Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3
4
5
6
7
8
9
10
11 = 1. Introduction =
12
13 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14
15 (((
16 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 )))
18
19 (((
20 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 )))
22
23 (((
24 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 )))
26
27 (((
28 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 )))
30
31 (((
32 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 )))
34
35
36 [[image:1654503236291-817.png]]
37
38
39 [[image:1654503265560-120.png]]
40
41
42
43 == 1.2 ​Features ==
44
45 * LoRaWAN 1.0.3 Class A
46 * Ultra low power consumption
47 * Monitor Soil Moisture
48 * Monitor Soil Temperature
49 * Monitor Soil Conductivity
50 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 * AT Commands to change parameters
52 * Uplink on periodically
53 * Downlink to change configure
54 * IP66 Waterproof Enclosure
55 * 4000mAh or 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60
61 [[image:image-20220606162220-5.png]]
62
63
64
65 == ​1.4 Applications ==
66
67 * Smart Agriculture
68
69 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70
71
72 == 1.5 Firmware Change log ==
73
74
75 **LSE01 v1.0 :**  Release
76
77
78
79 = 2. Configure LSE01 to connect to LoRaWAN network =
80
81 == 2.1 How it works ==
82
83 (((
84 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 )))
86
87 (((
88 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 )))
90
91
92
93 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94
95 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96
97
98 [[image:1654503992078-669.png]]
99
100
101 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102
103
104 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105
106 Each LSE01 is shipped with a sticker with the default device EUI as below:
107
108 [[image:image-20220606163732-6.jpeg]]
109
110 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111
112 **Add APP EUI in the application**
113
114
115 [[image:1654504596150-405.png]]
116
117
118
119 **Add APP KEY and DEV EUI**
120
121 [[image:1654504683289-357.png]]
122
123
124
125 **Step 2**: Power on LSE01
126
127
128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129
130 [[image:image-20220606163915-7.png]]
131
132
133 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134
135 [[image:1654504778294-788.png]]
136
137
138
139 == 2.3 Uplink Payload ==
140
141 === 2.3.1 MOD~=0(Default Mode) ===
142
143 LSE01 will uplink payload via LoRaWAN with below payload format: 
144
145
146 Uplink payload includes in total 11 bytes.
147
148
149 |(((
150 **Size**
151
152 **(bytes)**
153 )))|**2**|**2**|**2**|**2**|**2**|**1**
154 |**Value**|[[BAT>>path:#bat]]|(((
155 Temperature
156
157 (Reserve, Ignore now)
158 )))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 MOD & Digital Interrupt
160
161 (Optional)
162 )))
163
164 [[image:1654504881641-514.png]]
165
166
167
168 === 2.3.2 MOD~=1(Original value) ===
169
170 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171
172 |(((
173 **Size**
174
175 **(bytes)**
176 )))|**2**|**2**|**2**|**2**|**2**|**1**
177 |**Value**|[[BAT>>path:#bat]]|(((
178 Temperature
179
180 (Reserve, Ignore now)
181 )))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 MOD & Digital Interrupt
183
184 (Optional)
185 )))
186
187 [[image:1654504907647-967.png]]
188
189
190
191 === 2.3.3 Battery Info ===
192
193 Check the battery voltage for LSE01.
194
195 Ex1: 0x0B45 = 2885mV
196
197 Ex2: 0x0B49 = 2889mV
198
199
200
201 === 2.3.4 Soil Moisture ===
202
203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204
205 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
206
207
208 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209
210
211
212 === 2.3.5 Soil Temperature ===
213
214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215
216 **Example**:
217
218 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
219
220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221
222
223
224 === 2.3.6 Soil Conductivity (EC) ===
225
226 (((
227 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
228 )))
229
230 (((
231 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 )))
233
234 (((
235 Generally, the EC value of irrigation water is less than 800uS / cm.
236 )))
237
238 (((
239
240 )))
241
242 (((
243
244 )))
245
246 === 2.3.7 MOD ===
247
248 Firmware version at least v2.1 supports changing mode.
249
250 For example, bytes[10]=90
251
252 mod=(bytes[10]>>7)&0x01=1.
253
254
255 Downlink Command:
256
257 If payload = 0x0A00, workmode=0
258
259 If** **payload =** **0x0A01, workmode=1
260
261
262
263 === 2.3.8 ​Decode payload in The Things Network ===
264
265 While using TTN network, you can add the payload format to decode the payload.
266
267
268 [[image:1654505570700-128.png]]
269
270 The payload decoder function for TTN is here:
271
272 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
273
274
275 == 2.4 Uplink Interval ==
276
277 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
278
279 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280
281
282
283 == 2.5 Downlink Payload ==
284
285 By default, LSE50 prints the downlink payload to console port.
286
287 [[image:image-20220606165544-8.png]]
288
289
290 **Examples:**
291
292
293 * **Set TDC**
294
295 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
296
297 Payload:    01 00 00 1E    TDC=30S
298
299 Payload:    01 00 00 3C    TDC=60S
300
301
302 * **Reset**
303
304 If payload = 0x04FF, it will reset the LSE01
305
306
307 * **CFM**
308
309 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310
311
312
313 == 2.6 ​Show Data in DataCake IoT Server ==
314
315 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
316
317
318 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
319
320 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
321
322
323 [[image:1654505857935-743.png]]
324
325
326 [[image:1654505874829-548.png]]
327
328 Step 3: Create an account or log in Datacake.
329
330 Step 4: Search the LSE01 and add DevEUI.
331
332
333 [[image:1654505905236-553.png]]
334
335
336 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
337
338 [[image:1654505925508-181.png]]
339
340
341
342 == 2.7 Frequency Plans ==
343
344 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
345
346
347 === 2.7.1 EU863-870 (EU868) ===
348
349 (% style="color:#037691" %)** Uplink:**
350
351 868.1 - SF7BW125 to SF12BW125
352
353 868.3 - SF7BW125 to SF12BW125 and SF7BW250
354
355 868.5 - SF7BW125 to SF12BW125
356
357 867.1 - SF7BW125 to SF12BW125
358
359 867.3 - SF7BW125 to SF12BW125
360
361 867.5 - SF7BW125 to SF12BW125
362
363 867.7 - SF7BW125 to SF12BW125
364
365 867.9 - SF7BW125 to SF12BW125
366
367 868.8 - FSK
368
369
370 (% style="color:#037691" %)** Downlink:**
371
372 Uplink channels 1-9 (RX1)
373
374 869.525 - SF9BW125 (RX2 downlink only)
375
376
377
378 === 2.7.2 US902-928(US915) ===
379
380 Used in USA, Canada and South America. Default use CHE=2
381
382 (% style="color:#037691" %)**Uplink:**
383
384 903.9 - SF7BW125 to SF10BW125
385
386 904.1 - SF7BW125 to SF10BW125
387
388 904.3 - SF7BW125 to SF10BW125
389
390 904.5 - SF7BW125 to SF10BW125
391
392 904.7 - SF7BW125 to SF10BW125
393
394 904.9 - SF7BW125 to SF10BW125
395
396 905.1 - SF7BW125 to SF10BW125
397
398 905.3 - SF7BW125 to SF10BW125
399
400
401 (% style="color:#037691" %)**Downlink:**
402
403 923.3 - SF7BW500 to SF12BW500
404
405 923.9 - SF7BW500 to SF12BW500
406
407 924.5 - SF7BW500 to SF12BW500
408
409 925.1 - SF7BW500 to SF12BW500
410
411 925.7 - SF7BW500 to SF12BW500
412
413 926.3 - SF7BW500 to SF12BW500
414
415 926.9 - SF7BW500 to SF12BW500
416
417 927.5 - SF7BW500 to SF12BW500
418
419 923.3 - SF12BW500(RX2 downlink only)
420
421
422
423 === 2.7.3 CN470-510 (CN470) ===
424
425 Used in China, Default use CHE=1
426
427 (% style="color:#037691" %)**Uplink:**
428
429 486.3 - SF7BW125 to SF12BW125
430
431 486.5 - SF7BW125 to SF12BW125
432
433 486.7 - SF7BW125 to SF12BW125
434
435 486.9 - SF7BW125 to SF12BW125
436
437 487.1 - SF7BW125 to SF12BW125
438
439 487.3 - SF7BW125 to SF12BW125
440
441 487.5 - SF7BW125 to SF12BW125
442
443 487.7 - SF7BW125 to SF12BW125
444
445
446 (% style="color:#037691" %)**Downlink:**
447
448 506.7 - SF7BW125 to SF12BW125
449
450 506.9 - SF7BW125 to SF12BW125
451
452 507.1 - SF7BW125 to SF12BW125
453
454 507.3 - SF7BW125 to SF12BW125
455
456 507.5 - SF7BW125 to SF12BW125
457
458 507.7 - SF7BW125 to SF12BW125
459
460 507.9 - SF7BW125 to SF12BW125
461
462 508.1 - SF7BW125 to SF12BW125
463
464 505.3 - SF12BW125 (RX2 downlink only)
465
466
467
468 === 2.7.4 AU915-928(AU915) ===
469
470 Default use CHE=2
471
472 (% style="color:#037691" %)**Uplink:**
473
474 916.8 - SF7BW125 to SF12BW125
475
476 917.0 - SF7BW125 to SF12BW125
477
478 917.2 - SF7BW125 to SF12BW125
479
480 917.4 - SF7BW125 to SF12BW125
481
482 917.6 - SF7BW125 to SF12BW125
483
484 917.8 - SF7BW125 to SF12BW125
485
486 918.0 - SF7BW125 to SF12BW125
487
488 918.2 - SF7BW125 to SF12BW125
489
490
491 (% style="color:#037691" %)**Downlink:**
492
493 923.3 - SF7BW500 to SF12BW500
494
495 923.9 - SF7BW500 to SF12BW500
496
497 924.5 - SF7BW500 to SF12BW500
498
499 925.1 - SF7BW500 to SF12BW500
500
501 925.7 - SF7BW500 to SF12BW500
502
503 926.3 - SF7BW500 to SF12BW500
504
505 926.9 - SF7BW500 to SF12BW500
506
507 927.5 - SF7BW500 to SF12BW500
508
509 923.3 - SF12BW500(RX2 downlink only)
510
511
512
513 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
514
515 (% style="color:#037691" %)**Default Uplink channel:**
516
517 923.2 - SF7BW125 to SF10BW125
518
519 923.4 - SF7BW125 to SF10BW125
520
521
522 (% style="color:#037691" %)**Additional Uplink Channel**:
523
524 (OTAA mode, channel added by JoinAccept message)
525
526 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
527
528 922.2 - SF7BW125 to SF10BW125
529
530 922.4 - SF7BW125 to SF10BW125
531
532 922.6 - SF7BW125 to SF10BW125
533
534 922.8 - SF7BW125 to SF10BW125
535
536 923.0 - SF7BW125 to SF10BW125
537
538 922.0 - SF7BW125 to SF10BW125
539
540
541 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
542
543 923.6 - SF7BW125 to SF10BW125
544
545 923.8 - SF7BW125 to SF10BW125
546
547 924.0 - SF7BW125 to SF10BW125
548
549 924.2 - SF7BW125 to SF10BW125
550
551 924.4 - SF7BW125 to SF10BW125
552
553 924.6 - SF7BW125 to SF10BW125
554
555
556 (% style="color:#037691" %)** Downlink:**
557
558 Uplink channels 1-8 (RX1)
559
560 923.2 - SF10BW125 (RX2)
561
562
563
564 === 2.7.6 KR920-923 (KR920) ===
565
566 Default channel:
567
568 922.1 - SF7BW125 to SF12BW125
569
570 922.3 - SF7BW125 to SF12BW125
571
572 922.5 - SF7BW125 to SF12BW125
573
574
575 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
576
577 922.1 - SF7BW125 to SF12BW125
578
579 922.3 - SF7BW125 to SF12BW125
580
581 922.5 - SF7BW125 to SF12BW125
582
583 922.7 - SF7BW125 to SF12BW125
584
585 922.9 - SF7BW125 to SF12BW125
586
587 923.1 - SF7BW125 to SF12BW125
588
589 923.3 - SF7BW125 to SF12BW125
590
591
592 (% style="color:#037691" %)**Downlink:**
593
594 Uplink channels 1-7(RX1)
595
596 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
597
598
599
600 === 2.7.7 IN865-867 (IN865) ===
601
602 (% style="color:#037691" %)** Uplink:**
603
604 865.0625 - SF7BW125 to SF12BW125
605
606 865.4025 - SF7BW125 to SF12BW125
607
608 865.9850 - SF7BW125 to SF12BW125
609
610
611 (% style="color:#037691" %) **Downlink:**
612
613 Uplink channels 1-3 (RX1)
614
615 866.550 - SF10BW125 (RX2)
616
617
618
619
620 == 2.8 LED Indicator ==
621
622 The LSE01 has an internal LED which is to show the status of different state.
623
624 * Blink once when device power on.
625 * Solid ON for 5 seconds once device successful Join the network.
626 * Blink once when device transmit a packet.
627
628
629
630 == 2.9 Installation in Soil ==
631
632 **Measurement the soil surface**
633
634
635 [[image:1654506634463-199.png]] ​
636
637 (((
638 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
639 )))
640
641
642
643 [[image:1654506665940-119.png]]
644
645 Dig a hole with diameter > 20CM.
646
647 Horizontal insert the probe to the soil and fill the hole for long term measurement.
648
649
650 == 2.10 ​Firmware Change Log ==
651
652 **Firmware download link:**
653
654 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
655
656
657 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
658
659
660 **V1.0.**
661
662 Release
663
664
665
666 1.
667 11. ​Battery Analysis
668 111. ​Battery Type
669
670 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
671
672
673 The battery is designed to last for more than 5 years for the LSN50.
674
675
676 The battery related documents as below:
677
678 * [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
679 * [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
680 * [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
681
682 |(((
683 JST-XH-2P connector
684 )))
685
686 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
687
688
689
690 1.
691 11.
692 111. ​Battery Note
693
694 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
695
696
697 1.
698 11.
699 111. ​Replace the battery
700
701 If Battery is lower than 2.7v, user should replace the battery of LSE01.
702
703
704 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
705
706
707 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708
709
710
711
712
713
714 = 3. ​Using the AT Commands =
715
716 == 3.1 Access AT Commands ==
717
718
719 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
720
721 [[image:1654501986557-872.png]]
722
723
724 Or if you have below board, use below connection:
725
726
727 [[image:1654502005655-729.png]]
728
729
730
731 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
732
733
734 [[image:1654502050864-459.png]]
735
736
737 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
738
739
740 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
741
742 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
743
744 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
745
746 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
747
748
749 (% style="color:#037691" %)**General Commands**(%%)      
750
751 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
752
753 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
754
755 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
756
757 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
758
759
760 (% style="color:#037691" %)**Keys, IDs and EUIs management**
761
762 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
763
764 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
765
766 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
767
768 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
769
770 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
771
772 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
773
774 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
775
776 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
777
778 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
779
780 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
781
782 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
783
784 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
785
786 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
787
788 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
789
790 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
791
792 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
793
794
795 (% style="color:#037691" %)**LoRa Network Management**
796
797 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
798
799 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
800
801 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
802
803 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
804
805 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
806
807 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
808
809 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
810
811 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
812
813 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
814
815 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
816
817 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
818
819 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
820
821 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
822
823 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
824
825 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
826
827
828 (% style="color:#037691" %)**Information** 
829
830 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
831
832 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
833
834 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
835
836 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
837
838 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
839
840 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
841
842 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
843
844
845 = ​4. FAQ =
846
847 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
848
849 You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
850 When downloading the images, choose the required image file for download. ​
851
852
853 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
854
855
856 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
857
858
859 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
860
861 [[image:image-20220606154726-3.png]]
862
863 When you use the TTN network, the US915 frequency bands use are:
864
865 * 903.9 - SF7BW125 to SF10BW125
866 * 904.1 - SF7BW125 to SF10BW125
867 * 904.3 - SF7BW125 to SF10BW125
868 * 904.5 - SF7BW125 to SF10BW125
869 * 904.7 - SF7BW125 to SF10BW125
870 * 904.9 - SF7BW125 to SF10BW125
871 * 905.1 - SF7BW125 to SF10BW125
872 * 905.3 - SF7BW125 to SF10BW125
873 * 904.6 - SF8BW500
874
875 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
876
877 (% class="box infomessage" %)
878 (((
879 **AT+CHE=2**
880 )))
881
882 (% class="box infomessage" %)
883 (((
884 **ATZ**
885 )))
886
887 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
888
889
890 The **AU915** band is similar. Below are the AU915 Uplink Channels.
891
892 [[image:image-20220606154825-4.png]]
893
894
895
896 = 5. Trouble Shooting =
897
898 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
899
900 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
901
902
903 == 5.2 AT Command input doesn’t work ==
904
905 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
906
907
908 == 5.3 Device rejoin in at the second uplink packet ==
909
910 (% style="color:#4f81bd" %)**Issue describe as below:**
911
912 [[image:1654500909990-784.png]]
913
914
915 (% style="color:#4f81bd" %)**Cause for this issue:**
916
917 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
918
919
920 (% style="color:#4f81bd" %)**Solution: **
921
922 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
923
924 [[image:1654500929571-736.png]]
925
926
927 = 6. ​Order Info =
928
929
930 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
931
932
933 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
934
935 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
936 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
937 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
938 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
939 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
940 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
941 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
942 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
943
944 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
945
946 * (% style="color:red" %)**4**(%%): 4000mAh battery
947 * (% style="color:red" %)**8**(%%): 8500mAh battery
948
949 = 7. Packing Info =
950
951 (((
952 **Package Includes**:
953 )))
954
955 * (((
956 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
957 )))
958
959 (((
960
961 )))
962
963 (((
964 **Dimension and weight**:
965 )))
966
967 * (((
968 Device Size: cm
969 )))
970 * (((
971 Device Weight: g
972 )))
973 * (((
974 Package Size / pcs : cm
975 )))
976 * (((
977 Weight / pcs : g
978 )))
979
980 = 8. Support =
981
982 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
983 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
984
985
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0