Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30 == 1.2 ​Features ==
31
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230610163213-1.png||height="404" width="699"]]
126
127
128 == 1.8 Mechanical ==
129
130 == 1.8.1 for LB version ==
131
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138 == 1.8.2 for LS version ==
139
140 [[image:image-20231231203439-3.png||height="385" width="886"]]
141
142
143 == 1.9 Hole Option ==
144
145
146 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147
148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
151
152
153 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
154
155 == 2.1 How it works ==
156
157
158 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
159
160
161 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
162
163
164 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
165
166 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
167
168
169 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
170
171 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
172
173 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
174
175
176 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
177
178
179 (% style="color:blue" %)**Register the device**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI and DEV EUI**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI in the application**
190
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
193
194
195 (% style="color:blue" %)**Add APP KEY**
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
198
199
200 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
201
202
203 Press the button for 5 seconds to activate the SN50v3-LB.
204
205 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
206
207 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
208
209
210 == 2.3 ​Uplink Payload ==
211
212 === 2.3.1 Device Status, FPORT~=5 ===
213
214
215 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
216
217 The Payload format is as below.
218
219
220 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
222 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
223 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
224
225 Example parse in TTNv3
226
227
228 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
229
230 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
231
232 (% style="color:#037691" %)**Frequency Band**:
233
234 0x01: EU868
235
236 0x02: US915
237
238 0x03: IN865
239
240 0x04: AU915
241
242 0x05: KZ865
243
244 0x06: RU864
245
246 0x07: AS923
247
248 0x08: AS923-1
249
250 0x09: AS923-2
251
252 0x0a: AS923-3
253
254 0x0b: CN470
255
256 0x0c: EU433
257
258 0x0d: KR920
259
260 0x0e: MA869
261
262
263 (% style="color:#037691" %)**Sub-Band**:
264
265 AU915 and US915:value 0x00 ~~ 0x08
266
267 CN470: value 0x0B ~~ 0x0C
268
269 Other Bands: Always 0x00
270
271
272 (% style="color:#037691" %)**Battery Info**:
273
274 Check the battery voltage.
275
276 Ex1: 0x0B45 = 2885mV
277
278 Ex2: 0x0B49 = 2889mV
279
280
281 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
282
283
284 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
285
286 For example:
287
288 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
289
290
291 (% style="color:red" %) **Important Notice:**
292
293 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
294
295 2. All modes share the same Payload Explanation from HERE.
296
297 3. By default, the device will send an uplink message every 20 minutes.
298
299
300 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
301
302
303 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
304
305 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 |Value|Bat|(% style="width:191px" %)(((
308 Temperature(DS18B20)(PC13)
309 )))|(% style="width:78px" %)(((
310 ADC(PA4)
311 )))|(% style="width:216px" %)(((
312 Digital in(PB15)&Digital Interrupt(PA8)
313 )))|(% style="width:308px" %)(((
314 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
315 )))|(% style="width:154px" %)(((
316 Humidity(SHT20 or SHT31)
317 )))
318
319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320
321
322 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323
324
325 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326
327 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 |Value|BAT|(% style="width:196px" %)(((
330 Temperature(DS18B20)(PC13)
331 )))|(% style="width:87px" %)(((
332 ADC(PA4)
333 )))|(% style="width:189px" %)(((
334 Digital in(PB15) & Digital Interrupt(PA8)
335 )))|(% style="width:208px" %)(((
336 Distance measure by: 1) LIDAR-Lite V3HP
337 Or 2) Ultrasonic Sensor
338 )))|(% style="width:117px" %)Reserved
339
340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
341
342
343 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344
345 [[image:image-20230512173758-5.png||height="563" width="712"]]
346
347
348 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349
350 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351
352 [[image:image-20230512173903-6.png||height="596" width="715"]]
353
354
355 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356
357 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 |Value|BAT|(% style="width:183px" %)(((
360 Temperature(DS18B20)(PC13)
361 )))|(% style="width:173px" %)(((
362 Digital in(PB15) & Digital Interrupt(PA8)
363 )))|(% style="width:84px" %)(((
364 ADC(PA4)
365 )))|(% style="width:323px" %)(((
366 Distance measure by:1)TF-Mini plus LiDAR
367 Or 2) TF-Luna LiDAR
368 )))|(% style="width:188px" %)Distance signal  strength
369
370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
371
372
373 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
374
375 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
376
377 [[image:image-20230512180609-7.png||height="555" width="802"]]
378
379
380 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381
382 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
383
384 [[image:image-20230610170047-1.png||height="452" width="799"]]
385
386
387 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388
389
390 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
394 **Size(bytes)**
395 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 |Value|(% style="width:68px" %)(((
397 ADC1(PA4)
398 )))|(% style="width:75px" %)(((
399 ADC2(PA5)
400 )))|(((
401 ADC3(PA8)
402 )))|(((
403 Digital Interrupt(PB15)
404 )))|(% style="width:304px" %)(((
405 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
406 )))|(% style="width:163px" %)(((
407 Humidity(SHT20 or SHT31)
408 )))|(% style="width:53px" %)Bat
409
410 [[image:image-20230513110214-6.png]]
411
412
413 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
414
415
416 This mode has total 11 bytes. As shown below:
417
418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 |Value|BAT|(% style="width:186px" %)(((
421 Temperature1(DS18B20)(PC13)
422 )))|(% style="width:82px" %)(((
423 ADC(PA4)
424 )))|(% style="width:210px" %)(((
425 Digital in(PB15) & Digital Interrupt(PA8) 
426 )))|(% style="width:191px" %)Temperature2(DS18B20)
427 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
428
429 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
430
431
432 [[image:image-20230513134006-1.png||height="559" width="736"]]
433
434
435 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
436
437
438 [[image:image-20230512164658-2.png||height="532" width="729"]]
439
440 Each HX711 need to be calibrated before used. User need to do below two steps:
441
442 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
443 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
444 1. (((
445 Weight has 4 bytes, the unit is g.
446
447
448
449 )))
450
451 For example:
452
453 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
454
455 Response:  Weight is 401 g
456
457 Check the response of this command and adjust the value to match the real value for thing.
458
459 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
461 **Size(bytes)**
462 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 |Value|BAT|(% style="width:193px" %)(((
464 Temperature(DS18B20)(PC13)
465 )))|(% style="width:85px" %)(((
466 ADC(PA4)
467 )))|(% style="width:186px" %)(((
468 Digital in(PB15) & Digital Interrupt(PA8)
469 )))|(% style="width:100px" %)Weight
470
471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472
473
474 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475
476
477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478
479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
480
481 [[image:image-20230512181814-9.png||height="543" width="697"]]
482
483
484 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485
486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 |Value|BAT|(% style="width:256px" %)(((
489 Temperature(DS18B20)(PC13)
490 )))|(% style="width:108px" %)(((
491 ADC(PA4)
492 )))|(% style="width:126px" %)(((
493 Digital in(PB15)
494 )))|(% style="width:145px" %)(((
495 Count(PA8)
496 )))
497
498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
499
500
501 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
502
503
504 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 **Size(bytes)**
507 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 |Value|BAT|(% style="width:188px" %)(((
509 Temperature(DS18B20)
510 (PC13)
511 )))|(% style="width:83px" %)(((
512 ADC(PA5)
513 )))|(% style="width:184px" %)(((
514 Digital Interrupt1(PA8)
515 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
516
517 [[image:image-20230513111203-7.png||height="324" width="975"]]
518
519
520 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
521
522
523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 **Size(bytes)**
526 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 |Value|BAT|(% style="width:207px" %)(((
528 Temperature(DS18B20)
529 (PC13)
530 )))|(% style="width:94px" %)(((
531 ADC1(PA4)
532 )))|(% style="width:198px" %)(((
533 Digital Interrupt(PB15)
534 )))|(% style="width:84px" %)(((
535 ADC2(PA5)
536 )))|(% style="width:82px" %)(((
537 ADC3(PA8)
538 )))
539
540 [[image:image-20230513111231-8.png||height="335" width="900"]]
541
542
543 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544
545
546 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
548 **Size(bytes)**
549 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 |Value|BAT|(((
551 Temperature
552 (DS18B20)(PC13)
553 )))|(((
554 Temperature2
555 (DS18B20)(PB9)
556 )))|(((
557 Digital Interrupt
558 (PB15)
559 )))|(% style="width:193px" %)(((
560 Temperature3
561 (DS18B20)(PB8)
562 )))|(% style="width:78px" %)(((
563 Count1(PA8)
564 )))|(% style="width:78px" %)(((
565 Count2(PA4)
566 )))
567
568 [[image:image-20230513111255-9.png||height="341" width="899"]]
569
570 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
571
572 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
573
574 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
575
576 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
577
578
579 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
580
581 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
582
583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584
585
586 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
587
588 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589
590 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
591
592 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
593
594
595 ===== 2.3.2.10.a  Uplink, PWM input capture =====
596
597
598 [[image:image-20230817172209-2.png||height="439" width="683"]]
599
600 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
602 |Value|Bat|(% style="width:191px" %)(((
603 Temperature(DS18B20)(PC13)
604 )))|(% style="width:78px" %)(((
605 ADC(PA4)
606 )))|(% style="width:135px" %)(((
607 PWM_Setting
608 &Digital Interrupt(PA8)
609 )))|(% style="width:70px" %)(((
610 Pulse period
611 )))|(% style="width:89px" %)(((
612 Duration of high level
613 )))
614
615 [[image:image-20230817170702-1.png||height="161" width="1044"]]
616
617
618 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
619
620 **Frequency:**
621
622 (% class="MsoNormal" %)
623 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
624
625 (% class="MsoNormal" %)
626 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
627
628
629 (% class="MsoNormal" %)
630 **Duty cycle:**
631
632 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
633
634 [[image:image-20230818092200-1.png||height="344" width="627"]]
635
636 ===== 2.3.2.10.b  Uplink, PWM output =====
637
638 [[image:image-20230817172209-2.png||height="439" width="683"]]
639
640 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
641
642 a is the time delay of the output, the unit is ms.
643
644 b is the output frequency, the unit is HZ.
645
646 c is the duty cycle of the output, the unit is %.
647
648 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
649
650 aa is the time delay of the output, the unit is ms.
651
652 bb is the output frequency, the unit is HZ.
653
654 cc is the duty cycle of the output, the unit is %.
655
656
657 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658
659 The oscilloscope displays as follows:
660
661 [[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662
663
664 ===== 2.3.2.10.c  Downlink, PWM output =====
665
666
667 [[image:image-20230817173800-3.png||height="412" width="685"]]
668
669 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
670
671 xx xx xx is the output frequency, the unit is HZ.
672
673 yy is the duty cycle of the output, the unit is %.
674
675 zz zz is the time delay of the output, the unit is ms.
676
677
678 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
679
680 The oscilloscope displays as follows:
681
682 [[image:image-20230817173858-5.png||height="694" width="921"]]
683
684
685 === 2.3.3  ​Decode payload ===
686
687
688 While using TTN V3 network, you can add the payload format to decode the payload.
689
690 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
691
692 The payload decoder function for TTN V3 are here:
693
694 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
695
696
697 ==== 2.3.3.1 Battery Info ====
698
699
700 Check the battery voltage for SN50v3-LB.
701
702 Ex1: 0x0B45 = 2885mV
703
704 Ex2: 0x0B49 = 2889mV
705
706
707 ==== 2.3.3.2  Temperature (DS18B20) ====
708
709
710 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
711
712 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
713
714 (% style="color:blue" %)**Connection:**
715
716 [[image:image-20230512180718-8.png||height="538" width="647"]]
717
718
719 (% style="color:blue" %)**Example**:
720
721 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
722
723 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
724
725 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
726
727
728 ==== 2.3.3.3 Digital Input ====
729
730
731 The digital input for pin PB15,
732
733 * When PB15 is high, the bit 1 of payload byte 6 is 1.
734 * When PB15 is low, the bit 1 of payload byte 6 is 0.
735
736 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
737 (((
738 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
739
740 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
741
742
743 )))
744
745 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
746
747
748 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
749
750 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
751
752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
753
754
755 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
756
757
758 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
759
760 [[image:image-20230811113449-1.png||height="370" width="608"]]
761
762 ==== 2.3.3.5 Digital Interrupt ====
763
764
765 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
766
767 (% style="color:blue" %)** Interrupt connection method:**
768
769 [[image:image-20230513105351-5.png||height="147" width="485"]]
770
771
772 (% style="color:blue" %)**Example to use with door sensor :**
773
774 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
775
776 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
777
778 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
779
780
781 (% style="color:blue" %)**Below is the installation example:**
782
783 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
784
785 * (((
786 One pin to SN50v3-LB's PA8 pin
787 )))
788 * (((
789 The other pin to SN50v3-LB's VDD pin
790 )))
791
792 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
793
794 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
795
796 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
797
798 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
799
800 The above photos shows the two parts of the magnetic switch fitted to a door.
801
802 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
803
804 The command is:
805
806 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
807
808 Below shows some screen captures in TTN V3:
809
810 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
811
812
813 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
814
815 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
816
817
818 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
819
820
821 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
822
823 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
824
825 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
826
827
828 Below is the connection to SHT20/ SHT31. The connection is as below:
829
830 [[image:image-20230610170152-2.png||height="501" width="846"]]
831
832
833 The device will be able to get the I2C sensor data now and upload to IoT Server.
834
835 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
836
837 Convert the read byte to decimal and divide it by ten.
838
839 **Example:**
840
841 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
842
843 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
844
845 If you want to use other I2C device, please refer the SHT20 part source code as reference.
846
847
848 ==== 2.3.3.7  ​Distance Reading ====
849
850
851 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
852
853
854 ==== 2.3.3.8 Ultrasonic Sensor ====
855
856
857 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
858
859 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
860
861 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
862
863 The picture below shows the connection:
864
865 [[image:image-20230512173903-6.png||height="596" width="715"]]
866
867
868 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
869
870 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
871
872 **Example:**
873
874 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
875
876
877 ==== 2.3.3.9  Battery Output - BAT pin ====
878
879
880 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
881
882
883 ==== 2.3.3.10  +5V Output ====
884
885
886 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
887
888 The 5V output time can be controlled by AT Command.
889
890 (% style="color:blue" %)**AT+5VT=1000**
891
892 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
893
894 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
895
896
897 ==== 2.3.3.11  BH1750 Illumination Sensor ====
898
899
900 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
901
902 [[image:image-20230512172447-4.png||height="416" width="712"]]
903
904
905 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
906
907
908 ==== 2.3.3.12  PWM MOD ====
909
910
911 * (((
912 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
913 )))
914 * (((
915 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
916 )))
917
918 [[image:image-20230817183249-3.png||height="320" width="417"]]
919
920 * (((
921 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
922 )))
923 * (((
924 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
925 )))
926 * (((
927 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
928
929 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930
931 a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
932
933 b) If the output duration is more than 30 seconds, better to use external power source. 
934
935
936
937 )))
938
939 ==== 2.3.3.13  Working MOD ====
940
941
942 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
943
944 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
945
946 Case 7^^th^^ Byte >> 2 & 0x1f:
947
948 * 0: MOD1
949 * 1: MOD2
950 * 2: MOD3
951 * 3: MOD4
952 * 4: MOD5
953 * 5: MOD6
954 * 6: MOD7
955 * 7: MOD8
956 * 8: MOD9
957 * 9: MOD10
958
959 == 2.4 Payload Decoder file ==
960
961
962 In TTN, use can add a custom payload so it shows friendly reading
963
964 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
965
966 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
967
968
969 == 2.5 Frequency Plans ==
970
971
972 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
973
974 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
975
976
977 = 3. Configure SN50v3-LB =
978
979 == 3.1 Configure Methods ==
980
981
982 SN50v3-LB supports below configure method:
983
984 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
985 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
986 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
987
988 == 3.2 General Commands ==
989
990
991 These commands are to configure:
992
993 * General system settings like: uplink interval.
994 * LoRaWAN protocol & radio related command.
995
996 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
997
998 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
999
1000
1001 == 3.3 Commands special design for SN50v3-LB ==
1002
1003
1004 These commands only valid for SN50v3-LB, as below:
1005
1006
1007 === 3.3.1 Set Transmit Interval Time ===
1008
1009
1010 Feature: Change LoRaWAN End Node Transmit Interval.
1011
1012 (% style="color:blue" %)**AT Command: AT+TDC**
1013
1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1015 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1016 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1017 30000
1018 OK
1019 the interval is 30000ms = 30s
1020 )))
1021 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1022 OK
1023 Set transmit interval to 60000ms = 60 seconds
1024 )))
1025
1026 (% style="color:blue" %)**Downlink Command: 0x01**
1027
1028 Format: Command Code (0x01) followed by 3 bytes time value.
1029
1030 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1031
1032 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1033 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1034
1035 === 3.3.2 Get Device Status ===
1036
1037
1038 Send a LoRaWAN downlink to ask the device to send its status.
1039
1040 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1041
1042 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1043
1044
1045 === 3.3.3 Set Interrupt Mode ===
1046
1047
1048 Feature, Set Interrupt mode for GPIO_EXIT.
1049
1050 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1051
1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1054 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1055 0
1056 OK
1057 the mode is 0 =Disable Interrupt
1058 )))
1059 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1060 Set Transmit Interval
1061 0. (Disable Interrupt),
1062 ~1. (Trigger by rising and falling edge)
1063 2. (Trigger by falling edge)
1064 3. (Trigger by rising edge)
1065 )))|(% style="width:157px" %)OK
1066 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1067 Set Transmit Interval
1068 trigger by rising edge.
1069 )))|(% style="width:157px" %)OK
1070 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1071
1072 (% style="color:blue" %)**Downlink Command: 0x06**
1073
1074 Format: Command Code (0x06) followed by 3 bytes.
1075
1076 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1077
1078 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1079 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1080 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1081 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1082
1083 === 3.3.4 Set Power Output Duration ===
1084
1085
1086 Control the output duration 5V . Before each sampling, device will
1087
1088 ~1. first enable the power output to external sensor,
1089
1090 2. keep it on as per duration, read sensor value and construct uplink payload
1091
1092 3. final, close the power output.
1093
1094 (% style="color:blue" %)**AT Command: AT+5VT**
1095
1096 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1097 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1098 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1099 500(default)
1100 OK
1101 )))
1102 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1103 Close after a delay of 1000 milliseconds.
1104 )))|(% style="width:157px" %)OK
1105
1106 (% style="color:blue" %)**Downlink Command: 0x07**
1107
1108 Format: Command Code (0x07) followed by 2 bytes.
1109
1110 The first and second bytes are the time to turn on.
1111
1112 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1113 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1114
1115 === 3.3.5 Set Weighing parameters ===
1116
1117
1118 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1119
1120 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1121
1122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1123 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1124 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1125 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1126 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1127
1128 (% style="color:blue" %)**Downlink Command: 0x08**
1129
1130 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1131
1132 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1133
1134 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1135
1136 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1137 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1138 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1139
1140 === 3.3.6 Set Digital pulse count value ===
1141
1142
1143 Feature: Set the pulse count value.
1144
1145 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1146
1147 (% style="color:blue" %)**AT Command: AT+SETCNT**
1148
1149 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1150 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1151 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1152 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1153
1154 (% style="color:blue" %)**Downlink Command: 0x09**
1155
1156 Format: Command Code (0x09) followed by 5 bytes.
1157
1158 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1159
1160 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1161 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1162
1163 === 3.3.7 Set Workmode ===
1164
1165
1166 Feature: Switch working mode.
1167
1168 (% style="color:blue" %)**AT Command: AT+MOD**
1169
1170 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1173 OK
1174 )))
1175 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1176 OK
1177 Attention:Take effect after ATZ
1178 )))
1179
1180 (% style="color:blue" %)**Downlink Command: 0x0A**
1181
1182 Format: Command Code (0x0A) followed by 1 bytes.
1183
1184 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1185 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1186
1187 (% id="H3.3.8PWMsetting" %)
1188 === 3.3.8 PWM setting ===
1189
1190
1191 (% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1192
1193 (% style="color:blue" %)**AT Command: AT+PWMSET**
1194
1195 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1198 0(default)
1199
1200 OK
1201 )))
1202 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1203 OK
1204
1205 )))
1206 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1207
1208 (% style="color:blue" %)**Downlink Command: 0x0C**
1209
1210 Format: Command Code (0x0C) followed by 1 bytes.
1211
1212 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214
1215 (% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1216
1217 (% style="color:blue" %)**AT Command: AT+PWMOUT**
1218
1219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 |=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 0,0,0(default)
1223
1224 OK
1225 )))
1226 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1227 OK
1228
1229 )))
1230 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1232
1233
1234 )))|(% style="width:137px" %)(((
1235 OK
1236 )))
1237
1238 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 |=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 AT+PWMOUT=a,b,c
1242
1243
1244 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1245 Set PWM output time, output frequency and output duty cycle.
1246
1247 (((
1248
1249 )))
1250
1251 (((
1252
1253 )))
1254 )))|(% style="width:242px" %)(((
1255 a: Output time (unit: seconds)
1256
1257 The value ranges from 0 to 65535.
1258
1259 When a=65535, PWM will always output.
1260 )))
1261 |(% style="width:242px" %)(((
1262 b: Output frequency (unit: HZ)
1263 )))
1264 |(% style="width:242px" %)(((
1265 c: Output duty cycle (unit: %)
1266
1267 The value ranges from 0 to 100.
1268 )))
1269
1270 (% style="color:blue" %)**Downlink Command: 0x0B01**
1271
1272 Format: Command Code (0x0B01) followed by 6 bytes.
1273
1274 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275
1276 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1278
1279 = 4. Battery & Power Cons =
1280
1281
1282 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1283
1284 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1285
1286
1287 = 5. OTA Firmware update =
1288
1289
1290 (% class="wikigeneratedid" %)
1291 **User can change firmware SN50v3-LB to:**
1292
1293 * Change Frequency band/ region.
1294 * Update with new features.
1295 * Fix bugs.
1296
1297 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1298
1299 **Methods to Update Firmware:**
1300
1301 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1302 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1303
1304 = 6. FAQ =
1305
1306 == 6.1 Where can i find source code of SN50v3-LB? ==
1307
1308
1309 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1310 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1311
1312 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1313
1314
1315 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316
1317
1318 == 6.3 How to put several sensors to a SN50v3-LB? ==
1319
1320
1321 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322
1323 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324
1325 [[image:image-20230810121434-1.png||height="242" width="656"]]
1326
1327
1328 = 7. Order Info =
1329
1330
1331 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1332
1333 (% style="color:red" %)**XX**(%%): The default frequency band
1334
1335 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1336 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1337 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1338 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1339 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1340 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1341 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1342 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1343
1344 (% style="color:red" %)**YY: ** (%%)Hole Option
1345
1346 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1347 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1348 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1349 * (% style="color:red" %)**NH**(%%): No Hole
1350
1351 = 8. ​Packing Info =
1352
1353
1354 (% style="color:#037691" %)**Package Includes**:
1355
1356 * SN50v3-LB LoRaWAN Generic Node
1357
1358 (% style="color:#037691" %)**Dimension and weight**:
1359
1360 * Device Size: cm
1361 * Device Weight: g
1362 * Package Size / pcs : cm
1363 * Weight / pcs : g
1364
1365 = 9. Support =
1366
1367
1368 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1369
1370 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0