Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23
24
25
26
27 = 1.  Introduction =
28
29
30 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
31
32 (((
33
34
35 (((
36 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
37 )))
38
39 (((
40 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
41 )))
42
43 (((
44 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
45 )))
46
47 (((
48 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 )))
50
51 (((
52 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
53 )))
54
55 (((
56 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
57 )))
58 )))
59
60
61 [[image:1654826306458-414.png]]
62
63
64
65 == ​1.2  Features ==
66
67
68 * LoRaWAN 1.0.3 Class A
69 * Ultra-low power consumption
70 * Laser technology for distance detection
71 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
72 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Monitor Battery Level
74 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
75 * AT Commands to change parameters
76 * Uplink on periodically
77 * Downlink to change configure
78 * 8500mAh Battery for long-term use
79
80
81
82 == 1.3  Probe Specification ==
83
84
85 * Storage temperature:-20℃~~75℃
86 * Operating temperature - -20℃~~60℃
87 * Measure Distance:
88 ** 0.1m ~~ 12m @ 90% Reflectivity
89 ** 0.1m ~~ 4m @ 10% Reflectivity
90 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
91 * Distance resolution - 5mm
92 * Ambient light immunity - 70klux
93 * Enclosure rating - IP65
94 * Light source - LED
95 * Central wavelength - 850nm
96 * FOV - 3.6°
97 * Material of enclosure - ABS+PC
98 * Wire length - 25cm
99
100
101
102 == 1.4  Probe Dimension ==
103
104
105 [[image:1654827224480-952.png]]
106
107
108
109 == 1.5 ​ Applications ==
110
111
112 * Horizontal distance measurement
113 * Parking management system
114 * Object proximity and presence detection
115 * Intelligent trash can management system
116 * Robot obstacle avoidance
117 * Automatic control
118 * Sewer
119
120
121
122 == 1.6  Pin mapping and power on ==
123
124
125 [[image:1654827332142-133.png]]
126
127
128
129 = 2.  Configure LLDS12 to connect to LoRaWAN network =
130
131
132 == 2.1  How it works ==
133
134
135 (((
136 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
137 )))
138
139 (((
140 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
141 )))
142
143
144
145 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
146
147
148 (((
149 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
150 )))
151
152 (((
153 [[image:1654827857527-556.png]]
154 )))
155
156 (((
157 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
158 )))
159
160 (((
161
162
163 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
164 )))
165
166 (((
167 Each LSPH01 is shipped with a sticker with the default device EUI as below:
168 )))
169
170 [[image:image-20220607170145-1.jpeg]]
171
172
173
174 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
175
176
177 **Register the device**
178
179
180 [[image:1654592600093-601.png]]
181
182
183
184 **Add APP EUI and DEV EUI**
185
186 [[image:1654592619856-881.png]]
187
188
189
190 **Add APP EUI in the application**
191
192 [[image:1654592632656-512.png]]
193
194
195
196 **Add APP KEY**
197
198 [[image:1654592653453-934.png]]
199
200
201 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
202
203
204 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
205
206 [[image:image-20220607170442-2.png]]
207
208
209 (((
210 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
211 )))
212
213 [[image:1654833501679-968.png]]
214
215
216
217 == 2.3  ​Uplink Payload ==
218
219
220 (((
221 LLDS12 will uplink payload via LoRaWAN with below payload format: 
222 )))
223
224 (((
225 Uplink payload includes in total 11 bytes.
226 )))
227
228 (((
229
230 )))
231
232 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
233 |=(% style="width: 62.5px;" %)(((
234 **Size (bytes)**
235 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
236 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
237 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
238 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
239 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
240 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
241 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
242 )))
243
244 [[image:1654833689380-972.png]]
245
246
247
248 === 2.3.1  Battery Info ===
249
250
251 Check the battery voltage for LLDS12.
252
253 Ex1: 0x0B45 = 2885mV
254
255 Ex2: 0x0B49 = 2889mV
256
257
258
259 === 2.3.2  DS18B20 Temperature sensor ===
260
261
262 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
263
264
265 **Example**:
266
267 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
268
269 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
270
271
272
273 === 2.3.3  Distance ===
274
275
276 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
277
278
279 **Example**:
280
281 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
282
283
284
285 === 2.3.4  Distance signal strength ===
286
287
288 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
289
290
291 **Example**:
292
293 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
294
295 Customers can judge whether they need to adjust the environment based on the signal strength.
296
297
298
299 === 2.3.5  Interrupt Pin ===
300
301
302 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
303
304 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
305
306 **Example:**
307
308 0x00: Normal uplink packet.
309
310 0x01: Interrupt Uplink Packet.
311
312
313
314 === 2.3.6  LiDAR temp ===
315
316
317 Characterize the internal temperature value of the sensor.
318
319 **Example: **
320 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
321 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
322
323
324
325 === 2.3.7  Message Type ===
326
327
328 (((
329 For a normal uplink payload, the message type is always 0x01.
330 )))
331
332 (((
333 Valid Message Type:
334 )))
335
336
337 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
338 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
339 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
340 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
341
342 === 2.3.8  Decode payload in The Things Network ===
343
344
345 While using TTN network, you can add the payload format to decode the payload.
346
347
348 [[image:1654592762713-715.png]]
349
350
351 (((
352 The payload decoder function for TTN is here:
353 )))
354
355 (((
356 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
357 )))
358
359
360
361 == 2.4  Uplink Interval ==
362
363
364 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
365
366
367
368 == 2.5  ​Show Data in DataCake IoT Server ==
369
370
371 (((
372 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
373 )))
374
375 (((
376
377 )))
378
379 (((
380 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
381 )))
382
383 (((
384 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
385 )))
386
387
388 [[image:1654592790040-760.png]]
389
390
391 [[image:1654592800389-571.png]]
392
393
394 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
395
396 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
397
398 [[image:1654832691989-514.png]]
399
400
401 [[image:1654592833877-762.png]]
402
403
404 [[image:1654832740634-933.png]]
405
406
407
408 (((
409 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
410 )))
411
412 (((
413
414 )))
415
416 [[image:1654833065139-942.png]]
417
418
419
420 [[image:1654833092678-390.png]]
421
422
423
424 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
425
426 [[image:1654833163048-332.png]]
427
428
429
430 == 2.6  Frequency Plans ==
431
432
433 (((
434 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
435 )))
436
437
438
439 === 2.6.1  EU863-870 (EU868) ===
440
441
442 (((
443 (% style="color:blue" %)**Uplink:**
444 )))
445
446 (((
447 868.1 - SF7BW125 to SF12BW125
448 )))
449
450 (((
451 868.3 - SF7BW125 to SF12BW125 and SF7BW250
452 )))
453
454 (((
455 868.5 - SF7BW125 to SF12BW125
456 )))
457
458 (((
459 867.1 - SF7BW125 to SF12BW125
460 )))
461
462 (((
463 867.3 - SF7BW125 to SF12BW125
464 )))
465
466 (((
467 867.5 - SF7BW125 to SF12BW125
468 )))
469
470 (((
471 867.7 - SF7BW125 to SF12BW125
472 )))
473
474 (((
475 867.9 - SF7BW125 to SF12BW125
476 )))
477
478 (((
479 868.8 - FSK
480 )))
481
482 (((
483
484 )))
485
486 (((
487 (% style="color:blue" %)**Downlink:**
488 )))
489
490 (((
491 Uplink channels 1-9 (RX1)
492 )))
493
494 (((
495 869.525 - SF9BW125 (RX2 downlink only)
496 )))
497
498
499
500 === 2.6.2  US902-928(US915) ===
501
502
503 (((
504 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
505 )))
506
507 (((
508 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
509 )))
510
511 (((
512 After Join success, the end node will switch to the correct sub band by:
513 )))
514
515 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
516 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
517
518
519
520 === 2.6.3  CN470-510 (CN470) ===
521
522
523 (((
524 Used in China, Default use CHE=1
525 )))
526
527 (((
528 (% style="color:blue" %)**Uplink:**
529 )))
530
531 (((
532 486.3 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 486.5 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 486.7 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 486.9 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 487.1 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 487.3 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556 487.5 - SF7BW125 to SF12BW125
557 )))
558
559 (((
560 487.7 - SF7BW125 to SF12BW125
561 )))
562
563 (((
564
565 )))
566
567 (((
568 (% style="color:blue" %)**Downlink:**
569 )))
570
571 (((
572 506.7 - SF7BW125 to SF12BW125
573 )))
574
575 (((
576 506.9 - SF7BW125 to SF12BW125
577 )))
578
579 (((
580 507.1 - SF7BW125 to SF12BW125
581 )))
582
583 (((
584 507.3 - SF7BW125 to SF12BW125
585 )))
586
587 (((
588 507.5 - SF7BW125 to SF12BW125
589 )))
590
591 (((
592 507.7 - SF7BW125 to SF12BW125
593 )))
594
595 (((
596 507.9 - SF7BW125 to SF12BW125
597 )))
598
599 (((
600 508.1 - SF7BW125 to SF12BW125
601 )))
602
603 (((
604 505.3 - SF12BW125 (RX2 downlink only)
605 )))
606
607
608
609 === 2.6.4  AU915-928(AU915) ===
610
611
612 (((
613 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
614 )))
615
616 (((
617 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
618 )))
619
620 (((
621
622 )))
623
624 (((
625 After Join success, the end node will switch to the correct sub band by:
626 )))
627
628 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
629 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
630
631
632
633 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
634
635
636 (((
637 (% style="color:blue" %)**Default Uplink channel:**
638 )))
639
640 (((
641 923.2 - SF7BW125 to SF10BW125
642 )))
643
644 (((
645 923.4 - SF7BW125 to SF10BW125
646 )))
647
648 (((
649
650 )))
651
652 (((
653 (% style="color:blue" %)**Additional Uplink Channel**:
654 )))
655
656 (((
657 (OTAA mode, channel added by JoinAccept message)
658 )))
659
660 (((
661
662 )))
663
664 (((
665 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
666 )))
667
668 (((
669 922.2 - SF7BW125 to SF10BW125
670 )))
671
672 (((
673 922.4 - SF7BW125 to SF10BW125
674 )))
675
676 (((
677 922.6 - SF7BW125 to SF10BW125
678 )))
679
680 (((
681 922.8 - SF7BW125 to SF10BW125
682 )))
683
684 (((
685 923.0 - SF7BW125 to SF10BW125
686 )))
687
688 (((
689 922.0 - SF7BW125 to SF10BW125
690 )))
691
692 (((
693
694 )))
695
696 (((
697 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
698 )))
699
700 (((
701 923.6 - SF7BW125 to SF10BW125
702 )))
703
704 (((
705 923.8 - SF7BW125 to SF10BW125
706 )))
707
708 (((
709 924.0 - SF7BW125 to SF10BW125
710 )))
711
712 (((
713 924.2 - SF7BW125 to SF10BW125
714 )))
715
716 (((
717 924.4 - SF7BW125 to SF10BW125
718 )))
719
720 (((
721 924.6 - SF7BW125 to SF10BW125
722 )))
723
724 (((
725
726 )))
727
728 (((
729 (% style="color:blue" %)**Downlink:**
730 )))
731
732 (((
733 Uplink channels 1-8 (RX1)
734 )))
735
736 (((
737 923.2 - SF10BW125 (RX2)
738 )))
739
740
741
742 === 2.6.6  KR920-923 (KR920) ===
743
744
745 (((
746 (% style="color:blue" %)**Default channel:**
747 )))
748
749 (((
750 922.1 - SF7BW125 to SF12BW125
751 )))
752
753 (((
754 922.3 - SF7BW125 to SF12BW125
755 )))
756
757 (((
758 922.5 - SF7BW125 to SF12BW125
759 )))
760
761 (((
762
763 )))
764
765 (((
766 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
767 )))
768
769 (((
770 922.1 - SF7BW125 to SF12BW125
771 )))
772
773 (((
774 922.3 - SF7BW125 to SF12BW125
775 )))
776
777 (((
778 922.5 - SF7BW125 to SF12BW125
779 )))
780
781 (((
782 922.7 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786 922.9 - SF7BW125 to SF12BW125
787 )))
788
789 (((
790 923.1 - SF7BW125 to SF12BW125
791 )))
792
793 (((
794 923.3 - SF7BW125 to SF12BW125
795 )))
796
797 (((
798
799 )))
800
801 (((
802 (% style="color:blue" %)**Downlink:**
803 )))
804
805 (((
806 Uplink channels 1-7(RX1)
807 )))
808
809 (((
810 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
811 )))
812
813
814
815 === 2.6.7  IN865-867 (IN865) ===
816
817
818 (((
819 (% style="color:blue" %)**Uplink:**
820 )))
821
822 (((
823 865.0625 - SF7BW125 to SF12BW125
824 )))
825
826 (((
827 865.4025 - SF7BW125 to SF12BW125
828 )))
829
830 (((
831 865.9850 - SF7BW125 to SF12BW125
832 )))
833
834 (((
835
836 )))
837
838 (((
839 (% style="color:blue" %)**Downlink:**
840 )))
841
842 (((
843 Uplink channels 1-3 (RX1)
844 )))
845
846 (((
847 866.550 - SF10BW125 (RX2)
848 )))
849
850
851
852 == 2.7  LED Indicator ==
853
854
855 The LLDS12 has an internal LED which is to show the status of different state.
856
857 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
858 * Blink once when device transmit a packet.
859
860
861
862 == 2.8  ​Firmware Change Log ==
863
864
865 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
866
867
868 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
869
870
871
872 = 3.  LiDAR ToF Measurement =
873
874
875 == 3.1 Principle of Distance Measurement ==
876
877
878 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
879
880
881 [[image:1654831757579-263.png]]
882
883
884
885 == 3.2 Distance Measurement Characteristics ==
886
887
888 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
889
890 [[image:1654831774373-275.png]]
891
892
893 (((
894 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
895 )))
896
897 (((
898 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
899 )))
900
901 (((
902 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
903 )))
904
905
906 (((
907 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
908 )))
909
910
911 [[image:1654831797521-720.png]]
912
913
914 (((
915 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
916 )))
917
918 [[image:1654831810009-716.png]]
919
920
921 (((
922 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
923 )))
924
925
926
927 == 3.3 Notice of usage: ==
928
929
930 Possible invalid /wrong reading for LiDAR ToF tech:
931
932 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
933 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
934 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
935 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
936
937
938
939 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
940
941
942 (((
943 (((
944 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
945 )))
946 )))
947
948 * (((
949 (((
950 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
951 )))
952 )))
953 * (((
954 (((
955 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
956 )))
957 )))
958
959 (((
960 (((
961
962 )))
963
964 (((
965 There are two kinds of commands to configure LLDS12, they are:
966 )))
967 )))
968
969 * (((
970 (((
971 (% style="color:#4f81bd" %)** General Commands**.
972 )))
973 )))
974
975 (((
976 (((
977 These commands are to configure:
978 )))
979 )))
980
981 * (((
982 (((
983 General system settings like: uplink interval.
984 )))
985 )))
986 * (((
987 (((
988 LoRaWAN protocol & radio related command.
989 )))
990 )))
991
992 (((
993 (((
994 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
995 )))
996 )))
997
998 (((
999 (((
1000
1001 )))
1002 )))
1003
1004 * (((
1005 (((
1006 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1007 )))
1008 )))
1009
1010 (((
1011 (((
1012 These commands only valid for LLDS12, as below:
1013 )))
1014 )))
1015
1016
1017
1018 == 4.1  Set Transmit Interval Time ==
1019
1020
1021 Feature: Change LoRaWAN End Node Transmit Interval.
1022
1023 (% style="color:#037691" %)**AT Command: AT+TDC**
1024
1025 [[image:image-20220607171554-8.png]]
1026
1027
1028 (((
1029 (% style="color:#037691" %)**Downlink Command: 0x01**
1030 )))
1031
1032 (((
1033 Format: Command Code (0x01) followed by 3 bytes time value.
1034 )))
1035
1036 (((
1037 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1038 )))
1039
1040 * (((
1041 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1042 )))
1043 * (((
1044 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1045
1046
1047
1048
1049 )))
1050
1051 == 4.2  Set Interrupt Mode ==
1052
1053
1054 Feature, Set Interrupt mode for GPIO_EXIT.
1055
1056 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1057
1058 [[image:image-20220610105806-2.png]]
1059
1060
1061 (((
1062 (% style="color:#037691" %)**Downlink Command: 0x06**
1063 )))
1064
1065 (((
1066 Format: Command Code (0x06) followed by 3 bytes.
1067 )))
1068
1069 (((
1070 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1071 )))
1072
1073 * (((
1074 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1075 )))
1076 * (((
1077 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1078
1079
1080
1081
1082 )))
1083
1084 == 4.3  Get Firmware Version Info ==
1085
1086
1087 Feature: use downlink to get firmware version.
1088
1089 (% style="color:#037691" %)**Downlink Command: 0x26**
1090
1091 [[image:image-20220607171917-10.png]]
1092
1093 * Reply to the confirmation package: 26 01
1094 * Reply to non-confirmed packet: 26 00
1095
1096 Device will send an uplink after got this downlink command. With below payload:
1097
1098 Configures info payload:
1099
1100 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1101 |=(((
1102 **Size(bytes)**
1103 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1104 |**Value**|Software Type|(((
1105 Frequency
1106
1107 Band
1108 )))|Sub-band|(((
1109 Firmware
1110
1111 Version
1112 )))|Sensor Type|Reserve|(((
1113 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1114 Always 0x02
1115 )))
1116
1117 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1118
1119
1120 (% style="color:#037691" %)**Frequency Band**:
1121
1122 *0x01: EU868
1123
1124 *0x02: US915
1125
1126 *0x03: IN865
1127
1128 *0x04: AU915
1129
1130 *0x05: KZ865
1131
1132 *0x06: RU864
1133
1134 *0x07: AS923
1135
1136 *0x08: AS923-1
1137
1138 *0x09: AS923-2
1139
1140 *0xa0: AS923-3
1141
1142
1143 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1144
1145
1146 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1147
1148
1149 (% style="color:#037691" %)**Sensor Type**:
1150
1151 0x01: LSE01
1152
1153 0x02: LDDS75
1154
1155 0x03: LDDS20
1156
1157 0x04: LLMS01
1158
1159 0x05: LSPH01
1160
1161 0x06: LSNPK01
1162
1163 0x07: LLDS12
1164
1165
1166
1167 = 5.  Battery & How to replace =
1168
1169
1170 == 5.1  Battery Type ==
1171
1172
1173 (((
1174 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1175 )))
1176
1177 (((
1178 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1179 )))
1180
1181 [[image:1654593587246-335.png]]
1182
1183
1184 Minimum Working Voltage for the LLDS12:
1185
1186 LLDS12:  2.45v ~~ 3.6v
1187
1188
1189
1190 == 5.2  Replace Battery ==
1191
1192
1193 (((
1194 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1195 )))
1196
1197 (((
1198 And make sure the positive and negative pins match.
1199 )))
1200
1201
1202
1203 == 5.3  Power Consumption Analyze ==
1204
1205
1206 (((
1207 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1208 )))
1209
1210 (((
1211 Instruction to use as below:
1212 )))
1213
1214
1215 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1216
1217 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1218
1219
1220 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1221
1222 * Product Model
1223 * Uplink Interval
1224 * Working Mode
1225
1226 And the Life expectation in difference case will be shown on the right.
1227
1228 [[image:1654593605679-189.png]]
1229
1230
1231 The battery related documents as below:
1232
1233 * (((
1234 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1235 )))
1236 * (((
1237 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1238 )))
1239 * (((
1240 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1241 )))
1242
1243 [[image:image-20220607172042-11.png]]
1244
1245
1246
1247 === 5.3.1  ​Battery Note ===
1248
1249
1250 (((
1251 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1252 )))
1253
1254
1255
1256 === ​5.3.2  Replace the battery ===
1257
1258
1259 (((
1260 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1261 )))
1262
1263 (((
1264 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1265 )))
1266
1267
1268
1269 = 6.  Use AT Command =
1270
1271
1272 == 6.1  Access AT Commands ==
1273
1274
1275 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1276
1277 [[image:1654593668970-604.png]]
1278
1279 **Connection:**
1280
1281 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1282
1283 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1284
1285 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1286
1287
1288 (((
1289 (((
1290 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1291 )))
1292
1293 (((
1294 LLDS12 will output system info once power on as below:
1295 )))
1296 )))
1297
1298
1299 [[image:1654593712276-618.png]]
1300
1301 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1302
1303
1304
1305 = 7.  FAQ =
1306
1307
1308 == 7.1  How to change the LoRa Frequency Bands/Region ==
1309
1310
1311 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1312 When downloading the images, choose the required image file for download. ​
1313
1314
1315
1316 = 8.  Trouble Shooting =
1317
1318
1319 == 8.1  AT Commands input doesn't work ==
1320
1321
1322
1323 (((
1324 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1325 )))
1326
1327
1328
1329 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1330
1331
1332 (((
1333 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1334 )))
1335
1336 (((
1337 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1338 )))
1339
1340 (((
1341
1342 )))
1343
1344 (((
1345 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1346 )))
1347
1348 (((
1349 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1350 )))
1351
1352
1353
1354 = 9.  Order Info =
1355
1356
1357 Part Number: (% style="color:blue" %)**LLDS12-XX**
1358
1359
1360 (% style="color:blue" %)**XX**(%%): The default frequency band
1361
1362 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1363 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1364 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1365 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1366 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1367 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1368 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1369 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1370
1371
1372
1373 = 10. ​ Packing Info =
1374
1375
1376 **Package Includes**:
1377
1378 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1379
1380 **Dimension and weight**:
1381
1382 * Device Size: cm
1383 * Device Weight: g
1384 * Package Size / pcs : cm
1385 * Weight / pcs : g
1386
1387
1388
1389 = 11.  ​Support =
1390
1391
1392 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1393 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1394
1395
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0