC13)
556 )))|(((
557 Temperature2
558 (DS18B20)(PB9)
559 )))|(((
560 Digital Interrupt
561 (PB15)
562 )))|(% style="width:193px" %)(((
563 Temperature3
564 (DS18B20)(PB8)
565 )))|(% style="width:78px" %)(((
566 Count1(PA8)
567 )))|(% style="width:78px" %)(((
568 Count2(PA4)
569 )))
570
571 [[image:image-20230513111255-9.png||height="341" width="899"]]
572
573 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
574
575 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
576
577 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
578
579 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
580
581
582 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
583
584 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
585
586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587
588
589 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590
591
592 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593
594 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595
596 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597
598
599 ===== 2.3.2.10.a  Uplink, PWM input capture =====
600
601
602 [[image:image-20230817172209-2.png||height="439" width="683"]]
603
604 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 |Value|Bat|(% style="width:191px" %)(((
607 Temperature(DS18B20)(PC13)
608 )))|(% style="width:78px" %)(((
609 ADC(PA4)
610 )))|(% style="width:135px" %)(((
611 PWM_Setting
612 &Digital Interrupt(PA8)
613 )))|(% style="width:70px" %)(((
614 Pulse period
615 )))|(% style="width:89px" %)(((
616 Duration of high level
617 )))
618
619 [[image:image-20230817170702-1.png||height="161" width="1044"]]
620
621
622 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623
624 **Frequency:**
625
626 (% class="MsoNormal" %)
627 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628
629 (% class="MsoNormal" %)
630 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631
632
633 (% class="MsoNormal" %)
634 **Duty cycle:**
635
636 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637
638 [[image:image-20230818092200-1.png||height="344" width="627"]]
639
640
641 ===== 2.3.2.10.b  Uplink, PWM output =====
642
643
644 [[image:image-20230817172209-2.png||height="439" width="683"]]
645
646 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647
648 a is the time delay of the output, the unit is ms.
649
650 b is the output frequency, the unit is HZ.
651
652 c is the duty cycle of the output, the unit is %.
653
654 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655
656 aa is the time delay of the output, the unit is ms.
657
658 bb is the output frequency, the unit is HZ.
659
660 cc is the duty cycle of the output, the unit is %.
661
662
663 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664
665 The oscilloscope displays as follows:
666
667 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668
669
670 ===== 2.3.2.10.c  Downlink, PWM output =====
671
672
673 [[image:image-20230817173800-3.png||height="412" width="685"]]
674
675 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676
677 xx xx xx is the output frequency, the unit is HZ.
678
679 yy is the duty cycle of the output, the unit is %.
680
681 zz zz is the time delay of the output, the unit is ms.
682
683
684 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685
686 The oscilloscope displays as follows:
687
688 [[image:image-20230817173858-5.png||height="634" width="843"]]
689
690
691 === 2.3.3  ​Decode payload ===
692
693
694 While using TTN V3 network, you can add the payload format to decode the payload.
695
696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
697
698 The payload decoder function for TTN V3 are here:
699
700 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
701
702
703 ==== 2.3.3.1 Battery Info ====
704
705
706 Check the battery voltage for SN50v3-LB/LS.
707
708 Ex1: 0x0B45 = 2885mV
709
710 Ex2: 0x0B49 = 2889mV
711
712
713 ==== 2.3.3.2  Temperature (DS18B20) ====
714
715
716 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
717
718 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
719
720 (% style="color:blue" %)**Connection:**
721
722 [[image:image-20230512180718-8.png||height="538" width="647"]]
723
724
725 (% style="color:blue" %)**Example**:
726
727 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
728
729 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
730
731 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
732
733
734 ==== 2.3.3.3 Digital Input ====
735
736
737 The digital input for pin PB15,
738
739 * When PB15 is high, the bit 1 of payload byte 6 is 1.
740 * When PB15 is low, the bit 1 of payload byte 6 is 0.
741
742 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
743 (((
744 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
745
746 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
747
748
749 )))
750
751 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
752
753
754 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
755
756 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
757
758 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
759
760
761 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
762
763
764 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
765
766 [[image:image-20230811113449-1.png||height="370" width="608"]]
767
768
769
770 ==== 2.3.3.5 Digital Interrupt ====
771
772
773 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
774
775 (% style="color:blue" %)** Interrupt connection method:**
776
777 [[image:image-20230513105351-5.png||height="147" width="485"]]
778
779
780 (% style="color:blue" %)**Example to use with door sensor :**
781
782 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
783
784 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
785
786 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
787
788
789 (% style="color:blue" %)**Below is the installation example:**
790
791 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
792
793 * (((
794 One pin to SN50v3-LB/LS's PA8 pin
795 )))
796 * (((
797 The other pin to SN50v3-LB/LS's VDD pin
798 )))
799
800 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
801
802 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
803
804 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
805
806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
807
808 The above photos shows the two parts of the magnetic switch fitted to a door.
809
810 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
811
812 The command is:
813
814 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
815
816 Below shows some screen captures in TTN V3:
817
818 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
819
820
821 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
822
823 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
824
825
826 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
827
828
829 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
830
831 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
832
833 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
834
835
836 Below is the connection to SHT20/ SHT31. The connection is as below:
837
838 [[image:image-20230610170152-2.png||height="501" width="846"]]
839
840
841 The device will be able to get the I2C sensor data now and upload to IoT Server.
842
843 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
844
845 Convert the read byte to decimal and divide it by ten.
846
847 **Example:**
848
849 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
850
851 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
852
853 If you want to use other I2C device, please refer the SHT20 part source code as reference.
854
855
856 ==== 2.3.3.7  ​Distance Reading ====
857
858
859 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
860
861
862 ==== 2.3.3.8 Ultrasonic Sensor ====
863
864
865 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
866
867 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
868
869 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
870
871 The picture below shows the connection:
872
873 [[image:image-20230512173903-6.png||height="596" width="715"]]
874
875
876 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
877
878 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
879
880 **Example:**
881
882 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
883
884
885 ==== 2.3.3.9  Battery Output - BAT pin ====
886
887
888 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
889
890
891 ==== 2.3.3.10  +5V Output ====
892
893
894 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
895
896 The 5V output time can be controlled by AT Command.
897
898 (% style="color:blue" %)**AT+5VT=1000**
899
900 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
901
902 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
903
904
905 ==== 2.3.3.11  BH1750 Illumination Sensor ====
906
907
908 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
909
910 [[image:image-20230512172447-4.png||height="416" width="712"]]
911
912
913 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
914
915
916 ==== 2.3.3.12  PWM MOD ====
917
918
919 * (((
920 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
921 )))
922 * (((
923 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
924 )))
925
926 [[image:image-20230817183249-3.png||height="320" width="417"]]
927
928 * (((
929 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
930 )))
931 * (((
932 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
933 )))
934 * (((
935 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
936
937 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
938
939 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
940
941 b) If the output duration is more than 30 seconds, better to use external power source. 
942 )))
943
944 ==== 2.3.3.13  Working MOD ====
945
946
947 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
948
949 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
950
951 Case 7^^th^^ Byte >> 2 & 0x1f:
952
953 * 0: MOD1
954 * 1: MOD2
955 * 2: MOD3
956 * 3: MOD4
957 * 4: MOD5
958 * 5: MOD6
959 * 6: MOD7
960 * 7: MOD8
961 * 8: MOD9
962 * 9: MOD10
963
964 == 2.4 Payload Decoder file ==
965
966
967 In TTN, use can add a custom payload so it shows friendly reading
968
969 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
970
971 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
972
973
974 == 2.5 Frequency Plans ==
975
976
977 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
978
979 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
980
981
982 = 3. Configure SN50v3-LB/LS =
983
984 == 3.1 Configure Methods ==
985
986
987 SN50v3-LB/LS supports below configure method:
988
989 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
990 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
991 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
992
993 == 3.2 General Commands ==
994
995
996 These commands are to configure:
997
998 * General system settings like: uplink interval.
999 * LoRaWAN protocol & radio related command.
1000
1001 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1002
1003 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1004
1005
1006 == 3.3 Commands special design for SN50v3-LB/LS ==
1007
1008
1009 These commands only valid for SN50v3-LB/LS, as below:
1010
1011
1012 === 3.3.1 Set Transmit Interval Time ===
1013
1014
1015 Feature: Change LoRaWAN End Node Transmit Interval.
1016
1017 (% style="color:blue" %)**AT Command: AT+TDC**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1021 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1022 30000
1023 OK
1024 the interval is 30000ms = 30s
1025 )))
1026 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1027 OK
1028 Set transmit interval to 60000ms = 60 seconds
1029 )))
1030
1031 (% style="color:blue" %)**Downlink Command: 0x01**
1032
1033 Format: Command Code (0x01) followed by 3 bytes time value.
1034
1035 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1036
1037 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1038 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1039
1040 === 3.3.2 Get Device Status ===
1041
1042
1043 Send a LoRaWAN downlink to ask the device to send its status.
1044
1045 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1046
1047 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1048
1049
1050 === 3.3.3 Set Interrupt Mode ===
1051
1052
1053 Feature, Set Interrupt mode for GPIO_EXIT.
1054
1055 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1056
1057 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1058 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1059 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1060 0
1061 OK
1062 the mode is 0 =Disable Interrupt
1063 )))
1064 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1065 Set Transmit Interval
1066 0. (Disable Interrupt),
1067 ~1. (Trigger by rising and falling edge)
1068 2. (Trigger by falling edge)
1069 3. (Trigger by rising edge)
1070 )))|(% style="width:157px" %)OK
1071 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1072 Set Transmit Interval
1073 trigger by rising edge.
1074 )))|(% style="width:157px" %)OK
1075 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1076
1077 (% style="color:blue" %)**Downlink Command: 0x06**
1078
1079 Format: Command Code (0x06) followed by 3 bytes.
1080
1081 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1082
1083 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1084 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1085 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1087
1088 === 3.3.4 Set Power Output Duration ===
1089
1090
1091 Control the output duration 5V . Before each sampling, device will
1092
1093 ~1. first enable the power output to external sensor,
1094
1095 2. keep it on as per duration, read sensor value and construct uplink payload
1096
1097 3. final, close the power output.
1098
1099 (% style="color:blue" %)**AT Command: AT+5VT**
1100
1101 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1102 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1103 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1104 500(default)
1105 OK
1106 )))
1107 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1108 Close after a delay of 1000 milliseconds.
1109 )))|(% style="width:157px" %)OK
1110
1111 (% style="color:blue" %)**Downlink Command: 0x07**
1112
1113 Format: Command Code (0x07) followed by 2 bytes.
1114
1115 The first and second bytes are the time to turn on.
1116
1117 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1119
1120 === 3.3.5 Set Weighing parameters ===
1121
1122
1123 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1124
1125 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1126
1127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1128 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1129 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1130 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1131 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1132
1133 (% style="color:blue" %)**Downlink Command: 0x08**
1134
1135 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1136
1137 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1138
1139 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1140
1141 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1142 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1144
1145 === 3.3.6 Set Digital pulse count value ===
1146
1147
1148 Feature: Set the pulse count value.
1149
1150 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1151
1152 (% style="color:blue" %)**AT Command: AT+SETCNT**
1153
1154 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1155 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1156 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1157 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1158
1159 (% style="color:blue" %)**Downlink Command: 0x09**
1160
1161 Format: Command Code (0x09) followed by 5 bytes.
1162
1163 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1164
1165 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167
1168 === 3.3.7 Set Workmode ===
1169
1170
1171 Feature: Switch working mode.
1172
1173 (% style="color:blue" %)**AT Command: AT+MOD**
1174
1175 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1176 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1177 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1178 OK
1179 )))
1180 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1181 OK
1182 Attention:Take effect after ATZ
1183 )))
1184
1185 (% style="color:blue" %)**Downlink Command: 0x0A**
1186
1187 Format: Command Code (0x0A) followed by 1 bytes.
1188
1189 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191
1192 === 3.3.8 PWM setting ===
1193
1194
1195 Feature: Set the time acquisition unit for PWM input capture.
1196
1197 (% style="color:blue" %)**AT Command: AT+PWMSET**
1198
1199 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1200 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1201 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1202 0(default)
1203 OK
1204 )))
1205 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1206 OK
1207
1208 )))
1209 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1210
1211 (% style="color:blue" %)**Downlink Command: 0x0C**
1212
1213 Format: Command Code (0x0C) followed by 1 bytes.
1214
1215 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1216 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1217
1218 **Feature: Set PWM output time, output frequency and output duty cycle.**
1219
1220 (% style="color:blue" %)**AT Command: AT+PWMOUT**
1221
1222 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1223 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1224 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1225 0,0,0(default)
1226 OK
1227 )))
1228 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1229 OK
1230
1231 )))
1232 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1233 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1234
1235
1236 )))|(% style="width:137px" %)(((
1237 OK
1238 )))
1239
1240 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1241 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1242 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1243 AT+PWMOUT=a,b,c
1244
1245
1246 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1247 Set PWM output time, output frequency and output duty cycle.
1248
1249 (((
1250
1251 )))
1252
1253 (((
1254
1255 )))
1256 )))|(% style="width:242px" %)(((
1257 a: Output time (unit: seconds)
1258 The value ranges from 0 to 65535.
1259 When a=65535, PWM will always output.
1260 )))
1261 |(% style="width:242px" %)(((
1262 b: Output frequency (unit: HZ)
1263 )))
1264 |(% style="width:242px" %)(((
1265 c: Output duty cycle (unit: %)
1266 The value ranges from 0 to 100.
1267 )))
1268
1269 (% style="color:blue" %)**Downlink Command: 0x0B01**
1270
1271 Format: Command Code (0x0B01) followed by 6 bytes.
1272
1273 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1274
1275 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1276 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1277
1278 = 4. Battery & Power Cons =
1279
1280
1281 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1282
1283 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1284
1285
1286 = 5. OTA Firmware update =
1287
1288
1289 (% class="wikigeneratedid" %)
1290 **User can change firmware SN50v3-LB/LS to:**
1291
1292 * Change Frequency band/ region.
1293 * Update with new features.
1294 * Fix bugs.
1295
1296 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1297
1298 **Methods to Update Firmware:**
1299
1300 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1301 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1302
1303 = 6. FAQ =
1304
1305 == 6.1 Where can i find source code of SN50v3-LB/LS? ==
1306
1307
1308 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1309 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1310
1311 == 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1312
1313
1314 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1315
1316
1317 == 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1318
1319
1320 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1321
1322 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1323
1324 [[image:image-20230810121434-1.png||height="242" width="656"]]
1325
1326
1327 = 7. Order Info =
1328
1329
1330 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1331
1332 (% style="color:red" %)**XX**(%%): The default frequency band
1333
1334 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1335 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1336 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1337 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1338 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1339 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1340 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1341 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1342
1343 (% style="color:red" %)**YY: ** (%%)Hole Option
1344
1345 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1346 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1347 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1348 * (% style="color:red" %)**NH**(%%): No Hole
1349
1350 = 8. ​Packing Info =
1351
1352
1353 (% style="color:#037691" %)**Package Includes**:
1354
1355 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1356
1357 (% style="color:#037691" %)**Dimension and weight**:
1358
1359 * Device Size: cm
1360 * Device Weight: g
1361 * Package Size / pcs : cm
1362 * Weight / pcs : g
1363
1364 = 9. Support =
1365
1366
1367 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1368
1369 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0