Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30 == 1.2 ​Features ==
31
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230610163213-1.png||height="404" width="699"]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == 1.9 Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 0x01: EU868
230
231 0x02: US915
232
233 0x03: IN865
234
235 0x04: AU915
236
237 0x05: KZ865
238
239 0x06: RU864
240
241 0x07: AS923
242
243 0x08: AS923-1
244
245 0x09: AS923-2
246
247 0x0a: AS923-3
248
249 0x0b: CN470
250
251 0x0c: EU433
252
253 0x0d: KR920
254
255 0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280
281 For example:
282
283 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
289
290 2. All modes share the same Payload Explanation from HERE.
291
292 3. By default, the device will send an uplink message every 20 minutes.
293
294
295 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
296
297
298 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 |Value|Bat|(% style="width:191px" %)(((
303 Temperature(DS18B20)(PC13)
304 )))|(% style="width:78px" %)(((
305 ADC(PA4)
306 )))|(% style="width:216px" %)(((
307 Digital in(PB15)&Digital Interrupt(PA8)
308 )))|(% style="width:308px" %)(((
309 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
310 )))|(% style="width:154px" %)(((
311 Humidity(SHT20 or SHT31)
312 )))
313
314 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315
316
317 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318
319
320 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321
322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 |Value|BAT|(% style="width:196px" %)(((
325 Temperature(DS18B20)(PC13)
326 )))|(% style="width:87px" %)(((
327 ADC(PA4)
328 )))|(% style="width:189px" %)(((
329 Digital in(PB15) & Digital Interrupt(PA8)
330 )))|(% style="width:208px" %)(((
331 Distance measure by: 1) LIDAR-Lite V3HP
332 Or 2) Ultrasonic Sensor
333 )))|(% style="width:117px" %)Reserved
334
335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336
337
338 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339
340 [[image:image-20230512173758-5.png||height="563" width="712"]]
341
342
343 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344
345 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
346
347 [[image:image-20230512173903-6.png||height="596" width="715"]]
348
349
350 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351
352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 |Value|BAT|(% style="width:183px" %)(((
355 Temperature(DS18B20)(PC13)
356 )))|(% style="width:173px" %)(((
357 Digital in(PB15) & Digital Interrupt(PA8)
358 )))|(% style="width:84px" %)(((
359 ADC(PA4)
360 )))|(% style="width:323px" %)(((
361 Distance measure by:1)TF-Mini plus LiDAR
362 Or 2) TF-Luna LiDAR
363 )))|(% style="width:188px" %)Distance signal  strength
364
365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366
367
368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369
370 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
371
372 [[image:image-20230512180609-7.png||height="555" width="802"]]
373
374
375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376
377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378
379 [[image:image-20230610170047-1.png||height="452" width="799"]]
380
381
382 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383
384
385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386
387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 **Size(bytes)**
390 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 |Value|(% style="width:68px" %)(((
392 ADC1(PA4)
393 )))|(% style="width:75px" %)(((
394 ADC2(PA5)
395 )))|(((
396 ADC3(PA8)
397 )))|(((
398 Digital Interrupt(PB15)
399 )))|(% style="width:304px" %)(((
400 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 )))|(% style="width:163px" %)(((
402 Humidity(SHT20 or SHT31)
403 )))|(% style="width:53px" %)Bat
404
405 [[image:image-20230513110214-6.png]]
406
407
408 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409
410
411 This mode has total 11 bytes. As shown below:
412
413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 |Value|BAT|(% style="width:186px" %)(((
416 Temperature1(DS18B20)(PC13)
417 )))|(% style="width:82px" %)(((
418 ADC(PA4)
419 )))|(% style="width:210px" %)(((
420 Digital in(PB15) & Digital Interrupt(PA8) 
421 )))|(% style="width:191px" %)Temperature2(DS18B20)
422 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423
424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425
426
427 [[image:image-20230513134006-1.png||height="559" width="736"]]
428
429
430 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431
432
433 [[image:image-20230512164658-2.png||height="532" width="729"]]
434
435 Each HX711 need to be calibrated before used. User need to do below two steps:
436
437 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
439 1. (((
440 Weight has 4 bytes, the unit is g.
441
442
443
444 )))
445
446 For example:
447
448 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
449
450 Response:  Weight is 401 g
451
452 Check the response of this command and adjust the value to match the real value for thing.
453
454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
456 **Size(bytes)**
457 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 |Value|BAT|(% style="width:193px" %)(((
459 Temperature(DS18B20)(PC13)
460 )))|(% style="width:85px" %)(((
461 ADC(PA4)
462 )))|(% style="width:186px" %)(((
463 Digital in(PB15) & Digital Interrupt(PA8)
464 )))|(% style="width:100px" %)Weight
465
466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467
468
469 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470
471
472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473
474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475
476 [[image:image-20230512181814-9.png||height="543" width="697"]]
477
478
479 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 |Value|BAT|(% style="width:256px" %)(((
484 Temperature(DS18B20)(PC13)
485 )))|(% style="width:108px" %)(((
486 ADC(PA4)
487 )))|(% style="width:126px" %)(((
488 Digital in(PB15)
489 )))|(% style="width:145px" %)(((
490 Count(PA8)
491 )))
492
493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494
495
496 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497
498
499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 **Size(bytes)**
502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 |Value|BAT|(% style="width:188px" %)(((
504 Temperature(DS18B20)
505 (PC13)
506 )))|(% style="width:83px" %)(((
507 ADC(PA5)
508 )))|(% style="width:184px" %)(((
509 Digital Interrupt1(PA8)
510 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
511
512 [[image:image-20230513111203-7.png||height="324" width="975"]]
513
514
515 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516
517
518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 **Size(bytes)**
521 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 |Value|BAT|(% style="width:207px" %)(((
523 Temperature(DS18B20)
524 (PC13)
525 )))|(% style="width:94px" %)(((
526 ADC1(PA4)
527 )))|(% style="width:198px" %)(((
528 Digital Interrupt(PB15)
529 )))|(% style="width:84px" %)(((
530 ADC2(PA5)
531 )))|(% style="width:82px" %)(((
532 ADC3(PA8)
533 )))
534
535 [[image:image-20230513111231-8.png||height="335" width="900"]]
536
537
538 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 **Size(bytes)**
544 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 |Value|BAT|(((
546 Temperature
547 (DS18B20)(PC13)
548 )))|(((
549 Temperature2
550 (DS18B20)(PB9)
551 )))|(((
552 Digital Interrupt
553 (PB15)
554 )))|(% style="width:193px" %)(((
555 Temperature3
556 (DS18B20)(PB8)
557 )))|(% style="width:78px" %)(((
558 Count1(PA8)
559 )))|(% style="width:78px" %)(((
560 Count2(PA4)
561 )))
562
563 [[image:image-20230513111255-9.png||height="341" width="899"]]
564
565 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566
567 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568
569 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570
571 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572
573
574 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
575
576 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
577
578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579
580
581 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582
583 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584
585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586
587 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588
589
590 ===== 2.3.2.10.a  Uplink, PWM input capture =====
591
592
593 [[image:image-20230817172209-2.png||height="439" width="683"]]
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
596 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
597 |Value|Bat|(% style="width:191px" %)(((
598 Temperature(DS18B20)(PC13)
599 )))|(% style="width:78px" %)(((
600 ADC(PA4)
601 )))|(% style="width:135px" %)(((
602 PWM_Setting
603 &Digital Interrupt(PA8)
604 )))|(% style="width:70px" %)(((
605 Pulse period
606 )))|(% style="width:89px" %)(((
607 Duration of high level
608 )))
609
610 [[image:image-20230817170702-1.png||height="161" width="1044"]]
611
612
613 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614
615 **Frequency:**
616
617 (% class="MsoNormal" %)
618 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
619
620 (% class="MsoNormal" %)
621 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
622
623
624 (% class="MsoNormal" %)
625 **Duty cycle:**
626
627 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628
629 [[image:image-20230818092200-1.png||height="344" width="627"]]
630
631 ===== 2.3.2.10.b  Uplink, PWM output =====
632
633 [[image:image-20230817172209-2.png||height="439" width="683"]]
634
635 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
636
637 a is the time delay of the output, the unit is ms.
638
639 b is the output frequency, the unit is HZ.
640
641 c is the duty cycle of the output, the unit is %.
642
643 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
644
645 aa is the time delay of the output, the unit is ms.
646
647 bb is the output frequency, the unit is HZ.
648
649 cc is the duty cycle of the output, the unit is %.
650
651
652 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
653
654 The oscilloscope displays as follows:
655
656 [[image:image-20231213102404-1.jpeg||height="780" width="932"]]
657
658
659 ===== 2.3.2.10.c  Downlink, PWM output =====
660
661
662 [[image:image-20230817173800-3.png||height="412" width="685"]]
663
664 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
665
666 xx xx xx is the output frequency, the unit is HZ.
667
668 yy is the duty cycle of the output, the unit is %.
669
670 zz zz is the time delay of the output, the unit is ms.
671
672
673 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
674
675 The oscilloscope displays as follows:
676
677 [[image:image-20230817173858-5.png||height="694" width="921"]]
678
679
680 === 2.3.3  ​Decode payload ===
681
682
683 While using TTN V3 network, you can add the payload format to decode the payload.
684
685 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
686
687 The payload decoder function for TTN V3 are here:
688
689 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
690
691
692 ==== 2.3.3.1 Battery Info ====
693
694
695 Check the battery voltage for SN50v3-LB.
696
697 Ex1: 0x0B45 = 2885mV
698
699 Ex2: 0x0B49 = 2889mV
700
701
702 ==== 2.3.3.2  Temperature (DS18B20) ====
703
704
705 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
706
707 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
708
709 (% style="color:blue" %)**Connection:**
710
711 [[image:image-20230512180718-8.png||height="538" width="647"]]
712
713
714 (% style="color:blue" %)**Example**:
715
716 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
717
718 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
719
720 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
721
722
723 ==== 2.3.3.3 Digital Input ====
724
725
726 The digital input for pin PB15,
727
728 * When PB15 is high, the bit 1 of payload byte 6 is 1.
729 * When PB15 is low, the bit 1 of payload byte 6 is 0.
730
731 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
732 (((
733 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
734
735 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
736
737
738 )))
739
740 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
741
742
743 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
744
745 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
746
747 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
748
749
750 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
751
752
753 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
754
755 [[image:image-20230811113449-1.png||height="370" width="608"]]
756
757 ==== 2.3.3.5 Digital Interrupt ====
758
759
760 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
761
762 (% style="color:blue" %)** Interrupt connection method:**
763
764 [[image:image-20230513105351-5.png||height="147" width="485"]]
765
766
767 (% style="color:blue" %)**Example to use with door sensor :**
768
769 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
770
771 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
772
773 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
774
775
776 (% style="color:blue" %)**Below is the installation example:**
777
778 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
779
780 * (((
781 One pin to SN50v3-LB's PA8 pin
782 )))
783 * (((
784 The other pin to SN50v3-LB's VDD pin
785 )))
786
787 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
788
789 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
790
791 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
792
793 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
794
795 The above photos shows the two parts of the magnetic switch fitted to a door.
796
797 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
798
799 The command is:
800
801 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
802
803 Below shows some screen captures in TTN V3:
804
805 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
806
807
808 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
809
810 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
811
812
813 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
814
815
816 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
817
818 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
819
820 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
821
822
823 Below is the connection to SHT20/ SHT31. The connection is as below:
824
825 [[image:image-20230610170152-2.png||height="501" width="846"]]
826
827
828 The device will be able to get the I2C sensor data now and upload to IoT Server.
829
830 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
831
832 Convert the read byte to decimal and divide it by ten.
833
834 **Example:**
835
836 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
837
838 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
839
840 If you want to use other I2C device, please refer the SHT20 part source code as reference.
841
842
843 ==== 2.3.3.7  ​Distance Reading ====
844
845
846 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
847
848
849 ==== 2.3.3.8 Ultrasonic Sensor ====
850
851
852 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
853
854 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
855
856 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
857
858 The picture below shows the connection:
859
860 [[image:image-20230512173903-6.png||height="596" width="715"]]
861
862
863 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
864
865 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
866
867 **Example:**
868
869 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
870
871
872 ==== 2.3.3.9  Battery Output - BAT pin ====
873
874
875 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
876
877
878 ==== 2.3.3.10  +5V Output ====
879
880
881 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
882
883 The 5V output time can be controlled by AT Command.
884
885 (% style="color:blue" %)**AT+5VT=1000**
886
887 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
888
889 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
890
891
892 ==== 2.3.3.11  BH1750 Illumination Sensor ====
893
894
895 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
896
897 [[image:image-20230512172447-4.png||height="416" width="712"]]
898
899
900 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
901
902
903 ==== 2.3.3.12  PWM MOD ====
904
905
906 * (((
907 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
908 )))
909 * (((
910 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
911 )))
912
913 [[image:image-20230817183249-3.png||height="320" width="417"]]
914
915 * (((
916 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
917 )))
918 * (((
919 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
920 )))
921 * (((
922 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
923
924 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
925
926 a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
927
928 b) If the output duration is more than 30 seconds, better to use external power source. 
929
930
931
932 )))
933
934 ==== 2.3.3.13  Working MOD ====
935
936
937 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
938
939 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
940
941 Case 7^^th^^ Byte >> 2 & 0x1f:
942
943 * 0: MOD1
944 * 1: MOD2
945 * 2: MOD3
946 * 3: MOD4
947 * 4: MOD5
948 * 5: MOD6
949 * 6: MOD7
950 * 7: MOD8
951 * 8: MOD9
952 * 9: MOD10
953
954 == 2.4 Payload Decoder file ==
955
956
957 In TTN, use can add a custom payload so it shows friendly reading
958
959 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
960
961 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
962
963
964 == 2.5 Frequency Plans ==
965
966
967 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
968
969 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
970
971
972 = 3. Configure SN50v3-LB =
973
974 == 3.1 Configure Methods ==
975
976
977 SN50v3-LB supports below configure method:
978
979 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
980 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
981 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
982
983 == 3.2 General Commands ==
984
985
986 These commands are to configure:
987
988 * General system settings like: uplink interval.
989 * LoRaWAN protocol & radio related command.
990
991 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
992
993 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
994
995
996 == 3.3 Commands special design for SN50v3-LB ==
997
998
999 These commands only valid for SN50v3-LB, as below:
1000
1001
1002 === 3.3.1 Set Transmit Interval Time ===
1003
1004
1005 Feature: Change LoRaWAN End Node Transmit Interval.
1006
1007 (% style="color:blue" %)**AT Command: AT+TDC**
1008
1009 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1010 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1011 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1012 30000
1013 OK
1014 the interval is 30000ms = 30s
1015 )))
1016 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1017 OK
1018 Set transmit interval to 60000ms = 60 seconds
1019 )))
1020
1021 (% style="color:blue" %)**Downlink Command: 0x01**
1022
1023 Format: Command Code (0x01) followed by 3 bytes time value.
1024
1025 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1026
1027 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1028 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1029
1030 === 3.3.2 Get Device Status ===
1031
1032
1033 Send a LoRaWAN downlink to ask the device to send its status.
1034
1035 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1036
1037 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1038
1039
1040 === 3.3.3 Set Interrupt Mode ===
1041
1042
1043 Feature, Set Interrupt mode for GPIO_EXIT.
1044
1045 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1046
1047 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1048 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1049 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1050 0
1051 OK
1052 the mode is 0 =Disable Interrupt
1053 )))
1054 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1055 Set Transmit Interval
1056 0. (Disable Interrupt),
1057 ~1. (Trigger by rising and falling edge)
1058 2. (Trigger by falling edge)
1059 3. (Trigger by rising edge)
1060 )))|(% style="width:157px" %)OK
1061 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1062 Set Transmit Interval
1063 trigger by rising edge.
1064 )))|(% style="width:157px" %)OK
1065 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1066
1067 (% style="color:blue" %)**Downlink Command: 0x06**
1068
1069 Format: Command Code (0x06) followed by 3 bytes.
1070
1071 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1072
1073 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1074 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1075 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1076 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1077
1078 === 3.3.4 Set Power Output Duration ===
1079
1080
1081 Control the output duration 5V . Before each sampling, device will
1082
1083 ~1. first enable the power output to external sensor,
1084
1085 2. keep it on as per duration, read sensor value and construct uplink payload
1086
1087 3. final, close the power output.
1088
1089 (% style="color:blue" %)**AT Command: AT+5VT**
1090
1091 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1093 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1094 500(default)
1095 OK
1096 )))
1097 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1098 Close after a delay of 1000 milliseconds.
1099 )))|(% style="width:157px" %)OK
1100
1101 (% style="color:blue" %)**Downlink Command: 0x07**
1102
1103 Format: Command Code (0x07) followed by 2 bytes.
1104
1105 The first and second bytes are the time to turn on.
1106
1107 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1108 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1109
1110 === 3.3.5 Set Weighing parameters ===
1111
1112
1113 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1114
1115 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1116
1117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1118 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1119 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1120 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1121 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1122
1123 (% style="color:blue" %)**Downlink Command: 0x08**
1124
1125 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1126
1127 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1128
1129 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1130
1131 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1132 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1133 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1134
1135 === 3.3.6 Set Digital pulse count value ===
1136
1137
1138 Feature: Set the pulse count value.
1139
1140 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1141
1142 (% style="color:blue" %)**AT Command: AT+SETCNT**
1143
1144 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1145 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1146 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1147 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1148
1149 (% style="color:blue" %)**Downlink Command: 0x09**
1150
1151 Format: Command Code (0x09) followed by 5 bytes.
1152
1153 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1154
1155 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1156 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1157
1158 === 3.3.7 Set Workmode ===
1159
1160
1161 Feature: Switch working mode.
1162
1163 (% style="color:blue" %)**AT Command: AT+MOD**
1164
1165 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1166 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1167 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1168 OK
1169 )))
1170 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1171 OK
1172 Attention:Take effect after ATZ
1173 )))
1174
1175 (% style="color:blue" %)**Downlink Command: 0x0A**
1176
1177 Format: Command Code (0x0A) followed by 1 bytes.
1178
1179 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1180 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1181
1182 (% id="H3.3.8PWMsetting" %)
1183 === 3.3.8 PWM setting ===
1184
1185
1186 (% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1187
1188 (% style="color:blue" %)**AT Command: AT+PWMSET**
1189
1190 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1191 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1192 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1193 0(default)
1194
1195 OK
1196 )))
1197 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1198 OK
1199
1200 )))
1201 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1202
1203 (% style="color:blue" %)**Downlink Command: 0x0C**
1204
1205 Format: Command Code (0x0C) followed by 1 bytes.
1206
1207 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1208 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1209
1210 (% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1211
1212 (% style="color:blue" %)**AT Command: AT+PWMOUT**
1213
1214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 |=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1216 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1217 0,0,0(default)
1218
1219 OK
1220 )))
1221 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1222 OK
1223
1224 )))
1225 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1226 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1227
1228
1229 )))|(% style="width:137px" %)(((
1230 OK
1231 )))
1232
1233 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 |=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1235 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1236 AT+PWMOUT=a,b,c
1237
1238
1239 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1240 Set PWM output time, output frequency and output duty cycle.
1241
1242 (((
1243
1244 )))
1245
1246 (((
1247
1248 )))
1249 )))|(% style="width:242px" %)(((
1250 a: Output time (unit: seconds)
1251
1252 The value ranges from 0 to 65535.
1253
1254 When a=65535, PWM will always output.
1255 )))
1256 |(% style="width:242px" %)(((
1257 b: Output frequency (unit: HZ)
1258 )))
1259 |(% style="width:242px" %)(((
1260 c: Output duty cycle (unit: %)
1261
1262 The value ranges from 0 to 100.
1263 )))
1264
1265 (% style="color:blue" %)**Downlink Command: 0x0B01**
1266
1267 Format: Command Code (0x0B01) followed by 6 bytes.
1268
1269 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1270
1271 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1272 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1273
1274 = 4. Battery & Power Cons =
1275
1276
1277 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1278
1279 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1280
1281
1282 = 5. OTA Firmware update =
1283
1284
1285 (% class="wikigeneratedid" %)
1286 **User can change firmware SN50v3-LB to:**
1287
1288 * Change Frequency band/ region.
1289 * Update with new features.
1290 * Fix bugs.
1291
1292 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1293
1294 **Methods to Update Firmware:**
1295
1296 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1297 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1298
1299 = 6. FAQ =
1300
1301 == 6.1 Where can i find source code of SN50v3-LB? ==
1302
1303
1304 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1305 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1306
1307 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1308
1309
1310 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1311
1312
1313 == 6.3 How to put several sensors to a SN50v3-LB? ==
1314
1315
1316 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1317
1318 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1319
1320 [[image:image-20230810121434-1.png||height="242" width="656"]]
1321
1322
1323 = 7. Order Info =
1324
1325
1326 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1327
1328 (% style="color:red" %)**XX**(%%): The default frequency band
1329
1330 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1331 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1332 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1333 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1334 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1335 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1336 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1337 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1338
1339 (% style="color:red" %)**YY: ** (%%)Hole Option
1340
1341 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1342 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1343 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1344 * (% style="color:red" %)**NH**(%%): No Hole
1345
1346 = 8. ​Packing Info =
1347
1348
1349 (% style="color:#037691" %)**Package Includes**:
1350
1351 * SN50v3-LB LoRaWAN Generic Node
1352
1353 (% style="color:#037691" %)**Dimension and weight**:
1354
1355 * Device Size: cm
1356 * Device Weight: g
1357 * Package Size / pcs : cm
1358 * Weight / pcs : g
1359
1360 = 9. Support =
1361
1362
1363 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1364
1365 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0