​​​ 

image-20220627094803-5.png

               

Table of Contents:

Data URI image

1.  Introduction

1.1 ​ What is LSN50 LoRa Sensor Node

LSN50 is a Long Range LoRaWAN Sensor Node. It is designed for outdoor data logging and powered by Li/SOCl2 battery for long term use and secure data transmission. It is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.

It is based on SX1276/SX1278 allows the user to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.

LSN50 uses STM32l0x chip from ST, STML0x is the ultra-low-power STM32L072xx microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

LSN50 is an open source product, it is based on the STM32Cube HAL drivers and lots of libraries can be found in ST site for rapid development.

1656294562709-486.png

1.2  Specifications

Micro Controller:

  • STM32L072CZT6 MCU
  • MCU: STM32L072CZT6
  • Flash: 192KB
  • RAM: 20KB
  • EEPROM: 6KB
  • Clock Speed: 32Mhz

Common DC Characteristics:

  • Supply Voltage: 2.1v ~ 3.6v
  • Operating Temperature: -40 ~ 85°C
  • I/O pins: Refer to STM32L072 datasheet

LoRa Spec:

  • Frequency Range, 
    • Band 1 (HF): 862 ~ 1020 Mhz

or


    • Band 2 (LF): 410 ~ 528 Mhz
  • 168 dB maximum link budget.
  • +20 dBm - 100 mW constant RF output vs.
  • +14 dBm high efficiency PA.
  • Programmable bit rate up to 300 kbps.
  • High sensitivity: down to -148 dBm.
  • Bullet-proof front end: IIP3 = -12.5 dBm.
  • Excellent blocking immunity.
  • Low RX current of 10.3 mA, 200 nA register retention.
  • Fully integrated synthesizer with a resolution of 61 Hz .
  • FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
  • Built-in bit synchronizer for clock recovery.
  • Preamble detection.
  • 127 dB Dynamic Range RSSI.
  • Automatic RF Sense and CAD with ultra-fast AFC.
  • Packet engine up to 256 bytes with CRC.
  • LoRaWAN 1.0.2 Specification

Battery:

  • Li/SOCI2 un-chargeable battery
  • Capacity: 4000mAh 
  • Self Discharge: <1% / Year @ 25°C 
  • Max continuously current: 130mA
  • Max boost current: 2A, 1 second

Power Consumption

  • STOP Mode: 2.7uA @ 3.3v
  • LoRa Transmit Mode: 125mA @ 20dBm 44mA @ 14dBm

​1.3  Features

  • LoRaWAN 1.0.3 Class A, Class C
  • STM32L072CZT6 MCU
  • SX1276/78 Wireless Chip
  • Pre-load bootloader on USART1/USART2
  • MDK-ARM Version 5.24a IDE
  • I2C, LPUSART1, USB, SPI2
  • 3x12bit ADC, 1x12bit DAC
  • 20xDigital I/Os
  • LoRa™ Modem
  • Preamble detection
  • Baud rate configurable
  • CN470/EU433/KR920/US915/IN865
  • EU868/AS923/AU915
  • Open-source hardware / software
  • Available Band:433/868/915/920 Mhz
  • IP66 Waterproof Enclosure
  • Ultra-Low Power consumption
  • AT Commands to change parameters
  • 4000mAh or 8500mAh Battery for long term use。

1.4 ​ Applications

  • Smart Buildings & Home Automation
  • Logistics and Supply Chain Management
  • Smart Metering
  • Smart Agriculture
  • Smart Cities
  • Smart Factory

Data URI imageData URI imageData URI imageData URI image

1.5  Pin Definitions and Switch

1655890786311-614.png

1.5.1  Pin Definition

The device is pre-configured to connect to SHT31 sensor. The other pins are not used. If user want to know more about other pins, please refer the user manual of LSn50v2 at: http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/

1.5.2  Jumper JP2

Power on Device when put this jumper.

1.5.3  BOOT MODE / SW1

1. ISP:     upgrade mode, device won't have any signal in this mode. but ready for upgrade firmware. LED won't work. Firmware won't run.

2. Flash:  work mode, device starts to work and send out console output for further debug

1.5.4  Reset Button

Press to reboot the device.

1.5.5  LED

It will flash:

  1. When boot the device in flash mode
  2. Send an uplink packet

1.5.6  Probe Dimension

1655970095830-106.png

1.6  Hardware Variant

ModelPhotoDescription
LSN50v2-S311655969394811-263.png

External 3 meters SHT31 probe

LSN50v2 -S31B1655969407614-262.png

On device SHT31 Probe

2.  How to use LSN50v2-S31?

2.1  How it works

The LSN50v2-S31 is working as LoRaWAN OTAA Class A end node. Each LSN50v2-S31 is shipped with a worldwide unique set of OTAA and ABP keys. User needs to input the OTAA or ABP keys in the LoRaWAN network server to register. Open the enclosure and power on the LSN50v2-S31, it will join the LoRaWAN network and start to transmit data. The default period for each uplink is 20 minutes.

2.2  ​Quick guide to connect to LoRaWAN server (OTAA)

Here is an example for how to join the TTN LoRaWAN Server. Below is the network structure, in this demo we use DLOS8 as LoRaWAN gateway. 

Data URI image1655891470063-521.png1655970238866-880.png

Data URI imageData URI image

The DLOS8 is already set to connect to TTN . What the rest we need to is register the LSN50V2-S31 to TTN:

Step 1: Create a device in TTN with the OTAA keys from LSN50V2-S31.

Each LSN50V2-S31 is shipped with a sticker with the default device EUI as below:

 

image-20220607170145-1.jpegData URI imageData URI imageData URI imageData URI imageData URI imageData URI imageData URI image

You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:

Register the device:

Data URI imageData URI image1654935135620-998.pngData URI imageData URI imageData URI imageData URI imageData URI image​​

Data URI imageData URI image

Add APP EUI and DEV EUI:

image-20220611161308-4.pngData URI image

Add APP EUI in the application:

image-20220611161308-5.pngData URI image

Add APP KEY

image-20220611161308-6.pngData URI image

Data URI imageData URI imageData URI imageData URI image

Data URI imageData URI imageData URI imageData URI image

Step 2: Power on LSN50v2-S31

1655891678689-137.png

Data URI imageData URI imageData URI imageData URI imageData URI imageData URI imageData URI image

Step 3:  LSN50V2-S31 will auto join to TTN network via the LoRaWAN coverage by DLOS8. After join success, LSN50V2-S31 will start to uplink temperature value to server.

Data URI imageData URI imageData URI imageData URI imageData URI imageData URI imageData URI image​​

2.3  ​Uplink Payload

2.3.1  Payload Analyze

Normal Upload Payload:

LSN50v2-S31 use the same payload as LSn50v2 mod1, as below. 

Size (bytes)

24122
Value

ignore

1655970579657-141.png

Battery:

Check the battery voltage.

Ex1: 0x0B45 = 2885mV

Ex2: 0x0B49 = 2889mV

Temperature:

Example:

If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree

If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.

Humidity:

Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%

Alarm Flag& MOD:

Example:

If payload & 0x01 = 0x01  --> This is an Alarm Message

If payload & 0x01 = 0x00  --> This is a normal uplink message, no alarm

If payload >> 2 = 0x00     -->  means MOD=1, This is a sampling uplink message

If payload >> 2 = 0x31     -->  means MOD=31, this message is a reply message for polling, this message contains the alarm settings. see this link for detail.  >url:http://www.dragino.com/downloads/index.php?dir" data-cke-saved-href="#HPolltheAlarmsettings:" href="#HPolltheAlarmsettings:">this link

2.3.2  Payload Decoder file

In TTN, use can add a custom payload so it shows friendly.  

In the page Applications --> Payload Formats --> Custom --> decoder to add the decoder from:

Data URI imageData URI imageData URI imageData URI image

2.4  Temperature & Humidity Alarm Feature

LSN50V2-S31 work flow with Alarm feature.

1655972194041-948.png

User can use  AT+SHTEMP and  AT+SHHUM command to set the alarm low limit or high limit. Device will check the temperature & Humidity every minute, if the temperature lower than low limit or greater than high limit. LSN50v2-S31 will send an  Alarm packet base on Confirmed Uplink Mode to server.

Below is an example of the Alarm Packet.

image-20220623161735-10.png

 

2.5  ​Configure LSN50v2-S31

LSN50V2-S31 supports configuration via LoRaWAN downlink command or AT Commands.

  • Downlink command instructions for different platform: Use Note for Server(IoT LoRaWAN Server)
  • AT Command Access Instructions:  LINK

There are two parts of commands: General one and Special for this model.

2.5.1  General Configure Commands

These commands are to configure:

  • General system settings like: uplink interval.
  • LoRaWAN protocol & radio related command.

These commands can be found on the wiki:  End Device AT Commands and Downlink Commands

2.5.2  Sensor related commands

Set Temperature Alarm Threshold:

  • AT Command:

AT+SHTEMP=min,max

  • When min=0, and max≠0, Alarm higher than max
  • When min≠0, and max=0, Alarm lower than min
  • When min≠0 and max≠0, Alarm higher than max or lower than min

Example:

   AT+SHTEMP=0,30   // Alarm when temperature higher than 30.

  • Downlink Payload:

0x(0C 01 00 1E)      //Set AT+SHTEMP=0,30

(note: 3rd byte= 0x00 for low limit(not set), 4th byte = 0x1E for high limit: 30)

Set Humidity Alarm Threshold:

  • AT Command:

AT+SHHUM=min,max

  • When min=0, and max≠0, Alarm higher than max
  • When min≠0, and max=0, Alarm lower than min
  • When min≠0 and max≠0, Alarm higher than max or lower than min

Example:

   AT+SHHUM=70,0   // Alarm when humidity lower than 70%.

  • Downlink Payload:

0x(0C 02 46 00)    //Set AT+SHTHUM=70,0

(note: 3rd byte= 0x46 for low limit (70%), 4th byte = 0x00 for high limit (not set))

Set Alarm Interval:

The shortest time of two Alarm packet. (unit: min)

  • AT Command:

AT+ATDC=30  // The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.

  • Downlink Payload:

0x(0D 00 1E)     ---> Set AT+ATDC=0x 00 1E = 30 minutes

Poll the Alarm settings:

Send a LoRaWAN downlink to ask device send Alarm settings.

  • Downlink Payload:

0x0E 01

Example:

1655972693463-687.png

Explain:

  • Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.

2.6  LED Status

LSN50-v2-S31 has an internal LED, it will active in below situation:

  • LED will fast blink 5 times when boot, this means the temperature sensor is detected.
  • After the fast blinks on boot, the LED will flash once which means device is trying to send Join Packet to the network.
  • If device successful join LoRaWAN network, the LED will be solid on for 5 seconds.

2.7  Button Function

Internal RESET button:

Press this button will reboot the device. Device will process OTAA Join to network again.

2.8  ​Firmware Change Log

Firmware version and change log please see: See this link.

3.  Battery Info

The LSN50v2-S31 battery is a combination of a 8500mAh ER26500 Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.

The battery is designed to last for more than 5 years for the LSN50v2-S31.

The battery related documents can be found as below:

The connector is as below incase user want to use their own battery

image-20220607172042-11.pngData URI imageData URI imageData URI image​​Data URI imageData URI image

There are several parameters affect the battery power. Please see consumption report from here for the detail explain:

 

4.  Use AT Command

4.1  Access AT Commands

User can use a USB to TTL adapter to connect to LSN50V2-S31 to use AT command to configure the device. Example is as below:

image-20220623095817-4.png

  

image-20220623100044-7.png

   

5.  FAQ

5.1  What is the frequency range of LSN50v2-S31?

Different LSN50V2-S31 version supports different frequency range, below is the table for the working frequency and recommend bands for each model:

image-20220623100350-8.png

5.2  What is the Frequency Plan?

Please refer Dragino End Node Frequency Plan:  End Device Frequency Band 

5.3  How to update the firmware?

User can upgrade the firmware for:

  • Support new features

  • For bug fix

  • Change LoRaWAN bands.

Please see this link for how to upgrade:  Firmware Upgrade Instruction

6.  Trouble Shooting

6.1  AT Command input doesn't work

In the case if user can see the console output but can't type input to the device. Please check if you already include the ENTER while sending out the command. Some serial tool doesn't send ENTER while press the send key, user need to add ENTER in their string. 

7.  Order Info

Part Number:   LSN50V2-S31-XXX      Or     LSN50V2-S31B-XXX 

XXXThe default frequency band

  • AS923 : LoRaWAN AS923 band
  • AU915 : LoRaWAN AU915 band
  • EU433 : LoRaWAN EU433 band
  • EU868 : LoRaWAN EU868 band
  • KR920 : LoRaWAN KR920 band
  • US915 : LoRaWAN US915 band
  • IN865 :  LoRaWAN IN865 band
  • CN470 : LoRaWAN CN470 band

8. ​ Packing Info

Package Includes:

  • LSN50v2-S31 or LSN50v2-S31B LoRaWAN Temperature Sensor x 1

Dimension and weight:

  • Device Size: cm
  • Device Weight: g
  • Package Size / pcs : cm
  • Weight / pcs : g

9.  ​Support

  • Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
  • Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to support@dragino.com.
Tags:
    
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0