Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.02 °C/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||height="391" width="267"]]
115
116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device n TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159
160 [[image:image-20220522232916-3.png||_mstalt="430495"]]
161
162
163 [[image:image-20220522232932-4.png||_mstalt="430157"]]
164
165
166 [[image:image-20220522232954-5.png||_mstalt="431847"]]
167
168
169
170 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
171
172
173 [[image:image-20220522233026-6.png||_mstalt="429403"]]
174
175
176 Input APP EUI,  APP KEY and DEV EUI:
177
178
179 [[image:image-20220522233118-7.png||_mstalt="430430"]]
180
181
182 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
183
184
185 (((
186 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
187 )))
188
189 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
190
191
192 == 2.4 Uplink Payload (Fport~=2) ==
193
194
195 (((
196 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
197 )))
198
199 (((
200 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
201 )))
202
203 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
204 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
205 **Size(bytes)**
206 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
207 **2**
208 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
213 **1**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **4**
216 )))
217 |(% style="width:97px" %)(((
218 Value
219 )))|(% style="width:39px" %)(((
220 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
221 )))|(% style="width:100px" %)(((
222 (((
223 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
224 )))
225 )))|(% style="width:77px" %)(((
226 (((
227 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
228 )))
229 )))|(% style="width:47px" %)(((
230 [[Ext>>||anchor="H2.4.5Ext23"]] #
231 )))|(% style="width:51px" %)(((
232 [[Ext value>>||anchor="H2.4.6Extvalue"]]
233 )))
234
235 * The First 6 bytes: has fix meanings for every LHT65N.
236
237 * The 7th byte (EXT #): defines the external sensor model.
238
239 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
240
241 === 2.4.1 Decoder in TTN V3 ===
242
243
244 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
245
246 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
247
248
249 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
250
251
252 === 2.4.2 BAT-Battery Info ===
253
254
255 These two bytes of BAT include the battery state and the actually voltage.
256
257 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
258 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
259 **Bit(bit)**
260 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
261 |(% style="width:66px" %)(((
262 Value
263 )))|(% style="width:250px" %)(((
264 BAT Status
265 00(b): Ultra Low ( BAT <= 2.50v)
266 01(b): Low (2.50v <=BAT <= 2.55v)
267 10(b): OK (2.55v <= BAT <=2.65v)
268 11(b): Good (BAT >= 2.65v)
269 )))|(% style="width:152px" %)Actually BAT voltage
270
271 **(b)stands for binary**
272
273
274 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
275
276
277 Check the battery voltage for LHT65N.
278
279 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
280
281 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
282
283 === 2.4.3 Built-in Temperature ===
284
285
286 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
287
288 * Temperature:  0x0ABB/100=27.47℃
289
290 [[image:image-20220522235639-3.png||_mstalt="432120"]]
291
292 * Temperature:  (0xF5C6-65536)/100=-26.18℃
293
294 === 2.4.4 Built-in Humidity ===
295
296
297 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
298
299 * Humidity:    0x025C/10=60.4%
300
301 === 2.4.5 Ext # ===
302
303
304 Bytes for External Sensor:
305
306 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
307 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
308 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
309 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
310 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
311 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
312 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
313 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
314 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
315 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
316
317 === 2.4.6 Ext value ===
318
319 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
320
321
322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
323 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
324 **Size(bytes)**
325 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
326 **2**
327 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
328 2
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 **2**
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 1
333 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
334 2
335 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))
338 |(% style="width:110px" %)(((
339 Value
340 )))|(% style="width:71px" %)(((
341 BAT & BAT Status
342 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
343 Status & Ext
344 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
345
346 [[image:image-20220522235639-5.png||_mstalt="432848"]]
347
348
349 * DS18B20 temp=0x0ADD/100=27.81℃
350
351 The last 2 bytes of data are meaningless
352
353 [[image:image-20220522235639-6.png||_mstalt="433212"]]
354
355
356 * External temperature= (0xF54F-65536)/100=-27.37℃
357
358 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
359
360 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
361
362 The last 2 bytes of data are meaningless
363
364 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
365
366
367 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
368
369
370 (((
371 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
372 )))
373
374 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
375 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
376 **Size(bytes)**
377 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
378 **2**
379 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
384 **1**
385 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
386 **4**
387 )))
388 |(% style="width:110px" %)(((
389 Value
390 )))|(% style="width:71px" %)(((
391 External temperature
392 )))|(% style="width:99px" %)(((
393 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
394 )))|(% style="width:132px" %)(((
395 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
396 )))|(% style="width:54px" %)(((
397 Status & Ext
398 )))|(% style="width:64px" %)(((
399 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
400 )))
401
402 * **Battery status & Built-in Humidity**
403
404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
405 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
406 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
407 BAT Status
408 00(b): Ultra Low ( BAT <= 2.50v)
409 01(b): Low  (2.50v <=BAT <= 2.55v)
410 10(b): OK   (2.55v <= BAT <=2.65v)
411 11(b): Good   (BAT >= 2.65v)
412 )))|(% style="width:132px" %)(((
413 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
414 )))
415
416 * **Status & Ext Byte**
417
418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
419 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
420 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
421
422 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
423 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
424 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
425
426 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
427
428
429 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
430 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
431 **Size(bytes)**
432 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
433 **2**
434 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
435 2
436 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
437 **2**
438 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
439 1
440 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
441 2
442 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
443 2
444 )))
445 |(% style="width:110px" %)(((
446 Value
447 )))|(% style="width:71px" %)(((
448 BAT & BAT Status
449 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
450 Status & Ext
451 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
452
453 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
454
455 be used to power the external ADC sensor; user can control the power on time for this
456
457 (% style="color:blue" %)**sensor by setting:**
458
459 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
460
461 **For example:**
462
463 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
464
465
466 Or use **downlink command A2** to set the same.
467
468 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
469
470 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
471
472 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
473
474
475 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
476
477 [[image:image-20220628150714-4.png||_mstalt="431054"]]
478
479
480 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
481
482
483 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
484
485 [[image:image-20220628151005-5.png||_mstalt="429546"]]
486
487
488 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
489
490 [[image:image-20220628151056-6.png||_mstalt="431873"]]
491
492
493 3) Within range
494
495 [[image:image-20220628151143-7.png||_mstalt="431210"]]
496
497
498
499 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
500
501
502 [[image:image-20230717151328-8.png]]
503
504
505 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
506
507
508 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
509 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
510 **Size(bytes)**
511 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
512 **2**
513 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
514 2
515 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
516 **2**
517 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
518 1
519 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
520 2
521 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
522 2
523 )))
524 |(% style="width:110px" %)(((
525 Value
526 )))|(% style="width:71px" %)(((
527 BAT & BAT Status
528 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
529 Status & Ext
530 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
531
532 [[image:image-20220906102307-7.png||_mstalt="430443"]]
533
534 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
535
536 The external cable NE2 can be use for MOD4 and MOD8
537
538
539
540 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
541
542
543 [[image:image-20230717151245-7.png]]
544
545 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
546
547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
548 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
549 **Size(bytes)**
550 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
551 **2**
552 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
553 2
554 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
555 **2**
556 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
557 1
558 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
559 2
560 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))
563 |(% style="width:110px" %)(((
564 Value
565 )))|(% style="width:71px" %)(((
566 BAT & BAT Status
567 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
568 Status & Ext
569 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
570
571 [[image:SHT31.png]]
572
573
574
575 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
576
577
578 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
579
580
581 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
582
583 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
584
585 In Open State, the power consumption is the same as if there is no probe
586
587 In Close state, the power consumption will be 3uA higher than normal.
588
589 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
590
591
592 Ext=4,Interrupt Sensor:
593
594 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
595 |(% style="width:101px" %)(((
596 **AT+EXT=4,1**
597 )))|(% style="width:395px" %)(((
598 **Sent uplink packet in both rising and falling interrupt**
599 )))
600 |(% style="width:101px" %)(((
601 **AT+EXT=4,2**
602 )))|(% style="width:395px" %)(((
603 **Sent uplink packet only in falling interrupt**
604 )))
605 |(% style="width:101px" %)(((
606 **AT+EXT=4,3**
607 )))|(% style="width:395px" %)(((
608 **Sent uplink packet only in rising interrupt**
609 )))
610
611 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
612 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
613 **Size(bytes)**
614 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
615 **2**
616 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
617 2
618 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
619 **2**
620 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
621 1
622 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
623 1
624 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
625 1
626 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
627 3
628 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
629 3
630 )))
631 |(% style="width:110px" %)(((
632 Value
633 )))|(% style="width:71px" %)(((
634 BAT & BAT Status
635 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
636 Status & Ext
637 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
638
639 Trigger by falling edge:
640
641 [[image:image-20220906101145-2.png||_mstalt="428324"]]
642
643
644 Trigger by raising edge:
645
646 [[image:image-20220906101145-3.png||_mstalt="428688"]]
647
648
649
650 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
651
652
653 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
654
655
656 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
657
658 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
659
660
661 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
662
663 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
664
665
666 Ext=8, Counting Sensor ( 4 bytes):
667
668 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
669 |(% style="width:131px" %)(((
670 **AT+EXT=8,0**
671 )))|(% style="width:195px" %)(((
672 **Count at falling interrupt**
673 )))
674 |(% style="width:131px" %)(((
675 **AT+EXT=8,1**
676 )))|(% style="width:195px" %)(((
677 **Count at rising interrupt**
678 )))
679 |(% style="width:131px" %)(((
680 **AT+SETCNT=60**
681 )))|(% style="width:195px" %)(((
682 **Sent current count to 60**
683 )))
684
685 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
686 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
687 **Size(bytes)**
688 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
689 **2**
690 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
691 2
692 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
693 **2**
694 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
695 1
696 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
697 4
698 )))
699 |(% style="width:110px" %)(((
700 Value
701 )))|(% style="width:71px" %)(((
702 BAT & BAT Status
703 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
704 Status & Ext
705 )))|(% style="width:64px" %)Exit_count
706
707 [[image:image-20220906101320-6.png||_mstalt="428064"]]
708
709
710 (% style="color:blue" %)**A2 downlink Command:**
711
712 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
713
714 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
715
716 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
717
718 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
719
720 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
721
722
723 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
724
725
726 (((
727 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
728 )))
729
730 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
731 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
732 **Size(bytes)**
733 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
734 **2**
735 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
736 **2**
737 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
738 **2**
739 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
740 **1**
741 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
742 **4**
743 )))
744 |(% style="width:110px" %)(((
745 Value
746 )))|(% style="width:71px" %)(((
747 External temperature
748 )))|(% style="width:99px" %)(((
749 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
750 )))|(% style="width:132px" %)(((
751 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
752 )))|(% style="width:54px" %)(((
753 Status & Ext
754 )))|(% style="width:64px" %)(((
755 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
756 )))
757
758 * **Battery status & Built-in Humidity**
759
760 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
761 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
762 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
763 BAT Status
764 00(b): Ultra Low ( BAT <= 2.50v)
765 01(b): Low  (2.50v <=BAT <= 2.55v)
766 10(b): OK   (2.55v <= BAT <=2.65v)
767 11(b): Good   (BAT >= 2.65v)
768 )))|(% style="width:132px" %)(((
769 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
770 )))
771
772 * **Status & Ext Byte**
773
774 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
775 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
776 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
777
778 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
779 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
780 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
781
782 == 2.5 Show data on Datacake ==
783
784
785 (((
786 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
787 )))
788
789
790 (((
791 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
792 )))
793
794 (((
795 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
796 )))
797
798
799 (((
800 Add Datacake:
801 )))
802
803 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
804
805
806 Select default key as Access Key:
807
808
809 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
810
811
812 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
813
814 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
815
816
817 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
818
819
820 == 2.6 Datalog Feature ==
821
822
823 (((
824 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
825 )))
826
827
828 === 2.6.1 Ways to get datalog via LoRaWAN ===
829
830
831 There are two methods:
832
833 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
834
835
836 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
837
838
839 (% style="color:red" %)**Note for method 2:**
840
841 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
842 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
843
844 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
845
846 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
847
848
849 === 2.6.2 Unix TimeStamp ===
850
851
852 LHT65N uses Unix TimeStamp format based on
853
854
855 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
856
857
858 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
859
860 Below is the converter example
861
862 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
863
864
865 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
866
867
868 === 2.6.3 Set Device Time ===
869
870
871 (((
872 (% style="color:blue" %)**There are two ways to set device's time:**
873 )))
874
875 (((
876 **1.  Through LoRaWAN MAC Command (Default settings)**
877 )))
878
879 (((
880 User need to set SYNCMOD=1 to enable sync time via MAC command.
881 )))
882
883 (((
884 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
885 )))
886
887 (((
888 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
889 )))
890
891
892 (((
893 **2. Manually Set Time**
894 )))
895
896 (((
897 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
898 )))
899
900
901 === 2.6.4 Poll sensor value ===
902
903
904 User can poll sensor value based on timestamps from the server. Below is the downlink command.
905
906 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
907 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
908 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
909
910 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
911
912 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
913
914 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
915
916 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
917
918
919 === 2.6.5 Datalog Uplink payload ===
920
921
922 The Datalog poll reply uplink will use below payload format.
923
924 **Retrieval data payload:**
925
926 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
927 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
928 **Size(bytes)**
929 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
930 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
931
932 **Poll message flag & Ext:**
933
934 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
935 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
936 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
937
938 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
939
940 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
941
942 * Poll Message Flag is set to 1.
943
944 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
945
946 For example, in US915 band, the max payload for different DR is:
947
948 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
949
950 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
951
952 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
953
954 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
955
956 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
957
958
959 **Example:**
960
961 If LHT65N has below data inside Flash:
962
963 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
964 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
965 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
966 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
967 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
968 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
969 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
970 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
971 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
972 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
973
974 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
975
976 Where : Start time: 60065F97 = time 21/1/19 04:27:03
977
978 Stop time: 60066DA7= time 21/1/19 05:27:03
979
980
981 **LHT65N will uplink this payload.**
982
983 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
984
985
986 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
987
988 Where the first 11 bytes is for the first entry:
989
990 7FFF089801464160065F97
991
992 Ext sensor data=0x7FFF/100=327.67
993
994 Temp=0x088E/100=22.00
995
996 Hum=0x014B/10=32.6
997
998 poll message flag & Ext=0x41,means reply data,Ext=1
999
1000 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1001
1002
1003 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1004
1005
1006 (((
1007 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1008 )))
1009
1010 (((
1011 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1012
1013
1014 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1015
1016
1017 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1018
1019 (((
1020 (% class="box infomessage" %)
1021 (((
1022 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1023
1024 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1025
1026 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1027
1028 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1029
1030 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1031
1032 **AT+LEDALARM=1** :       Enable LED visual Alarm.
1033 )))
1034 )))
1035
1036 (% style="color:#4f81bd" %)**Downlink Command:**
1037
1038 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
1039
1040 AT+CITEMP=1 : A60001
1041
1042 AT+ARTEMP=1,60  :  A70001003C
1043
1044 AT+ARTEMP=-16,60 :  A7FFF0003C
1045
1046 AT+LEDALARM=1  :  3601
1047
1048
1049 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1050
1051 Total bytes: 8 bytes
1052
1053 **Example: **AA0100010001003C
1054
1055 WMOD=01
1056
1057 CITEMP=0001
1058
1059 TEMPlow=0001
1060
1061 TEMPhigh=003C
1062
1063
1064 **DS18B20 and TMP117 Threshold Alarm**
1065
1066 **~ AT+WMOD=1,60,-10,20**
1067
1068 (% style="color:#4f81bd" %)**Downlink Command:**
1069
1070 **Example: **A5013CFC180014
1071
1072 MOD=01
1073
1074 CITEMP=3C(S)
1075
1076 TEMPlow=FC18
1077
1078 TEMPhigh=0014
1079
1080
1081 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
1082
1083 **AT+WMOD=2,60,5** 
1084
1085 (% style="color:#4f81bd" %)**Downlink Command:**
1086
1087 **Example: **A5023C05
1088
1089 MOD=02
1090
1091 CITEMP=3C(S)
1092
1093 temperature fluctuation=05
1094
1095
1096 **Sampling multiple times and uplink together**
1097
1098 **AT+WMOD=3,1,60,20,-16,32,1**   
1099
1100 Explain:
1101
1102 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1103 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1104 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1105 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1106 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1107 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1108
1109 (% style="color:#4f81bd" %)**Downlink Command:**
1110
1111 **Example: **A50301003C14FFF0002001
1112
1113 MOD=03
1114
1115 TEMP=DS18B20
1116
1117 CITEMP=003C(S)
1118
1119 Total number of acquisitions=14
1120
1121 TEMPlow=FFF0
1122
1123 TEMPhigh=0020
1124
1125 ARTEMP=01
1126
1127
1128 **Uplink payload( Fport=3)**
1129
1130 **Example: CBEA**01**0992**//0A41//**09C4**
1131
1132 BatV=CBEA
1133
1134 TEMP=DS18B20
1135
1136 Temp1=0992  ~/~/ 24.50℃
1137
1138 Temp2=0A41  ~/~/ 26.25℃
1139
1140 Temp3=09C4  ~/~/ 25.00℃
1141
1142 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1143
1144 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1145 )))
1146
1147
1148 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1149
1150
1151 (% class="box infomessage" %)
1152 (((
1153 (((
1154 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1155 )))
1156
1157 (((
1158 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1159 )))
1160
1161 (((
1162 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1163 )))
1164
1165 (((
1166 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1167 )))
1168
1169 (((
1170 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1171 )))
1172 )))
1173
1174 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1175
1176 Total bytes: 8 bytes
1177
1178 **Example:**AA0100010001003C
1179
1180 WMOD=01
1181
1182 CITEMP=0001
1183
1184 TEMPlow=0001
1185
1186 TEMPhigh=003C
1187
1188
1189 == 2.8 LED Indicator ==
1190
1191
1192 The LHT65 has a triple color LED which for easy showing different stage .
1193
1194 While user press ACT button, the LED will work as per LED status with ACT button.
1195
1196 In a normal working state:
1197
1198 * For each uplink, the BLUE LED or RED LED will blink once.
1199 BLUE LED when external sensor is connected.
1200 * RED LED when external sensor is not connected
1201 * For each success downlink, the PURPLE LED will blink once
1202
1203 == 2.9 installation ==
1204
1205
1206 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1207
1208
1209 = 3. Sensors and Accessories =
1210
1211 == 3.1 E2 Extension Cable ==
1212
1213
1214 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1215
1216
1217 **1m long breakout cable for LHT65N. Features:**
1218
1219 * (((
1220 Use for AT Command, works for both LHT52/LHT65N
1221 )))
1222 * (((
1223 Update firmware for LHT65N, works for both LHT52/LHT65N
1224 )))
1225 * (((
1226 Supports ADC mode to monitor external ADC
1227 )))
1228 * (((
1229 Supports Interrupt mode
1230 )))
1231 * (((
1232 Exposed All pins from the LHT65N Type-C connector.
1233
1234
1235
1236 )))
1237
1238 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1239
1240
1241 == 3.2 E3 Temperature Probe ==
1242
1243
1244 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1245
1246
1247 Temperature sensor with 2 meters cable long
1248
1249 * Resolution: 0.0625 °C
1250 * ±0.5°C accuracy from -10°C to +85°C
1251 * ±2°C accuracy from -55°C to +125°C
1252 * Operating Range: -40 ~~ 125 °C
1253 * Working voltage 2.35v ~~ 5v
1254
1255 == 3.3 E31F Temperature Probe ==
1256
1257
1258 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1259
1260
1261 Temperature sensor with 1 meters cable long
1262
1263
1264 **Built-in Temperature Sensor:**
1265
1266 * Resolution: 0.01 °C
1267 * Accuracy Tolerance : Typ ±0.3 °C
1268 * Long Term Drift: < 0.02 °C/yr
1269 * Operating Range: -40 ~~ 80 °C
1270
1271 **Built-in Humidity Sensor:**
1272
1273 * Resolution: 0.04 % RH
1274 * Accuracy Tolerance : Typ ±3 % RH
1275 * Long Term Drift: < 0.02 °C/yr
1276 * Operating Range: 0 ~~ 96 % RH
1277
1278 **External Temperature Sensor :**
1279
1280 * Resolution: 0.01 °C
1281 * Accuracy Tolerance : Typical ±0.3 °C
1282 * Long Term Drift: < 0.02 °C/yr
1283 * Operating Range: -40 ~~ 125 °C
1284
1285 **External Humidity Sensor :**
1286
1287 * Resolution: 0.04 % RH
1288 * Accuracy Tolerance : Typ ±3 % RH
1289 * Long Term Drift: < 0.02 °C/yr
1290 * Operating Range: 0 ~~ 96 % RH
1291
1292 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1293
1294
1295 (((
1296 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1297 )))
1298
1299 * (((
1300 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1301 )))
1302
1303 * (((
1304 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1305 )))
1306
1307 (((
1308 There are two kinds of commands to configure LHT65N, they are:
1309 )))
1310
1311 * (((
1312 (% style="color:#4f81bd" %)**General Commands**.
1313 )))
1314
1315 (((
1316 These commands are to configure:
1317 )))
1318
1319 1. (((
1320 General system settings like: uplink interval.
1321 )))
1322 1. (((
1323 LoRaWAN protocol & radio-related commands.
1324 )))
1325
1326 (((
1327 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1328 )))
1329
1330 * (((
1331 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1332 )))
1333
1334 (((
1335 These commands are only valid for LHT65N, as below:
1336 )))
1337
1338
1339 == 4.1 Set Transmit Interval Time ==
1340
1341
1342 Feature: Change LoRaWAN End Node Transmit Interval.
1343
1344
1345 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1346
1347 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1348 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1349 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1350 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1351
1352 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1353
1354 Format: Command Code (0x01) followed by 3 bytes time value.
1355
1356 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1357
1358 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1359
1360 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1361
1362 == 4.2 Set External Sensor Mode ==
1363
1364
1365 Feature: Change External Sensor Mode.
1366
1367 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1368
1369 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1370 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1371 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1372 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1373 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1374
1375 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1376
1377 Total bytes: 2 ~~ 5 bytes
1378
1379 **Example:**
1380
1381 * 0xA201: Set external sensor type to E1
1382
1383 * 0xA209: Same as AT+EXT=9
1384
1385 * 0xA20702003c: Same as AT+SETCNT=60
1386
1387 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1388
1389
1390 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1391
1392 * First Packet after OTAA Join
1393 * Every 24 hours since the first packet.
1394
1395 PID is default set to disable (0)
1396
1397 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1398
1399 (% style="color:#4f81bd" %)**AT Command:**
1400
1401 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1402 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1403 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1404
1405 (% style="color:#4f81bd" %)**Downlink Command:**
1406
1407 * **0xA800**  **~-~->** AT+PID=0
1408 * **0xA801**     **~-~->** AT+PID=1
1409
1410 == 4.4 Set Password ==
1411
1412
1413 Feature: Set device password, max 9 digits
1414
1415 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1416
1417 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1418 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1419 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1420 123456
1421
1422 OK
1423 )))
1424 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1425
1426 (% style="color:#4f81bd" %)**Downlink Command:**
1427
1428 No downlink command for this feature.
1429
1430
1431 == 4.5 Quit AT Command ==
1432
1433
1434 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1435
1436 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1437
1438 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1439 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1440 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1441
1442 (% style="color:#4f81bd" %)**Downlink Command:**
1443
1444 No downlink command for this feature.
1445
1446
1447 == 4.6 Set to sleep mode ==
1448
1449
1450 Feature: Set device to sleep mode
1451
1452 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1453 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1454
1455 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1456
1457 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1458 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1459 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1460 Clear all stored sensor data…
1461
1462 OK
1463 )))
1464
1465 (% style="color:#4f81bd" %)**Downlink Command:**
1466
1467 * There is no downlink command to set to Sleep mode.
1468
1469 == 4.7 Set system time ==
1470
1471
1472 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1473
1474 (% style="color:#4f81bd" %)**AT Command:**
1475
1476 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1477 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1478 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1479 OK
1480
1481 Set System time to 2021-01-20 00:59:12
1482 )))
1483
1484 (% style="color:#4f81bd" %)**Downlink Command:**
1485
1486 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1487
1488
1489 == 4.8 Set Time Sync Mode ==
1490
1491
1492 (((
1493 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1494 )))
1495
1496 (((
1497 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1498 )))
1499
1500 (% style="color:#4f81bd" %)**AT Command:**
1501
1502 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1503 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1504 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1505
1506 (% style="color:#4f81bd" %)**Downlink Command:**
1507
1508 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1509 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1510
1511
1512 == 4.9 Set Time Sync Interval ==
1513
1514
1515 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1516
1517 (% style="color:#4f81bd" %)**AT Command:**
1518
1519 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1520 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1521 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1522
1523 (% style="color:#4f81bd" %)**Downlink Command:**
1524
1525 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1526
1527
1528 == 4.10 Get data ==
1529
1530
1531 Feature: Get the current sensor data.
1532
1533 (% style="color:#4f81bd" %)**AT Command:**
1534
1535 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1536 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1537
1538 == 4.11 Print data entries base on page ==
1539
1540
1541 Feature: Print the sector data from start page to stop page (max is 416 pages).
1542
1543 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1544
1545 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1546 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1547 |(% style="width:156px" %)(((
1548 AT+PDTA=13
1549 Print page 1 to 3
1550 )))|(% style="width:311px" %)(((
1551 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1552 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1553 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1554 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1555 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1556 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1557 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1558 8019570
1559 8019580
1560 8019590
1561 80195A0
1562 80195B0
1563 80195C0
1564 80195D0
1565 80195E0
1566 80195F0
1567
1568 OK
1569 )))
1570
1571 (% style="color:#4f81bd" %)**Downlink Command:**
1572
1573 No downlink commands for feature
1574
1575
1576 == 4.12 Print last few data entries ==
1577
1578
1579 Feature: Print the last few data entries
1580
1581 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1582
1583 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1584 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1585 |(% style="width:156px" %)(((
1586 AT+PLDTA=5
1587 Print last 5 entries
1588 )))|(% style="width:311px" %)(((
1589 Stop Tx and RTP events when read sensor data
1590 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1591 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1592 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1593 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1594 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1595 Start Tx and RTP events
1596 OK
1597 )))
1598
1599 (% style="color:#4f81bd" %)**Downlink Command:**
1600
1601 No downlink commands for feature
1602
1603
1604 == 4.13 Clear Flash Record ==
1605
1606
1607 Feature: Clear flash storage for data log feature.
1608
1609 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1610
1611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1612 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1613 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1614 Clear all stored sensor data…
1615
1616 OK
1617 )))
1618
1619 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1620
1621 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1622
1623 == 4.14 Auto Send None-ACK messages ==
1624
1625
1626 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1627
1628 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1629
1630 The default factory setting is 0
1631
1632 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1633 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1634 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1635
1636 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1637
1638 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1639
1640 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1641
1642
1643 Feature: Set internal and external temperature sensor alarms.
1644
1645 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1646 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1647 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1648
1649 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1650
1651 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1652
1653 0): Cancel
1654
1655 1): Threshold alarm
1656
1657 2): Fluctuation alarm
1658
1659 3): Sampling multiple times and uplink together
1660
1661
1662 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1663
1664 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1665
1666
1667 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1668
1669 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1670
1671 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1672
1673
1674 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1675
1676 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1677
1678 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1679
1680
1681 **3): If Alarm Mode is set to 3:**
1682
1683 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1684 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1685 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1686 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1687 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1688 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1689
1690 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1691
1692 0xA5 00 ~-~- AT+WMOD=0.
1693
1694 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1695
1696 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1697
1698 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1699
1700 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1701
1702 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1703
1704
1705 = 5. Battery & How to replace =
1706
1707 == 5.1 Battery Type ==
1708
1709
1710 (((
1711 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1712 )))
1713
1714 (((
1715 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1716
1717 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1718 )))
1719
1720 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1721
1722
1723 == 5.2 Replace Battery ==
1724
1725
1726 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1727
1728 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1729
1730
1731 == 5.3 Battery Life Analyze ==
1732
1733
1734 (((
1735 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1736 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1737 )))
1738
1739
1740 (((
1741 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1742 )))
1743
1744
1745 = 6. FAQ =
1746
1747 == 6.1 How to connect to LHT65N UART interface? ==
1748
1749
1750 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1751
1752 * Send AT Commands, and get output from LHT65N
1753 * Upgrade firmwre of LHT65N.
1754
1755 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1756
1757
1758 **Option of USB TTL adapter:**
1759
1760 * CP2101 USB TTL Adapter
1761 * CH340 USB TTL Adapter
1762 * FT232 USB TTL Adapter
1763
1764 **Option of Type-C Adapter:**
1765
1766 [[image:image-20240122103221-3.png||height="694" width="1039"]]
1767
1768
1769 **Connection:**
1770
1771 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1772 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1773 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1774
1775 (((
1776
1777
1778 Connection Example:
1779
1780 [[image:1655802313617-381.png||_mstalt="293917"]]
1781
1782
1783 [[image:image-20240122092100-1.jpeg||height="466" width="643"]]
1784
1785
1786 == 6.2 How to use AT Commands? ==
1787
1788
1789 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1790
1791 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1792 )))
1793
1794
1795 Input password and ATZ to activate LHT65N,As shown below:
1796
1797 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1798
1799
1800 AT Command List is as below:
1801
1802 AT+<CMD>? :  Help on <CMD>
1803
1804 AT+<CMD> :  Run <CMD>
1805
1806 AT+<CMD>=<value> :  Set the value
1807
1808 AT+<CMD>=? :  Get the value
1809
1810 AT+DEBUG:  Set more info output
1811
1812 ATZ:  Trig a reset of the MCU
1813
1814 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1815
1816 AT+DEUI:  Get or Set the Device EUI
1817
1818 AT+DADDR:  Get or Set the Device Address
1819
1820 AT+APPKEY:  Get or Set the Application Key
1821
1822 AT+NWKSKEY:  Get or Set the Network Session Key
1823
1824 AT+APPSKEY:  Get or Set the Application Session Key
1825
1826 AT+APPEUI:  Get or Set the Application EUI
1827
1828 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1829
1830 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1831
1832 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1833
1834 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1835
1836 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1837
1838 AT+RX2FQ:  Get or Set the Rx2 window frequency
1839
1840 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1841
1842 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1843
1844 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1845
1846 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1847
1848 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1849
1850 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1851
1852 AT+NWKID:  Get or Set the Network ID
1853
1854 AT+FCU:  Get or Set the Frame Counter Uplink
1855
1856 AT+FCD:  Get or Set the Frame Counter Downlink
1857
1858 AT+CLASS:  Get or Set the Device Class
1859
1860 AT+JOIN:  Join network
1861
1862 AT+NJS:  Get the join status
1863
1864 AT+SENDB:  Send hexadecimal data along with the application port
1865
1866 AT+SEND:  Send text data along with the application port
1867
1868 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1869
1870 AT+RECV:  Print last received data in raw format
1871
1872 AT+VER:  Get current image version and Frequency Band
1873
1874 AT+CFM:  Get or Set the confirmation mode (0-1)
1875
1876 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1877
1878 AT+SNR:  Get the SNR of the last received packet
1879
1880 AT+RSSI:  Get the RSSI of the last received packet
1881
1882 AT+TDC:  Get or set the application data transmission interval in ms
1883
1884 AT+PORT:  Get or set the application port
1885
1886 AT+DISAT:  Disable AT commands
1887
1888 AT+PWORD: Set password, max 9 digits
1889
1890 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1891
1892 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1893
1894 AT+PDTA:  Print the sector data from start page to stop page
1895
1896 AT+PLDTA:  Print the last few sets of data
1897
1898 AT+CLRDTA:  Clear the storage, record position back to 1st
1899
1900 AT+SLEEP:  Set sleep mode
1901
1902 AT+EXT:  Get or Set external sensor model
1903
1904 AT+BAT:  Get the current battery voltage in mV
1905
1906 AT+CFG:  Print all configurations
1907
1908 AT+WMOD:  Get or Set Work Mode
1909
1910 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1911
1912 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1913
1914 AT+SETCNT:  Set the count at present
1915
1916 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1917
1918 AT+RPL:  Get or set response level
1919
1920 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1921
1922 AT+LEAPSEC:  Get or Set Leap Second
1923
1924 AT+SYNCMOD:  Get or Set time synchronization method
1925
1926 AT+SYNCTDC:  Get or set time synchronization interval in day
1927
1928 AT+PID:  Get or set the PID
1929
1930
1931 == 6.3 How to use Downlink commands? ==
1932
1933
1934 **Downlink commands:**
1935
1936
1937 (% style="color:blue" %)**TTN:**
1938
1939 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1940
1941
1942
1943 (% style="color:blue" %)**Helium: **
1944
1945 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1946
1947
1948
1949 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1950
1951
1952 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1953
1954
1955 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1956
1957
1958
1959 (% style="color:blue" %)**AWS-IOT :**
1960
1961 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1962
1963
1964 == 6.4 How to change the uplink interval? ==
1965
1966
1967 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1968
1969
1970 == 6.5 How to upgrade firmware? ==
1971
1972 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
1973
1974 Except  for the early batch of LHT65N, all LHT65N shipped since middle of 2023 already have bootloader by default, so user only need to use the firmware without bootloader to update, this is the most easy way.
1975
1976
1977 === 6.5.1 Update firmware (Assume device already have bootloader) ===
1978
1979 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
1980
1981 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
1982
1983
1984 === 6.5.2 Update firmware (Assume device doesn't have bootloader) ===
1985
1986 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above 6.5.1 method to update.
1987
1988 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1989
1990 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1991
1992
1993
1994 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
1995
1996 Connect PC and LHT65N via USB TTL adapter .
1997
1998 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
1999
2000 (% style="color:red" %)** Reset node:  Short-circuit the port3(RST) of the E2 cable to GND.**
2001
2002 [[image:image-20240122105429-4.png||height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||height="324" width="401"]][[image:image-20240122134009-1.jpeg||height="332" width="411"]]
2003
2004
2005 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2006
2007 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2008
2009
2010 Reset node: Short-circuit the port3(RST) of the E2 cable to GND.
2011
2012 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2013
2014
2015 When this interface appears, it indicates that the download has been completed.
2016
2017 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2018
2019
2020 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND), and the node exits burning mode.
2021
2022
2023 == 6.6 Why can't I see the datalog information ==
2024
2025
2026 ~1. The time is not aligned, and the correct query command is not used.
2027
2028 2. Decoder error, did not parse the datalog data, the data was filtered.
2029
2030
2031 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2032
2033
2034 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2035
2036 [[image:image-20240122092100-1.jpeg||height="346" width="476"]]
2037
2038
2039 After there is UART Connectio, run below commands:
2040
2041 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2042
2043 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2044
2045 Example output:
2046
2047 [[image:image-20240128093852-1.png||height="235" width="552"]]
2048
2049
2050 = 7. Order Info =
2051
2052
2053 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2054
2055 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2056
2057 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2058 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2059 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2060 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2061 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2062 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2063 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2064 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2065
2066 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2067
2068 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2069
2070 = 8. Packing Info =
2071
2072
2073 **Package Includes**:
2074
2075 * LHT65N Temperature & Humidity Sensor x 1
2076 * Optional external sensor
2077
2078 = 9. Reference material =
2079
2080
2081 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2082
2083 = 10. FCC Warning =
2084
2085
2086 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2087
2088 (1) This device may not cause harmful interference;
2089
2090 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0