Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23
24
25
26
27 = 1.  Introduction =
28
29
30 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
31
32 (((
33
34
35 (((
36 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
37 )))
38
39 (((
40 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
41 )))
42
43 (((
44 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
45 )))
46
47 (((
48 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
49 )))
50
51 (((
52 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
53 )))
54
55 (((
56 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
57 )))
58 )))
59
60
61 [[image:1654826306458-414.png]]
62
63
64
65 == ​1.2  Features ==
66
67
68 * LoRaWAN 1.0.3 Class A
69 * Ultra-low power consumption
70 * Laser technology for distance detection
71 * Operating Range - 0.1m~~12m①
72 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Monitor Battery Level
74 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
75 * AT Commands to change parameters
76 * Uplink on periodically
77 * Downlink to change configure
78 * 8500mAh Battery for long term use
79
80
81
82
83 == 1.3  Probe Specification ==
84
85
86 * Storage temperature :-20℃~~75℃
87 * Operating temperature - -20℃~~60℃
88 * Operating Range - 0.1m~~12m①
89 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
90 * Distance resolution - 5mm
91 * Ambient light immunity - 70klux
92 * Enclosure rating - IP65
93 * Light source - LED
94 * Central wavelength - 850nm
95 * FOV - 3.6°
96 * Material of enclosure - ABS+PC
97 * Wire length - 25cm
98
99
100
101
102 == 1.4  Probe Dimension ==
103
104
105 [[image:1654827224480-952.png]]
106
107
108
109 == 1.5 ​ Applications ==
110
111
112 * Horizontal distance measurement
113 * Parking management system
114 * Object proximity and presence detection
115 * Intelligent trash can management system
116 * Robot obstacle avoidance
117 * Automatic control
118 * Sewer
119
120
121
122
123 == 1.6  Pin mapping and power on ==
124
125
126 [[image:1654827332142-133.png]]
127
128
129
130 = 2.  Configure LLDS12 to connect to LoRaWAN network =
131
132
133 == 2.1  How it works ==
134
135
136 (((
137 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
138 )))
139
140 (((
141 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
142 )))
143
144
145
146 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
147
148
149 (((
150 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
151 )))
152
153 (((
154 [[image:1654827857527-556.png]]
155 )))
156
157 (((
158 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159 )))
160
161 (((
162
163
164 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
165 )))
166
167 (((
168 Each LSPH01 is shipped with a sticker with the default device EUI as below:
169 )))
170
171 [[image:image-20220607170145-1.jpeg]]
172
173
174
175 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176
177
178 **Register the device**
179
180
181 [[image:1654592600093-601.png]]
182
183
184
185 **Add APP EUI and DEV EUI**
186
187 [[image:1654592619856-881.png]]
188
189
190
191 **Add APP EUI in the application**
192
193 [[image:1654592632656-512.png]]
194
195
196
197 **Add APP KEY**
198
199 [[image:1654592653453-934.png]]
200
201
202 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
203
204
205 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
206
207 [[image:image-20220607170442-2.png]]
208
209
210 (((
211 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
212 )))
213
214 [[image:1654833501679-968.png]]
215
216
217
218 == 2.3  ​Uplink Payload ==
219
220
221 (((
222 LLDS12 will uplink payload via LoRaWAN with below payload format: 
223 )))
224
225 (((
226 Uplink payload includes in total 11 bytes.
227 )))
228
229 (((
230
231 )))
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
234 |=(% style="width: 62.5px;" %)(((
235 **Size (bytes)**
236 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
237 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
238 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
239 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
240 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
241 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
242 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
243 )))
244
245 [[image:1654833689380-972.png]]
246
247
248
249 === 2.3.1  Battery Info ===
250
251
252 Check the battery voltage for LLDS12.
253
254 Ex1: 0x0B45 = 2885mV
255
256 Ex2: 0x0B49 = 2889mV
257
258
259
260 === 2.3.2  DS18B20 Temperature sensor ===
261
262
263 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
264
265
266 **Example**:
267
268 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
269
270 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
271
272
273
274 === 2.3.3  Distance ===
275
276
277 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
278
279
280 **Example**:
281
282 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
283
284
285
286 === 2.3.4  Distance signal strength ===
287
288
289 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
290
291
292 **Example**:
293
294 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
295
296 Customers can judge whether they need to adjust the environment based on the signal strength.
297
298
299
300 === 2.3.5  Interrupt Pin ===
301
302
303 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
304
305 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
306
307 **Example:**
308
309 0x00: Normal uplink packet.
310
311 0x01: Interrupt Uplink Packet.
312
313
314
315 === 2.3.6  LiDAR temp ===
316
317
318 Characterize the internal temperature value of the sensor.
319
320 **Example: **
321 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
322 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
323
324
325
326 === 2.3.7  Message Type ===
327
328
329 (((
330 For a normal uplink payload, the message type is always 0x01.
331 )))
332
333 (((
334 Valid Message Type:
335 )))
336
337
338 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
339 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
340 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
341 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
342
343
344 === 2.3.8  Decode payload in The Things Network ===
345
346
347 While using TTN network, you can add the payload format to decode the payload.
348
349
350 [[image:1654592762713-715.png]]
351
352
353 (((
354 The payload decoder function for TTN is here:
355 )))
356
357 (((
358 LLDS12 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
359 )))
360
361
362
363 == 2.4  Uplink Interval ==
364
365
366 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
367
368
369
370 == 2.5  ​Show Data in DataCake IoT Server ==
371
372
373 (((
374 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
375 )))
376
377 (((
378
379 )))
380
381 (((
382 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
383 )))
384
385 (((
386 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
387 )))
388
389
390 [[image:1654592790040-760.png]]
391
392
393 [[image:1654592800389-571.png]]
394
395
396 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
397
398 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
399
400 [[image:1654832691989-514.png]]
401
402
403 [[image:1654592833877-762.png]]
404
405
406 [[image:1654832740634-933.png]]
407
408
409
410 (((
411 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
412 )))
413
414 (((
415
416 )))
417
418 [[image:1654833065139-942.png]]
419
420
421
422 [[image:1654833092678-390.png]]
423
424
425
426 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
427
428 [[image:1654833163048-332.png]]
429
430
431
432 == 2.6  Frequency Plans ==
433
434
435 (((
436 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
437 )))
438
439
440
441 === 2.6.1  EU863-870 (EU868) ===
442
443
444 (((
445 (% style="color:blue" %)**Uplink:**
446 )))
447
448 (((
449 868.1 - SF7BW125 to SF12BW125
450 )))
451
452 (((
453 868.3 - SF7BW125 to SF12BW125 and SF7BW250
454 )))
455
456 (((
457 868.5 - SF7BW125 to SF12BW125
458 )))
459
460 (((
461 867.1 - SF7BW125 to SF12BW125
462 )))
463
464 (((
465 867.3 - SF7BW125 to SF12BW125
466 )))
467
468 (((
469 867.5 - SF7BW125 to SF12BW125
470 )))
471
472 (((
473 867.7 - SF7BW125 to SF12BW125
474 )))
475
476 (((
477 867.9 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481 868.8 - FSK
482 )))
483
484 (((
485
486 )))
487
488 (((
489 (% style="color:blue" %)**Downlink:**
490 )))
491
492 (((
493 Uplink channels 1-9 (RX1)
494 )))
495
496 (((
497 869.525 - SF9BW125 (RX2 downlink only)
498 )))
499
500
501
502 === 2.6.2  US902-928(US915) ===
503
504
505 (((
506 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
507 )))
508
509 (((
510 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
511 )))
512
513 (((
514 After Join success, the end node will switch to the correct sub band by:
515 )))
516
517 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
518 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
519
520
521
522
523 === 2.6.3  CN470-510 (CN470) ===
524
525
526 (((
527 Used in China, Default use CHE=1
528 )))
529
530 (((
531 (% style="color:blue" %)**Uplink:**
532 )))
533
534 (((
535 486.3 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 486.5 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 486.7 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 486.9 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 487.1 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 487.3 - SF7BW125 to SF12BW125
556 )))
557
558 (((
559 487.5 - SF7BW125 to SF12BW125
560 )))
561
562 (((
563 487.7 - SF7BW125 to SF12BW125
564 )))
565
566 (((
567
568 )))
569
570 (((
571 (% style="color:blue" %)**Downlink:**
572 )))
573
574 (((
575 506.7 - SF7BW125 to SF12BW125
576 )))
577
578 (((
579 506.9 - SF7BW125 to SF12BW125
580 )))
581
582 (((
583 507.1 - SF7BW125 to SF12BW125
584 )))
585
586 (((
587 507.3 - SF7BW125 to SF12BW125
588 )))
589
590 (((
591 507.5 - SF7BW125 to SF12BW125
592 )))
593
594 (((
595 507.7 - SF7BW125 to SF12BW125
596 )))
597
598 (((
599 507.9 - SF7BW125 to SF12BW125
600 )))
601
602 (((
603 508.1 - SF7BW125 to SF12BW125
604 )))
605
606 (((
607 505.3 - SF12BW125 (RX2 downlink only)
608 )))
609
610
611
612 === 2.6.4  AU915-928(AU915) ===
613
614
615 (((
616 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
617 )))
618
619 (((
620 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
621 )))
622
623 (((
624
625 )))
626
627 (((
628 After Join success, the end node will switch to the correct sub band by:
629 )))
630
631 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
632 * Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
633
634
635
636
637 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
638
639
640 (((
641 (% style="color:blue" %)**Default Uplink channel:**
642 )))
643
644 (((
645 923.2 - SF7BW125 to SF10BW125
646 )))
647
648 (((
649 923.4 - SF7BW125 to SF10BW125
650 )))
651
652 (((
653
654 )))
655
656 (((
657 (% style="color:blue" %)**Additional Uplink Channel**:
658 )))
659
660 (((
661 (OTAA mode, channel added by JoinAccept message)
662 )))
663
664 (((
665
666 )))
667
668 (((
669 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
670 )))
671
672 (((
673 922.2 - SF7BW125 to SF10BW125
674 )))
675
676 (((
677 922.4 - SF7BW125 to SF10BW125
678 )))
679
680 (((
681 922.6 - SF7BW125 to SF10BW125
682 )))
683
684 (((
685 922.8 - SF7BW125 to SF10BW125
686 )))
687
688 (((
689 923.0 - SF7BW125 to SF10BW125
690 )))
691
692 (((
693 922.0 - SF7BW125 to SF10BW125
694 )))
695
696 (((
697
698 )))
699
700 (((
701 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
702 )))
703
704 (((
705 923.6 - SF7BW125 to SF10BW125
706 )))
707
708 (((
709 923.8 - SF7BW125 to SF10BW125
710 )))
711
712 (((
713 924.0 - SF7BW125 to SF10BW125
714 )))
715
716 (((
717 924.2 - SF7BW125 to SF10BW125
718 )))
719
720 (((
721 924.4 - SF7BW125 to SF10BW125
722 )))
723
724 (((
725 924.6 - SF7BW125 to SF10BW125
726 )))
727
728 (((
729
730 )))
731
732 (((
733 (% style="color:blue" %)**Downlink:**
734 )))
735
736 (((
737 Uplink channels 1-8 (RX1)
738 )))
739
740 (((
741 923.2 - SF10BW125 (RX2)
742 )))
743
744
745
746 === 2.6.6  KR920-923 (KR920) ===
747
748
749 (((
750 (% style="color:blue" %)**Default channel:**
751 )))
752
753 (((
754 922.1 - SF7BW125 to SF12BW125
755 )))
756
757 (((
758 922.3 - SF7BW125 to SF12BW125
759 )))
760
761 (((
762 922.5 - SF7BW125 to SF12BW125
763 )))
764
765 (((
766
767 )))
768
769 (((
770 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
771 )))
772
773 (((
774 922.1 - SF7BW125 to SF12BW125
775 )))
776
777 (((
778 922.3 - SF7BW125 to SF12BW125
779 )))
780
781 (((
782 922.5 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786 922.7 - SF7BW125 to SF12BW125
787 )))
788
789 (((
790 922.9 - SF7BW125 to SF12BW125
791 )))
792
793 (((
794 923.1 - SF7BW125 to SF12BW125
795 )))
796
797 (((
798 923.3 - SF7BW125 to SF12BW125
799 )))
800
801 (((
802
803 )))
804
805 (((
806 (% style="color:blue" %)**Downlink:**
807 )))
808
809 (((
810 Uplink channels 1-7(RX1)
811 )))
812
813 (((
814 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
815 )))
816
817
818
819 === 2.6.7  IN865-867 (IN865) ===
820
821
822 (((
823 (% style="color:blue" %)**Uplink:**
824 )))
825
826 (((
827 865.0625 - SF7BW125 to SF12BW125
828 )))
829
830 (((
831 865.4025 - SF7BW125 to SF12BW125
832 )))
833
834 (((
835 865.9850 - SF7BW125 to SF12BW125
836 )))
837
838 (((
839
840 )))
841
842 (((
843 (% style="color:blue" %)**Downlink:**
844 )))
845
846 (((
847 Uplink channels 1-3 (RX1)
848 )))
849
850 (((
851 866.550 - SF10BW125 (RX2)
852 )))
853
854
855
856 == 2.7  LED Indicator ==
857
858
859 The LLDS12 has an internal LED which is to show the status of different state.
860
861 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
862 * Blink once when device transmit a packet.
863
864
865
866
867 == 2.8  ​Firmware Change Log ==
868
869
870 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0>>https://www.dropbox.com/sh/zjrobt4eb6tju89/AADPX7jC7mLN2dlvV-Miz3nFa?dl=0]]
871
872
873 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874
875
876
877 = 3.  LiDAR ToF Measurement =
878
879
880 == 3.1 Principle of Distance Measurement ==
881
882
883 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
884
885
886 [[image:1654831757579-263.png]]
887
888
889
890 == 3.2 Distance Measurement Characteristics ==
891
892
893 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
894
895 [[image:1654831774373-275.png]]
896
897
898 (((
899 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
900 )))
901
902 (((
903 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
904 )))
905
906 (((
907 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
908 )))
909
910
911 (((
912 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
913 )))
914
915
916 [[image:1654831797521-720.png]]
917
918
919 (((
920 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
921 )))
922
923 [[image:1654831810009-716.png]]
924
925
926 (((
927 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
928 )))
929
930
931
932 == 3.3 Notice of usage: ==
933
934
935 Possible invalid /wrong reading for LiDAR ToF tech:
936
937 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
938 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
939 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
940 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
941
942
943
944
945 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
946
947
948 (((
949 (((
950 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
951 )))
952 )))
953
954 * (((
955 (((
956 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
957 )))
958 )))
959 * (((
960 (((
961 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
962 )))
963 )))
964
965 (((
966 (((
967
968 )))
969
970 (((
971 There are two kinds of commands to configure LLDS12, they are:
972 )))
973 )))
974
975 * (((
976 (((
977 (% style="color:#4f81bd" %)** General Commands**.
978 )))
979 )))
980
981 (((
982 (((
983 These commands are to configure:
984 )))
985 )))
986
987 * (((
988 (((
989 General system settings like: uplink interval.
990 )))
991 )))
992 * (((
993 (((
994 LoRaWAN protocol & radio related command.
995 )))
996 )))
997
998 (((
999 (((
1000 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1001 )))
1002 )))
1003
1004 (((
1005 (((
1006
1007 )))
1008 )))
1009
1010 * (((
1011 (((
1012 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1013 )))
1014 )))
1015
1016 (((
1017 (((
1018 These commands only valid for LLDS12, as below:
1019 )))
1020 )))
1021
1022
1023
1024 == 4.1  Set Transmit Interval Time ==
1025
1026
1027 Feature: Change LoRaWAN End Node Transmit Interval.
1028
1029 (% style="color:#037691" %)**AT Command: AT+TDC**
1030
1031 [[image:image-20220607171554-8.png]]
1032
1033
1034 (((
1035 (% style="color:#037691" %)**Downlink Command: 0x01**
1036 )))
1037
1038 (((
1039 Format: Command Code (0x01) followed by 3 bytes time value.
1040 )))
1041
1042 (((
1043 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1044 )))
1045
1046 * (((
1047 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1048 )))
1049 * (((
1050 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1051
1052
1053
1054
1055 )))
1056
1057 == 4.2  Set Interrupt Mode ==
1058
1059
1060 Feature, Set Interrupt mode for GPIO_EXIT.
1061
1062 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1063
1064 [[image:image-20220610105806-2.png]]
1065
1066
1067 (((
1068 (% style="color:#037691" %)**Downlink Command: 0x06**
1069 )))
1070
1071 (((
1072 Format: Command Code (0x06) followed by 3 bytes.
1073 )))
1074
1075 (((
1076 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1077 )))
1078
1079 * (((
1080 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1081 )))
1082 * (((
1083 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1084
1085
1086
1087
1088 )))
1089
1090 == 4.3  Get Firmware Version Info ==
1091
1092
1093 Feature: use downlink to get firmware version.
1094
1095 (% style="color:#037691" %)**Downlink Command: 0x26**
1096
1097 [[image:image-20220607171917-10.png]]
1098
1099 * Reply to the confirmation package: 26 01
1100 * Reply to non-confirmed packet: 26 00
1101
1102 Device will send an uplink after got this downlink command. With below payload:
1103
1104 Configures info payload:
1105
1106 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1107 |=(((
1108 **Size(bytes)**
1109 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1110 |**Value**|Software Type|(((
1111 Frequency
1112
1113 Band
1114 )))|Sub-band|(((
1115 Firmware
1116
1117 Version
1118 )))|Sensor Type|Reserve|(((
1119 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1120 Always 0x02
1121 )))
1122
1123 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
1124
1125
1126 (% style="color:#037691" %)**Frequency Band**:
1127
1128 *0x01: EU868
1129
1130 *0x02: US915
1131
1132 *0x03: IN865
1133
1134 *0x04: AU915
1135
1136 *0x05: KZ865
1137
1138 *0x06: RU864
1139
1140 *0x07: AS923
1141
1142 *0x08: AS923-1
1143
1144 *0x09: AS923-2
1145
1146 *0xa0: AS923-3
1147
1148
1149 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
1150
1151
1152 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
1153
1154
1155 (% style="color:#037691" %)**Sensor Type**:
1156
1157 0x01: LSE01
1158
1159 0x02: LDDS75
1160
1161 0x03: LDDS20
1162
1163 0x04: LLMS01
1164
1165 0x05: LSPH01
1166
1167 0x06: LSNPK01
1168
1169 0x07: LLDS12
1170
1171
1172
1173 = 5.  Battery & How to replace =
1174
1175
1176 == 5.1  Battery Type ==
1177
1178
1179 (((
1180 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1181 )))
1182
1183 (((
1184 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1185 )))
1186
1187 [[image:1654593587246-335.png]]
1188
1189
1190 Minimum Working Voltage for the LLDS12:
1191
1192 LLDS12:  2.45v ~~ 3.6v
1193
1194
1195
1196 == 5.2  Replace Battery ==
1197
1198
1199 (((
1200 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1201 )))
1202
1203 (((
1204 And make sure the positive and negative pins match.
1205 )))
1206
1207
1208
1209 == 5.3  Power Consumption Analyze ==
1210
1211
1212 (((
1213 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1214 )))
1215
1216 (((
1217 Instruction to use as below:
1218 )))
1219
1220
1221 (% style="color:blue" %)**Step 1**(%%): Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1222
1223 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1224
1225
1226 (% style="color:blue" %)**Step 2**(%%): Open it and choose
1227
1228 * Product Model
1229 * Uplink Interval
1230 * Working Mode
1231
1232 And the Life expectation in difference case will be shown on the right.
1233
1234 [[image:1654593605679-189.png]]
1235
1236
1237 The battery related documents as below:
1238
1239 * (((
1240 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
1241 )))
1242 * (((
1243 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1244 )))
1245 * (((
1246 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
1247 )))
1248
1249 [[image:image-20220607172042-11.png]]
1250
1251
1252
1253 === 5.3.1  ​Battery Note ===
1254
1255
1256 (((
1257 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1258 )))
1259
1260
1261
1262 === ​5.3.2  Replace the battery ===
1263
1264
1265 (((
1266 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1267 )))
1268
1269 (((
1270 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1271 )))
1272
1273
1274
1275 = 6.  Use AT Command =
1276
1277
1278 == 6.1  Access AT Commands ==
1279
1280
1281 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1282
1283 [[image:1654593668970-604.png]]
1284
1285 **Connection:**
1286
1287 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1288
1289 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1290
1291 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1292
1293
1294 (((
1295 (((
1296 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1297 )))
1298
1299 (((
1300 LLDS12 will output system info once power on as below:
1301 )))
1302 )))
1303
1304
1305 [[image:1654593712276-618.png]]
1306
1307 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1308
1309
1310
1311 = 7.  FAQ =
1312
1313
1314 == 7.1  How to change the LoRa Frequency Bands/Region ==
1315
1316
1317 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1318 When downloading the images, choose the required image file for download. ​
1319
1320
1321
1322 = 8.  Trouble Shooting =
1323
1324
1325 == 8.1  AT Commands input doesn't work ==
1326
1327
1328
1329 (((
1330 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1331 )))
1332
1333
1334
1335 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1336
1337
1338 (((
1339 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1340 )))
1341
1342 (((
1343 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1344 )))
1345
1346 (((
1347
1348 )))
1349
1350 (((
1351 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1352 )))
1353
1354 (((
1355 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1356 )))
1357
1358
1359
1360 = 9.  Order Info =
1361
1362
1363 Part Number: (% style="color:blue" %)**LLDS12-XX**
1364
1365
1366 (% style="color:blue" %)**XX**(%%): The default frequency band
1367
1368 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1369 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1370 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1371 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1372 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1373 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1374 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1375 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1376
1377
1378
1379
1380 = 10. ​ Packing Info =
1381
1382
1383 **Package Includes**:
1384
1385 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1386
1387 **Dimension and weight**:
1388
1389 * Device Size: cm
1390 * Device Weight: g
1391 * Package Size / pcs : cm
1392 * Weight / pcs : g
1393
1394
1395
1396
1397 = 11.  ​Support =
1398
1399
1400 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1401 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1402
1403
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0