Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20220610095606-1.png]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45
46
47 [[image:1654826306458-414.png]]
48
49
50 == ​1.2  Features ==
51
52
53 * LoRaWAN 1.0.3 Class A
54 * Ultra-low power consumption
55 * Laser technology for distance detection
56 * Measure Distance: 0.1m~~12m
57 * Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
58 * Monitor Battery Level
59 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
60 * AT Commands to change parameters
61 * Uplink on periodically
62 * Downlink to change configure
63 * 8500mAh Battery for long-term use
64
65 == 1.3  Probe Specification ==
66
67
68 * Storage temperature: -20℃~~75℃
69 * Operating temperature : -20℃~~60℃
70 * Measure Distance:
71 ** 0.1m ~~ 12m @ 90% Reflectivity
72 ** 0.1m ~~ 4m @ 10% Reflectivity
73 * Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 * Distance resolution : 1cm
75 * Ambient light immunity : 70klux
76 * Enclosure rating : IP65
77 * Light source : LED
78 * Central wavelength : 850nm
79 * FOV : 3.6°
80 * Material of enclosure : ABS+PC
81 * Wire length : 25cm
82
83 == 1.4  Probe Dimension ==
84
85
86 [[image:1654827224480-952.png]]
87
88
89 == 1.5 ​ Applications ==
90
91
92 * Horizontal distance measurement
93 * Parking management system
94 * Object proximity and presence detection
95 * Intelligent trash can management system
96 * Robot obstacle avoidance
97 * Automatic control
98 * Sewer
99
100 == 1.6  Pin mapping and power on ==
101
102
103 [[image:1654827332142-133.png]]
104
105
106 = 2.  Configure LLDS12 to connect to LoRaWAN network =
107
108 == 2.1  How it works ==
109
110
111 (((
112 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
113 )))
114
115 (((
116 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
117 )))
118
119
120 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
121
122
123 (((
124 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
125 )))
126
127 (((
128 [[image:1654827857527-556.png]]
129 )))
130
131 (((
132 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 )))
134
135 (((
136
137
138 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
139 )))
140
141 (((
142 Each LSPH01 is shipped with a sticker with the default device EUI as below:
143 )))
144
145 [[image:image-20230426085359-1.png||height="250" width="538"]]
146
147
148 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
149
150
151 **Register the device**
152
153
154 [[image:1654592600093-601.png]]
155
156
157
158 **Add APP EUI and DEV EUI**
159
160 [[image:1654592619856-881.png]]
161
162
163
164 **Add APP EUI in the application**
165
166 [[image:1654592632656-512.png]]
167
168
169
170 **Add APP KEY**
171
172 [[image:1654592653453-934.png]]
173
174
175 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
176
177
178 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
179
180
181 [[image:image-20220607170442-2.png]]
182
183
184 (((
185 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
186
187
188 )))
189
190 [[image:1654833501679-968.png]]
191
192
193 == 2.3  ​Uplink Payload ==
194
195
196 (((
197 LLDS12 will uplink payload via LoRaWAN with below payload format: 
198 )))
199
200 (((
201 Uplink payload includes in total 11 bytes.
202 )))
203
204 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
205 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
206 **Size(bytes)**
207 )))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
208 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
209 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
210 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
211 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
212 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
213 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
214 )))
215
216 [[image:1654833689380-972.png]]
217
218
219 === 2.3.1  Battery Info ===
220
221
222 Check the battery voltage for LLDS12.
223
224 Ex1: 0x0B45 = 2885mV
225
226 Ex2: 0x0B49 = 2889mV
227
228
229 === 2.3.2  DS18B20 Temperature sensor ===
230
231
232 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
233
234
235 **Example**:
236
237 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
238
239 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240
241
242 === 2.3.3  Distance ===
243
244
245 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
246
247
248 **Example**:
249
250 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
251
252
253 === 2.3.4  Distance signal strength ===
254
255
256 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
257
258
259 **Example**:
260
261 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
262
263 Customers can judge whether they need to adjust the environment based on the signal strength.
264
265
266 === 2.3.5  Interrupt Pin ===
267
268
269 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
270
271 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
272
273 **Example:**
274
275 0x00: Normal uplink packet.
276
277 0x01: Interrupt Uplink Packet.
278
279
280 === 2.3.6  LiDAR temp ===
281
282
283 Characterize the internal temperature value of the sensor.
284
285 **Example: **
286 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
287 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
288
289
290 === 2.3.7  Message Type ===
291
292
293 (((
294 For a normal uplink payload, the message type is always 0x01.
295 )))
296
297 (((
298 Valid Message Type:
299 )))
300
301 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:499px" %)
302 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
303 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
304 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
305
306 === 2.3.8  Decode payload in The Things Network ===
307
308
309 While using TTN network, you can add the payload format to decode the payload.
310
311
312 [[image:1654592762713-715.png]]
313
314
315 (((
316 The payload decoder function for TTN is here:
317 )))
318
319 (((
320 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
321 )))
322
323
324 == 2.4  Uplink Interval ==
325
326
327 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
328
329
330 == 2.5  ​Show Data in DataCake IoT Server ==
331
332
333 (((
334 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
335 )))
336
337 (((
338
339 )))
340
341 (((
342 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
343 )))
344
345 (((
346 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
347 )))
348
349
350 [[image:1654592790040-760.png]]
351
352
353 [[image:1654592800389-571.png]]
354
355
356 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
357
358 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
359
360 [[image:1654832691989-514.png]]
361
362
363 [[image:1654592833877-762.png]]
364
365
366 [[image:1654832740634-933.png]]
367
368
369
370 (((
371 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
372 )))
373
374 (((
375
376 )))
377
378 [[image:1654833065139-942.png]]
379
380
381
382 [[image:1654833092678-390.png]]
383
384
385
386 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
387
388 [[image:1654833163048-332.png]]
389
390
391 == 2.6  Frequency Plans ==
392
393
394 (((
395 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
396 )))
397
398
399 === 2.6.1  EU863-870 (EU868) ===
400
401
402 (((
403 (% style="color:blue" %)**Uplink:**
404 )))
405
406 (((
407 868.1 - SF7BW125 to SF12BW125
408 )))
409
410 (((
411 868.3 - SF7BW125 to SF12BW125 and SF7BW250
412 )))
413
414 (((
415 868.5 - SF7BW125 to SF12BW125
416 )))
417
418 (((
419 867.1 - SF7BW125 to SF12BW125
420 )))
421
422 (((
423 867.3 - SF7BW125 to SF12BW125
424 )))
425
426 (((
427 867.5 - SF7BW125 to SF12BW125
428 )))
429
430 (((
431 867.7 - SF7BW125 to SF12BW125
432 )))
433
434 (((
435 867.9 - SF7BW125 to SF12BW125
436 )))
437
438 (((
439 868.8 - FSK
440 )))
441
442 (((
443
444 )))
445
446 (((
447 (% style="color:blue" %)**Downlink:**
448 )))
449
450 (((
451 Uplink channels 1-9 (RX1)
452 )))
453
454 (((
455 869.525 - SF9BW125 (RX2 downlink only)
456 )))
457
458
459 === 2.6.2  US902-928(US915) ===
460
461
462 (((
463 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
464 )))
465
466 (((
467 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
468 )))
469
470 (((
471 After Join success, the end node will switch to the correct sub band by:
472 )))
473
474 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
475 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
476
477 === 2.6.3  CN470-510 (CN470) ===
478
479
480 (((
481 Used in China, Default use CHE=1
482 )))
483
484 (((
485 (% style="color:blue" %)**Uplink:**
486 )))
487
488 (((
489 486.3 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 486.5 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 486.7 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 486.9 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 487.1 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 487.3 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 487.5 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 487.7 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521
522 )))
523
524 (((
525 (% style="color:blue" %)**Downlink:**
526 )))
527
528 (((
529 506.7 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 506.9 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.1 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 507.3 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 507.5 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 507.7 - SF7BW125 to SF12BW125
550 )))
551
552 (((
553 507.9 - SF7BW125 to SF12BW125
554 )))
555
556 (((
557 508.1 - SF7BW125 to SF12BW125
558 )))
559
560 (((
561 505.3 - SF12BW125 (RX2 downlink only)
562 )))
563
564
565 === 2.6.4  AU915-928(AU915) ===
566
567
568 (((
569 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
570 )))
571
572 (((
573 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
574 )))
575
576 (((
577
578 )))
579
580 (((
581 After Join success, the end node will switch to the correct sub band by:
582 )))
583
584 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
585 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
586
587 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
588
589
590 (((
591 (% style="color:blue" %)**Default Uplink channel:**
592 )))
593
594 (((
595 923.2 - SF7BW125 to SF10BW125
596 )))
597
598 (((
599 923.4 - SF7BW125 to SF10BW125
600 )))
601
602 (((
603
604 )))
605
606 (((
607 (% style="color:blue" %)**Additional Uplink Channel**:
608 )))
609
610 (((
611 (OTAA mode, channel added by JoinAccept message)
612 )))
613
614 (((
615
616 )))
617
618 (((
619 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
620 )))
621
622 (((
623 922.2 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 922.4 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 922.6 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 922.8 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639 923.0 - SF7BW125 to SF10BW125
640 )))
641
642 (((
643 922.0 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647
648 )))
649
650 (((
651 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
652 )))
653
654 (((
655 923.6 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 923.8 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 924.0 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667 924.2 - SF7BW125 to SF10BW125
668 )))
669
670 (((
671 924.4 - SF7BW125 to SF10BW125
672 )))
673
674 (((
675 924.6 - SF7BW125 to SF10BW125
676 )))
677
678 (((
679
680 )))
681
682 (((
683 (% style="color:blue" %)**Downlink:**
684 )))
685
686 (((
687 Uplink channels 1-8 (RX1)
688 )))
689
690 (((
691 923.2 - SF10BW125 (RX2)
692 )))
693
694
695 === 2.6.6  KR920-923 (KR920) ===
696
697
698 (((
699 (% style="color:blue" %)**Default channel:**
700 )))
701
702 (((
703 922.1 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.3 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711 922.5 - SF7BW125 to SF12BW125
712 )))
713
714 (((
715
716 )))
717
718 (((
719 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
720 )))
721
722 (((
723 922.1 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 922.3 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731 922.5 - SF7BW125 to SF12BW125
732 )))
733
734 (((
735 922.7 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.9 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 923.1 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 923.3 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751
752 )))
753
754 (((
755 (% style="color:blue" %)**Downlink:**
756 )))
757
758 (((
759 Uplink channels 1-7(RX1)
760 )))
761
762 (((
763 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
764 )))
765
766
767 === 2.6.7  IN865-867 (IN865) ===
768
769
770 (((
771 (% style="color:blue" %)**Uplink:**
772 )))
773
774 (((
775 865.0625 - SF7BW125 to SF12BW125
776 )))
777
778 (((
779 865.4025 - SF7BW125 to SF12BW125
780 )))
781
782 (((
783 865.9850 - SF7BW125 to SF12BW125
784 )))
785
786 (((
787
788 )))
789
790 (((
791 (% style="color:blue" %)**Downlink:**
792 )))
793
794 (((
795 Uplink channels 1-3 (RX1)
796 )))
797
798 (((
799 866.550 - SF10BW125 (RX2)
800 )))
801
802
803 == 2.7  LED Indicator ==
804
805
806 The LLDS12 has an internal LED which is to show the status of different state.
807
808 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
809 * Blink once when device transmit a packet.
810
811 == 2.8  ​Firmware Change Log ==
812
813
814 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
815
816 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
817
818
819 = 3.  LiDAR ToF Measurement =
820
821 == 3.1 Principle of Distance Measurement ==
822
823
824 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
825
826 [[image:1654831757579-263.png]]
827
828
829 == 3.2 Distance Measurement Characteristics ==
830
831
832 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
833
834 [[image:1654831774373-275.png]]
835
836
837 (((
838 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
839 )))
840
841 (((
842 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
843 )))
844
845 (((
846 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
847 )))
848
849
850 (((
851 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
852 )))
853
854 [[image:1654831797521-720.png]]
855
856 (((
857 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
858 )))
859
860 [[image:1654831810009-716.png]]
861
862 (((
863 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
864 )))
865
866
867 == 3.3 Notice of usage: ==
868
869
870 Possible invalid /wrong reading for LiDAR ToF tech:
871
872 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
873 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
874 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
875 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
876
877 == 3.4  Reflectivity of different objects: ==
878
879
880 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:379px" %)
881 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
882 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
883 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
884 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
885 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
886 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
887 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
888 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
889 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
890 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
891 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
892 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
893 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
894 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
895 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
896 |(% style="width:53px" %)15|(% style="width:229px" %)(((
897 Unpolished white metal surface
898 )))|(% style="width:93px" %)130%
899 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
900 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
901 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
902
903 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
904
905
906 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
907
908 * (((
909 (((
910 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
911 )))
912 )))
913 * (((
914 (((
915 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
916 )))
917 )))
918
919 (((
920 (((
921
922 )))
923
924 (((
925 There are two kinds of commands to configure LLDS12, they are:
926 )))
927 )))
928
929 * (((
930 (((
931 (% style="color:#4f81bd" %)** General Commands**.
932 )))
933 )))
934
935 (((
936 (((
937 These commands are to configure:
938 )))
939 )))
940
941 * (((
942 (((
943 General system settings like: uplink interval.
944 )))
945 )))
946 * (((
947 (((
948 LoRaWAN protocol & radio related command.
949 )))
950 )))
951
952 (((
953 (((
954 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
955 )))
956 )))
957
958 (((
959 (((
960
961 )))
962 )))
963
964 * (((
965 (((
966 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
967 )))
968 )))
969
970 (((
971 (((
972 These commands only valid for LLDS12, as below:
973 )))
974 )))
975
976
977 == 4.1  Set Transmit Interval Time ==
978
979
980 Feature: Change LoRaWAN End Node Transmit Interval.
981
982 (% style="color:#037691" %)**AT Command: AT+TDC**
983
984 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
985 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 140px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 210px;background-color:#4F81BD;color:white" %)**Response**
986 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
987 30000
988 OK
989 the interval is 30000ms = 30s
990 )))
991 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
992 OK
993 Set transmit interval to 60000ms = 60 seconds
994 )))
995
996 (((
997 (% style="color:#037691" %)**Downlink Command: 0x01**
998 )))
999
1000 (((
1001 Format: Command Code (0x01) followed by 3 bytes time value.
1002 )))
1003
1004 (((
1005 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1006 )))
1007
1008 * (((
1009 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1010 )))
1011 * (((
1012 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1013
1014
1015
1016 )))
1017
1018 == 4.2  Set Interrupt Mode ==
1019
1020
1021 Feature, Set Interrupt mode for GPIO_EXIT.
1022
1023 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1024
1025 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1026 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1027 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1028 0
1029 OK
1030 the mode is 0 =No Interruption
1031 )))
1032 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1033 Set Transmit Interval
1034 0. (Disable Interrupt),
1035 ~1. (Trigger by rising and falling edge)
1036 2. (Trigger by falling edge)
1037 3. (Trigger by rising edge)
1038 )))|(% style="width:157px" %)OK
1039
1040 (((
1041 (% style="color:#037691" %)**Downlink Command: 0x06**
1042 )))
1043
1044 (((
1045 Format: Command Code (0x06) followed by 3 bytes.
1046 )))
1047
1048 (((
1049 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1050 )))
1051
1052 * (((
1053 Example 1: Downlink Payload: 06000000  ~/~/ Turn off interrupt mode
1054 )))
1055 * (((
1056 Example 2: Downlink Payload: 06000003  ~/~/ Set the interrupt mode to rising edge trigger
1057
1058
1059
1060 )))
1061
1062 == 4.3  Get Firmware Version Info ==
1063
1064
1065 Feature: use downlink to get firmware version.
1066
1067 (% style="color:#037691" %)**Downlink Command: 0x26**
1068
1069 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:492px" %)
1070 |(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
1071 |(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
1072
1073 * Reply to the confirmation package: 26 01
1074 * Reply to non-confirmed packet: 26 00
1075
1076 Device will send an uplink after got this downlink command. With below payload:
1077
1078 Configures info payload:
1079
1080 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1081 |=(% style="background-color:#4F81BD;color:white" %)(((
1082 **Size(bytes)**
1083 )))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
1084 |Value|Software Type|(((
1085 Frequency
1086 Band
1087 )))|Sub-band|(((
1088 Firmware
1089 Version
1090 )))|Sensor Type|Reserve|(((
1091 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1092 Always 0x02
1093 )))
1094
1095 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1096
1097 (% style="color:#037691" %)**Frequency Band**:
1098
1099 *0x01: EU868
1100
1101 *0x02: US915
1102
1103 *0x03: IN865
1104
1105 *0x04: AU915
1106
1107 *0x05: KZ865
1108
1109 *0x06: RU864
1110
1111 *0x07: AS923
1112
1113 *0x08: AS923-1
1114
1115 *0x09: AS923-2
1116
1117 *0xa0: AS923-3
1118
1119
1120 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1121
1122 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1123
1124 (% style="color:#037691" %)**Sensor Type**:
1125
1126 0x01: LSE01
1127
1128 0x02: LDDS75
1129
1130 0x03: LDDS20
1131
1132 0x04: LLMS01
1133
1134 0x05: LSPH01
1135
1136 0x06: LSNPK01
1137
1138 0x07: LLDS12
1139
1140
1141 = 5. Battery & Power Consumption =
1142
1143
1144 LLDS12 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1145
1146 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1147
1148
1149 = 6.  Use AT Command =
1150
1151 == 6.1  Access AT Commands ==
1152
1153
1154 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1155
1156
1157 [[image:1654593668970-604.png]]
1158
1159
1160 **Connection:**
1161
1162 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1163
1164 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1165
1166 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1167
1168
1169 (((
1170 (((
1171 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1172 )))
1173
1174 (((
1175 LLDS12 will output system info once power on as below:
1176 )))
1177 )))
1178
1179
1180 [[image:1654593712276-618.png]]
1181
1182 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1183
1184
1185 = 7.  FAQ =
1186
1187 == 7.1  How to change the LoRa Frequency Bands/Region ==
1188
1189
1190 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1191 When downloading the images, choose the required image file for download. ​
1192
1193
1194 = 8.  Trouble Shooting =
1195
1196 == 8.1  AT Commands input doesn't work ==
1197
1198
1199 (((
1200 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1201 )))
1202
1203
1204 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1205
1206
1207 (((
1208 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1209 )))
1210
1211 (((
1212 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1213 )))
1214
1215 (((
1216
1217 )))
1218
1219 (((
1220 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1221 )))
1222
1223 (((
1224 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1225 )))
1226
1227
1228 == 8.3 Possible reasons why the device is unresponsive: ==
1229
1230
1231 ​1. Check whether the battery voltage is lower than 2.8V
1232 2. Check whether the jumper of the device is correctly connected
1233
1234 [[image:image-20240330175858-1.png]]
1235 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1236
1237 [[image:image-20240330175905-2.png]]
1238
1239
1240 = 9.  Order Info =
1241
1242
1243 Part Number: (% style="color:blue" %)**LLDS12-XX**
1244
1245 (% style="color:blue" %)**XX**(%%): The default frequency band
1246
1247 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1248 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1249 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1250 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1251 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1252 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1253 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1254 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1255
1256 = 10. ​ Packing Info =
1257
1258
1259 **Package Includes**:
1260
1261 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1262
1263 **Dimension and weight**:
1264
1265 * Device Size: cm
1266 * Device Weight: g
1267 * Package Size / pcs : cm
1268 * Weight / pcs : g
1269
1270 = 11.  ​Support =
1271
1272
1273 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1274 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0