Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
115
116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device n TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159 (% style="color:blue" %)**1. Create application**
160
161 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
162
163
164 [[image:image-20220522232932-4.png||_mstalt="430157"]]
165
166 (% style="color:blue" %)**2. Register end device **
167
168 [[image:image-20220522232954-5.png||_mstalt="431847"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input APP EUI,  APP KEY and DEV EUI:
179
180
181 [[image:image-20220522233118-7.png||_mstalt="430430"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355 [[image:image-20220522235639-6.png||_mstalt="433212"]]
356
357
358 * External temperature= (0xF54F-65536)/100=-27.37℃
359
360 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
361
362 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
363
364 The last 2 bytes of data are meaningless
365
366 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
367
368
369 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
370
371
372 (((
373 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
374 )))
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
377 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
378 **Size(bytes)**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
384 **2**
385 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
386 **1**
387 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
388 **4**
389 )))
390 |(% style="width:110px" %)(((
391 Value
392 )))|(% style="width:71px" %)(((
393 External temperature
394 )))|(% style="width:99px" %)(((
395 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
396 )))|(% style="width:132px" %)(((
397 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
398 )))|(% style="width:54px" %)(((
399 Status & Ext
400 )))|(% style="width:64px" %)(((
401 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
402 )))
403
404 * **Battery status & Built-in Humidity**
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
407 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
408 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
409 BAT Status
410 00(b): Ultra Low ( BAT <= 2.50v)
411 01(b): Low  (2.50v <=BAT <= 2.55v)
412 10(b): OK   (2.55v <= BAT <=2.65v)
413 11(b): Good   (BAT >= 2.65v)
414 )))|(% style="width:132px" %)(((
415 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
416 )))
417
418 * **Status & Ext Byte**
419
420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
421 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
422 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
423
424 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
425 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
426 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
427
428 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
429
430
431 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
432 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
433 **Size(bytes)**
434 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
435 **2**
436 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
437 2
438 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
439 **2**
440 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
441 1
442 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
443 2
444 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
445 2
446 )))
447 |(% style="width:110px" %)(((
448 Value
449 )))|(% style="width:71px" %)(((
450 BAT & BAT Status
451 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
452 Status & Ext
453 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
454
455 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
456
457 be used to power the external ADC sensor; user can control the power on time for this
458
459 (% style="color:blue" %)**sensor by setting:**
460
461 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
462
463 **For example:**
464
465 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
466
467
468 Or use **downlink command A2** to set the same.
469
470 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
471
472 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
473
474 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
475
476
477 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
478
479 [[image:image-20220628150714-4.png||_mstalt="431054"]]
480
481
482 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
483
484
485 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
486
487 [[image:image-20220628151005-5.png||_mstalt="429546"]]
488
489
490 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
491
492 [[image:image-20220628151056-6.png||_mstalt="431873"]]
493
494
495 3) Within range
496
497 [[image:image-20220628151143-7.png||_mstalt="431210"]]
498
499
500
501 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
502
503
504 [[image:image-20230717151328-8.png||_mstalt="433173"]]
505
506
507 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
508
509
510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
511 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
512 **Size(bytes)**
513 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
514 **2**
515 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
516 2
517 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
518 **2**
519 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
520 1
521 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
522 2
523 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
524 2
525 )))
526 |(% style="width:110px" %)(((
527 Value
528 )))|(% style="width:71px" %)(((
529 BAT & BAT Status
530 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
531 Status & Ext
532 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
533
534 [[image:image-20220906102307-7.png||_mstalt="430443"]]
535
536 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
537
538 The external cable NE2 can be use for MOD4 and MOD8
539
540
541
542 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
543
544
545 [[image:image-20230717151245-7.png||_mstalt="432133"]]
546
547 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
548
549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
550 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
551 **Size(bytes)**
552 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
553 **2**
554 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
555 2
556 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
557 **2**
558 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
559 1
560 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
563 2
564 )))
565 |(% style="width:110px" %)(((
566 Value
567 )))|(% style="width:71px" %)(((
568 BAT & BAT Status
569 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
570 Status & Ext
571 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
572
573 [[image:SHT31.png||_mstalt="104715"]]
574
575
576
577 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
578
579
580 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
581
582
583 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
584
585 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
586
587 In Open State, the power consumption is the same as if there is no probe
588
589 In Close state, the power consumption will be 3uA higher than normal.
590
591 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
592
593
594 Ext=4,Interrupt Sensor:
595
596 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
597 |(% style="width:101px" %)(((
598 **AT+EXT=4,1**
599 )))|(% style="width:395px" %)(((
600 **Sent uplink packet in both rising and falling interrupt**
601 )))
602 |(% style="width:101px" %)(((
603 **AT+EXT=4,2**
604 )))|(% style="width:395px" %)(((
605 **Sent uplink packet only in falling interrupt**
606 )))
607 |(% style="width:101px" %)(((
608 **AT+EXT=4,3**
609 )))|(% style="width:395px" %)(((
610 **Sent uplink packet only in rising interrupt**
611 )))
612
613 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
614 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
615 **Size(bytes)**
616 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
617 **2**
618 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
619 2
620 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
621 **2**
622 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
623 1
624 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
625 1
626 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
627 1
628 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
629 3
630 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
631 3
632 )))
633 |(% style="width:110px" %)(((
634 Value
635 )))|(% style="width:71px" %)(((
636 BAT & BAT Status
637 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
638 Status & Ext
639 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
640
641 Trigger by falling edge:
642
643 [[image:image-20220906101145-2.png||_mstalt="428324"]]
644
645
646 Trigger by raising edge:
647
648 [[image:image-20220906101145-3.png||_mstalt="428688"]]
649
650
651
652 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
653
654
655 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
656
657
658 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
659
660 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
661
662
663 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
664
665 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
666
667
668 Ext=8, Counting Sensor ( 4 bytes):
669
670 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
671 |(% style="width:131px" %)(((
672 **AT+EXT=8,0**
673 )))|(% style="width:195px" %)(((
674 **Count at falling interrupt**
675 )))
676 |(% style="width:131px" %)(((
677 **AT+EXT=8,1**
678 )))|(% style="width:195px" %)(((
679 **Count at rising interrupt**
680 )))
681 |(% style="width:131px" %)(((
682 **AT+SETCNT=60**
683 )))|(% style="width:195px" %)(((
684 **Sent current count to 60**
685 )))
686
687 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
688 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
689 **Size(bytes)**
690 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
691 **2**
692 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
693 2
694 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
695 **2**
696 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
697 1
698 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
699 4
700 )))
701 |(% style="width:110px" %)(((
702 Value
703 )))|(% style="width:71px" %)(((
704 BAT & BAT Status
705 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
706 Status & Ext
707 )))|(% style="width:64px" %)Exit_count
708
709 [[image:image-20220906101320-6.png||_mstalt="428064"]]
710
711
712 (% style="color:blue" %)**A2 downlink Command:**
713
714 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
715
716 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
717
718 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
719
720 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
721
722 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
723
724
725 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
726
727
728 (((
729 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
730 )))
731
732 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
733 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
734 **Size(bytes)**
735 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
736 **2**
737 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
738 **2**
739 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
740 **2**
741 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
742 **1**
743 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
744 **4**
745 )))
746 |(% style="width:110px" %)(((
747 Value
748 )))|(% style="width:71px" %)(((
749 External temperature
750 )))|(% style="width:99px" %)(((
751 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
752 )))|(% style="width:132px" %)(((
753 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
754 )))|(% style="width:54px" %)(((
755 Status & Ext
756 )))|(% style="width:64px" %)(((
757 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
758 )))
759
760 * **Battery status & Built-in Humidity**
761
762 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
763 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
764 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
765 BAT Status
766 00(b): Ultra Low ( BAT <= 2.50v)
767 01(b): Low  (2.50v <=BAT <= 2.55v)
768 10(b): OK   (2.55v <= BAT <=2.65v)
769 11(b): Good   (BAT >= 2.65v)
770 )))|(% style="width:132px" %)(((
771 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
772 )))
773
774 * **Status & Ext Byte**
775
776 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
777 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
778 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
779
780 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
781 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
782 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
783
784 == 2.5 Show data on Datacake ==
785
786
787 (((
788 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
789 )))
790
791
792 (((
793 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
794 )))
795
796 (((
797 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
798 )))
799
800
801 (((
802 Add Datacake:
803 )))
804
805 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
806
807
808 Select default key as Access Key:
809
810
811 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
812
813
814 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
815
816 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
817
818
819 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
820
821
822 == 2.6 Datalog Feature ==
823
824
825 (((
826 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
827 )))
828
829
830 === 2.6.1 Ways to get datalog via LoRaWAN ===
831
832
833 There are two methods:
834
835 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
836
837
838 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
839
840
841 (% style="color:red" %)**Note for method 2:**
842
843 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
844 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
845
846 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
847
848 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
849
850
851 === 2.6.2 Unix TimeStamp ===
852
853
854 LHT65N uses Unix TimeStamp format based on
855
856
857 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
858
859
860 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
861
862 Below is the converter example
863
864 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
865
866
867 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
868
869
870 === 2.6.3 Set Device Time ===
871
872
873 (((
874 (% style="color:blue" %)**There are two ways to set device's time:**
875 )))
876
877 (((
878 **1.  Through LoRaWAN MAC Command (Default settings)**
879 )))
880
881 (((
882 User need to set SYNCMOD=1 to enable sync time via MAC command.
883 )))
884
885 (((
886 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
887 )))
888
889 (((
890 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
891 )))
892
893
894 (((
895 **2. Manually Set Time**
896 )))
897
898 (((
899 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
900 )))
901
902
903 === 2.6.4 Poll sensor value ===
904
905
906 User can poll sensor value based on timestamps from the server. Below is the downlink command.
907
908 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
909 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
910 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
911
912 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
913
914 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
915
916 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
917
918 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
919
920
921 === 2.6.5 Datalog Uplink payload ===
922
923
924 The Datalog poll reply uplink will use below payload format.
925
926 **Retrieval data payload:**
927
928 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
929 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
930 **Size(bytes)**
931 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
932 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
933
934 **Poll message flag & Ext:**
935
936 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
937 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
938 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
939
940 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
941
942 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
943
944 * Poll Message Flag is set to 1.
945
946 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
947
948 For example, in US915 band, the max payload for different DR is:
949
950 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
951
952 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
953
954 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
955
956 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
957
958 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
959
960
961 **Example:**
962
963 If LHT65N has below data inside Flash:
964
965 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
966 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
967 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
968 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
969 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
970 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
971 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
972 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
973 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
974 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
975
976 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
977
978 Where : Start time: 60065F97 = time 21/1/19 04:27:03
979
980 Stop time: 60066DA7= time 21/1/19 05:27:03
981
982
983 **LHT65N will uplink this payload.**
984
985 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
986
987
988 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
989
990 Where the first 11 bytes is for the first entry:
991
992 7FFF089801464160065F97
993
994 Ext sensor data=0x7FFF/100=327.67
995
996 Temp=0x088E/100=22.00
997
998 Hum=0x014B/10=32.6
999
1000 poll message flag & Ext=0x41,means reply data,Ext=1
1001
1002 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1003
1004
1005 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1006
1007
1008 (((
1009 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1010 )))
1011
1012 (((
1013 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1014
1015
1016 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1017
1018 (((
1019 (% class="box infomessage" %)
1020 (((
1021 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1022 )))
1023 )))
1024
1025 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1026
1027 **~ AT+WMOD=1,60,-10,20**
1028
1029
1030 Explain:
1031
1032 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1033 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1034 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C
1035
1036 (% style="color:#4f81bd" %)**Downlink Command:**
1037
1038 **Example: **A5013CFC180014
1039
1040 MOD=01
1041
1042 CITEMP=3C(S) =60(S)
1043
1044 TEMPlow=FC18 = -10(℃)
1045
1046 TEMPhigh=0014=20(℃)
1047
1048
1049 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1050
1051 **AT+WMOD=2,60,5** 
1052
1053 Explain:
1054
1055 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1056 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1057 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1058
1059 (% style="color:#4f81bd" %)**Downlink Command**
1060
1061 **Example: **A5023C05
1062
1063 MOD=02
1064
1065 CITEMP=3C(S)=60(S)
1066
1067 temperature fluctuation=05(℃)
1068
1069
1070 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1071
1072 **AT+WMOD=3,1,60,20,-16,32,1**   
1073
1074 Explain:
1075
1076 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1077 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1078 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1079 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1080 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1081 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1082
1083 (% style="color:#4f81bd" %)**Downlink Command:**
1084
1085 **Example: **A50301003C14FFF0002001
1086
1087 MOD=03
1088
1089 TEMP=DS18B20
1090
1091 CITEMP=003C(S)=60(S)
1092
1093 Total number of acquisitions=14
1094
1095 TEMPlow=FFF0=-16(℃)
1096
1097 TEMPhigh=0020=20(℃)
1098
1099 ARTEMP=01
1100
1101
1102 **Uplink payload( Fport=3)**
1103
1104 **Example: CBEA**01**0992**//0A41//**09C4**
1105
1106 BatV=CBEA
1107
1108 TEMP=DS18B20
1109
1110 Temp1=0992  ~/~/ 24.50℃
1111
1112 Temp2=0A41  ~/~/ 26.25℃
1113
1114 Temp3=09C4  ~/~/ 25.00℃
1115
1116 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1117
1118 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1119 )))
1120
1121
1122 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1123
1124
1125 (% class="box infomessage" %)
1126 (((
1127 (((
1128 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1129 )))
1130
1131 (((
1132 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1133 )))
1134
1135 (((
1136 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1137 )))
1138
1139 (((
1140 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1141 )))
1142
1143 (((
1144 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1145 )))
1146 )))
1147
1148 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1149
1150 Total bytes: 8 bytes
1151
1152 **Example:**AA0100010001003C
1153
1154 WMOD=01
1155
1156 CITEMP=0001
1157
1158 TEMPlow=0001
1159
1160 TEMPhigh=003C
1161
1162
1163 == 2.8 LED Indicator ==
1164
1165
1166 The LHT65 has a triple color LED which for easy showing different stage .
1167
1168 While user press ACT button, the LED will work as per LED status with ACT button.
1169
1170 In a normal working state:
1171
1172 * For each uplink, the BLUE LED or RED LED will blink once.
1173 BLUE LED when external sensor is connected.
1174 * RED LED when external sensor is not connected
1175 * For each success downlink, the PURPLE LED will blink once
1176
1177 == 2.9 installation ==
1178
1179
1180 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1181
1182
1183 = 3. Sensors and Accessories =
1184
1185 == 3.1 E2 Extension Cable ==
1186
1187
1188 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1189
1190
1191 **1m long breakout cable for LHT65N. Features:**
1192
1193 * (((
1194 Use for AT Command, works for both LHT52/LHT65N
1195 )))
1196 * (((
1197 Update firmware for LHT65N, works for both LHT52/LHT65N
1198 )))
1199 * (((
1200 Supports ADC mode to monitor external ADC
1201 )))
1202 * (((
1203 Supports Interrupt mode
1204 )))
1205 * (((
1206 Exposed All pins from the LHT65N Type-C connector.
1207
1208
1209
1210 )))
1211
1212 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1213
1214
1215 == 3.2 E3 Temperature Probe ==
1216
1217
1218 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1219
1220
1221 Temperature sensor with 2 meters cable long
1222
1223 * Resolution: 0.0625 °C
1224 * ±0.5°C accuracy from -10°C to +85°C
1225 * ±2°C accuracy from -55°C to +125°C
1226 * Operating Range: -40 ~~ 125 °C
1227 * Working voltage 2.35v ~~ 5v
1228
1229 == 3.3 E31F Temperature Probe ==
1230
1231
1232 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1233
1234
1235 Temperature sensor with 1 meters cable long
1236
1237
1238 **Built-in Temperature Sensor:**
1239
1240 * Resolution: 0.01 °C
1241 * Accuracy Tolerance : Typ ±0.3 °C
1242 * Long Term Drift: < 0.02 °C/yr
1243 * Operating Range: -40 ~~ 80 °C
1244
1245 **Built-in Humidity Sensor:**
1246
1247 * Resolution: 0.04 % RH
1248 * Accuracy Tolerance : Typ ±3 % RH
1249 * Long Term Drift: < 0.02 °C/yr
1250 * Operating Range: 0 ~~ 96 % RH
1251
1252 **External Temperature Sensor :**
1253
1254 * Resolution: 0.01 °C
1255 * Accuracy Tolerance : Typical ±0.3 °C
1256 * Long Term Drift: < 0.02 °C/yr
1257 * Operating Range: -40 ~~ 125 °C
1258
1259 **External Humidity Sensor :**
1260
1261 * Resolution: 0.04 % RH
1262 * Accuracy Tolerance : Typ ±3 % RH
1263 * Long Term Drift: < 0.02 °C/yr
1264 * Operating Range: 0 ~~ 96 % RH
1265
1266 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1267
1268 External Temperature Sensor – NE117:
1269 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1270
1271 * Silica gel cable
1272 * ±0.1 °C (maximum) from –20 °C to 50 °C
1273 * ±0.2 °C (maximum) from –40 °C to 100 °C
1274 * ±0.3 °C (maximum) from –55 °C to 150 °C
1275
1276 [[image:image-20240422093011-1.png||height="349" width="350"]]
1277
1278
1279 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1280
1281 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1282 * 3 wires: VCC/GND/INT
1283 * Cable Lenght: 1 meter
1284
1285 [[image:image-20240422093343-2.png||height="288" width="282"]]
1286
1287 LHT65-DC can be used to connect various types of external sensor. below.
1288
1289 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1290
1291 [[image:image-20240422100149-5.png||height="163" width="510"]]
1292
1293 [[image:image-20240422100217-6.png||height="141" width="507"]]
1294
1295
1296 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1297
1298 * Aluminum Alloy Door Sensor
1299 * Detect Distance: ~~3cm
1300 * Cable Lenght: 1 meter
1301
1302 Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.
1303
1304
1305 [[image:image-20240422094326-3.png||height="341" width="365"]]
1306
1307
1308 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1309
1310 External Probe:
1311
1312 * Unique NIST Certi cate for each probe
1313 * External NIST Traceable probe with unique ID
1314
1315 Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.
1316
1317 [[image:image-20240422094702-4.png||height="349" width="351"]]
1318
1319
1320 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1321
1322
1323 (((
1324 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1325 )))
1326
1327 * (((
1328 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1329 )))
1330
1331 * (((
1332 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1333 )))
1334
1335 (((
1336 There are two kinds of commands to configure LHT65N, they are:
1337 )))
1338
1339 * (((
1340 (% style="color:#4f81bd" %)**General Commands**.
1341 )))
1342
1343 (((
1344 These commands are to configure:
1345 )))
1346
1347 1. (((
1348 General system settings like: uplink interval.
1349 )))
1350 1. (((
1351 LoRaWAN protocol & radio-related commands.
1352 )))
1353
1354 (((
1355 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1356 )))
1357
1358 * (((
1359 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1360 )))
1361
1362 (((
1363 These commands are only valid for LHT65N, as below:
1364 )))
1365
1366
1367 == 4.1 Set Transmit Interval Time ==
1368
1369
1370 Feature: Change LoRaWAN End Node Transmit Interval.
1371
1372
1373 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1374
1375 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1376 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1377 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1378 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1379
1380 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1381
1382 Format: Command Code (0x01) followed by 3 bytes time value.
1383
1384 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1385
1386 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1387
1388 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1389
1390 == 4.2 Set External Sensor Mode ==
1391
1392
1393 Feature: Change External Sensor Mode.
1394
1395 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1396
1397 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1398 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1399 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1400 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1401 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1402
1403 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1404
1405 Total bytes: 2 ~~ 5 bytes
1406
1407 **Example:**
1408
1409 * 0xA201: Set external sensor type to E1
1410
1411 * 0xA209: Same as AT+EXT=9
1412
1413 * 0xA20702003c: Same as AT+SETCNT=60
1414
1415 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1416
1417
1418 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1419
1420 * First Packet after OTAA Join
1421 * Every 24 hours since the first packet.
1422
1423 PID is default set to disable (0)
1424
1425 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1426
1427 (% style="color:#4f81bd" %)**AT Command:**
1428
1429 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1430 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1431 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1432
1433 (% style="color:#4f81bd" %)**Downlink Command:**
1434
1435 * **0xA800**  **~-~->** AT+PID=0
1436 * **0xA801**     **~-~->** AT+PID=1
1437
1438 == 4.4 Set Password ==
1439
1440
1441 Feature: Set device password, max 9 digits
1442
1443 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1444
1445 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1446 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1447 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1448 123456
1449
1450 OK
1451 )))
1452 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1453
1454 (% style="color:#4f81bd" %)**Downlink Command:**
1455
1456 No downlink command for this feature.
1457
1458
1459 == 4.5 Quit AT Command ==
1460
1461
1462 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1463
1464 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1465
1466 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1467 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1468 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1469
1470 (% style="color:#4f81bd" %)**Downlink Command:**
1471
1472 No downlink command for this feature.
1473
1474
1475 == 4.6 Set to sleep mode ==
1476
1477
1478 Feature: Set device to sleep mode
1479
1480 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1481 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1482
1483 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1484
1485 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1486 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1487 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1488 Clear all stored sensor data…
1489
1490 OK
1491 )))
1492
1493 (% style="color:#4f81bd" %)**Downlink Command:**
1494
1495 * There is no downlink command to set to Sleep mode.
1496
1497 == 4.7 Set system time ==
1498
1499
1500 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1501
1502 (% style="color:#4f81bd" %)**AT Command:**
1503
1504 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1505 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1506 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1507 OK
1508
1509 Set System time to 2021-01-20 00:59:12
1510 )))
1511
1512 (% style="color:#4f81bd" %)**Downlink Command:**
1513
1514 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1515
1516
1517 == 4.8 Set Time Sync Mode ==
1518
1519
1520 (((
1521 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1522 )))
1523
1524 (((
1525 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1526 )))
1527
1528 (% style="color:#4f81bd" %)**AT Command:**
1529
1530 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1531 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1532 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1533
1534 (% style="color:#4f81bd" %)**Downlink Command:**
1535
1536 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1537 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1538
1539
1540 == 4.9 Set Time Sync Interval ==
1541
1542
1543 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1544
1545 (% style="color:#4f81bd" %)**AT Command:**
1546
1547 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1548 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1549 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1550
1551 (% style="color:#4f81bd" %)**Downlink Command:**
1552
1553 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1554
1555
1556 == 4.10 Get data ==
1557
1558
1559 Feature: Get the current sensor data.
1560
1561 (% style="color:#4f81bd" %)**AT Command:**
1562
1563 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1564 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1565
1566 == 4.11 Print data entries base on page ==
1567
1568
1569 Feature: Print the sector data from start page to stop page (max is 416 pages).
1570
1571 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1572
1573 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1574 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1575 |(% style="width:156px" %)(((
1576 AT+PDTA=13
1577 Print page 1 to 3
1578 )))|(% style="width:311px" %)(((
1579 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1580 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1581 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1582 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1583 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1584 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1585 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1586 8019570
1587 8019580
1588 8019590
1589 80195A0
1590 80195B0
1591 80195C0
1592 80195D0
1593 80195E0
1594 80195F0
1595
1596 OK
1597 )))
1598
1599 (% style="color:#4f81bd" %)**Downlink Command:**
1600
1601 No downlink commands for feature
1602
1603
1604 == 4.12 Print last few data entries ==
1605
1606
1607 Feature: Print the last few data entries
1608
1609 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1610
1611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1612 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1613 |(% style="width:156px" %)(((
1614 AT+PLDTA=5
1615 Print last 5 entries
1616 )))|(% style="width:311px" %)(((
1617 Stop Tx and RTP events when read sensor data
1618 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1619 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1620 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1621 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1622 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1623 Start Tx and RTP events
1624 OK
1625 )))
1626
1627 (% style="color:#4f81bd" %)**Downlink Command:**
1628
1629 No downlink commands for feature
1630
1631
1632 == 4.13 Clear Flash Record ==
1633
1634
1635 Feature: Clear flash storage for data log feature.
1636
1637 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1638
1639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1640 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1641 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1642 Clear all stored sensor data…
1643
1644 OK
1645 )))
1646
1647 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1648
1649 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1650
1651 == 4.14 Auto Send None-ACK messages ==
1652
1653
1654 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1655
1656 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1657
1658 The default factory setting is 0
1659
1660 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1661 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1662 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1663
1664 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1665
1666 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1667
1668 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1669
1670
1671 Feature: Set internal and external temperature sensor alarms.
1672
1673 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1674 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1675 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1676
1677 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1678
1679 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1680
1681 0): Cancel
1682
1683 1): Threshold alarm
1684
1685 2): Fluctuation alarm
1686
1687 3): Sampling multiple times and uplink together
1688
1689
1690 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1691
1692 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1693
1694
1695 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1696
1697 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1698
1699 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1700
1701
1702 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1703
1704 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1705
1706 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1707
1708
1709 **3): If Alarm Mode is set to 3:**
1710
1711 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1712 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1713 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1714 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1715 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1716 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1717
1718 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1719
1720 0xA5 00 ~-~- AT+WMOD=0.
1721
1722 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1723
1724 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1725
1726 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1727
1728 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1729
1730 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1731
1732
1733 = 5. Battery & How to replace =
1734
1735 == 5.1 Battery Type ==
1736
1737
1738 (((
1739 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1740 )))
1741
1742 (((
1743 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1744
1745 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1746 )))
1747
1748 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1749
1750
1751 == 5.2 Replace Battery ==
1752
1753
1754 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1755
1756 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1757
1758
1759 == 5.3 Battery Life Analyze ==
1760
1761
1762 (((
1763 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1764 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1765 )))
1766
1767
1768 (((
1769 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1770 )))
1771
1772
1773 = 6. FAQ =
1774
1775 == 6.1 How to connect to LHT65N UART interface? ==
1776
1777
1778 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1779
1780 * Send AT Commands, and get output from LHT65N
1781 * Upgrade firmwre of LHT65N.
1782
1783 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1784
1785
1786 **Option of USB TTL adapter:**
1787
1788 * CP2101 USB TTL Adapter
1789 * CH340 USB TTL Adapter
1790 * FT232 USB TTL Adapter
1791
1792 **Option of Type-C Adapter:**
1793
1794 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1795
1796
1797 **Connection:**
1798
1799 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1800 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1801 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1802
1803 (((
1804
1805
1806 Connection Example:
1807
1808 [[image:1655802313617-381.png||_mstalt="293917"]]
1809
1810
1811 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1812
1813
1814 == 6.2 How to use AT Commands? ==
1815
1816
1817 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1818
1819 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1820 )))
1821
1822
1823 Input password and ATZ to activate LHT65N,As shown below:
1824
1825 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1826
1827
1828 AT Command List is as below:
1829
1830 AT+<CMD>? :  Help on <CMD>
1831
1832 AT+<CMD> :  Run <CMD>
1833
1834 AT+<CMD>=<value> :  Set the value
1835
1836 AT+<CMD>=? :  Get the value
1837
1838 AT+DEBUG:  Set more info output
1839
1840 ATZ:  Trig a reset of the MCU
1841
1842 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1843
1844 AT+DEUI:  Get or Set the Device EUI
1845
1846 AT+DADDR:  Get or Set the Device Address
1847
1848 AT+APPKEY:  Get or Set the Application Key
1849
1850 AT+NWKSKEY:  Get or Set the Network Session Key
1851
1852 AT+APPSKEY:  Get or Set the Application Session Key
1853
1854 AT+APPEUI:  Get or Set the Application EUI
1855
1856 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1857
1858 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1859
1860 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1861
1862 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1863
1864 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1865
1866 AT+RX2FQ:  Get or Set the Rx2 window frequency
1867
1868 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1869
1870 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1871
1872 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1873
1874 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1875
1876 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1877
1878 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1879
1880 AT+NWKID:  Get or Set the Network ID
1881
1882 AT+FCU:  Get or Set the Frame Counter Uplink
1883
1884 AT+FCD:  Get or Set the Frame Counter Downlink
1885
1886 AT+CLASS:  Get or Set the Device Class
1887
1888 AT+JOIN:  Join network
1889
1890 AT+NJS:  Get the join status
1891
1892 AT+SENDB:  Send hexadecimal data along with the application port
1893
1894 AT+SEND:  Send text data along with the application port
1895
1896 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1897
1898 AT+RECV:  Print last received data in raw format
1899
1900 AT+VER:  Get current image version and Frequency Band
1901
1902 AT+CFM:  Get or Set the confirmation mode (0-1)
1903
1904 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1905
1906 AT+SNR:  Get the SNR of the last received packet
1907
1908 AT+RSSI:  Get the RSSI of the last received packet
1909
1910 AT+TDC:  Get or set the application data transmission interval in ms
1911
1912 AT+PORT:  Get or set the application port
1913
1914 AT+DISAT:  Disable AT commands
1915
1916 AT+PWORD: Set password, max 9 digits
1917
1918 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1919
1920 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1921
1922 AT+PDTA:  Print the sector data from start page to stop page
1923
1924 AT+PLDTA:  Print the last few sets of data
1925
1926 AT+CLRDTA:  Clear the storage, record position back to 1st
1927
1928 AT+SLEEP:  Set sleep mode
1929
1930 AT+EXT:  Get or Set external sensor model
1931
1932 AT+BAT:  Get the current battery voltage in mV
1933
1934 AT+CFG:  Print all configurations
1935
1936 AT+WMOD:  Get or Set Work Mode
1937
1938 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1939
1940 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1941
1942 AT+SETCNT:  Set the count at present
1943
1944 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1945
1946 AT+RPL:  Get or set response level
1947
1948 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1949
1950 AT+LEAPSEC:  Get or Set Leap Second
1951
1952 AT+SYNCMOD:  Get or Set time synchronization method
1953
1954 AT+SYNCTDC:  Get or set time synchronization interval in day
1955
1956 AT+PID:  Get or set the PID
1957
1958
1959 == 6.3 How to use Downlink commands? ==
1960
1961
1962 **Downlink commands:**
1963
1964
1965 (% style="color:blue" %)**TTN:**
1966
1967 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1968
1969
1970
1971 (% style="color:blue" %)**Helium: **
1972
1973 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1974
1975
1976
1977 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1978
1979
1980 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1981
1982
1983 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1984
1985
1986
1987 (% style="color:blue" %)**AWS-IOT :**
1988
1989 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1990
1991
1992 == 6.4 How to change the uplink interval? ==
1993
1994
1995 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1996
1997
1998 == 6.5 How to upgrade firmware? ==
1999
2000
2001 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2002
2003 Except  for the early batch of LHT65N, all LHT65N shipped since middle of 2023 already have bootloader by default, so user only need to use the firmware without bootloader to update, this is the most easy way.
2004
2005
2006 === 6.5.1 Update firmware (Assume device already have bootloader) ===
2007
2008
2009 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2010
2011 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2012
2013
2014 === 6.5.2 Update firmware (Assume device doesn't have bootloader) ===
2015
2016
2017 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above 6.5.1 method to update.
2018
2019 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2020
2021 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2022
2023
2024
2025 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2026
2027 Connect PC and LHT65N via USB TTL adapter .
2028
2029 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2030
2031 **Connection method:**
2032
2033 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2034
2035 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2036
2037 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2038
2039 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2040
2041 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2042
2043
2044 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2045
2046 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2047
2048
2049 Reset node: Short-circuit the port3(RST) of the E2 cable to GND.
2050
2051 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2052
2053
2054 When this interface appears, it indicates that the download has been completed.
2055
2056 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2057
2058
2059 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND), and the node exits burning mode.
2060
2061
2062 == 6.6 Why can't I see the datalog information ==
2063
2064
2065 ~1. The time is not aligned, and the correct query command is not used.
2066
2067 2. Decoder error, did not parse the datalog data, the data was filtered.
2068
2069
2070 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2071
2072
2073 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2074
2075 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2076
2077
2078 After there is UART Connectio, run below commands:
2079
2080 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2081
2082 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2083
2084 Example output:
2085
2086 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2087
2088
2089 = 7. Order Info =
2090
2091
2092 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2093
2094 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2095
2096 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2097 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2098 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2099 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2100 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2101 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2102 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2103 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2104
2105 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2106
2107 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2108
2109 = 8. Packing Info =
2110
2111
2112 **Package Includes**:
2113
2114 * LHT65N Temperature & Humidity Sensor x 1
2115 * Optional external sensor
2116
2117 = 9. Reference material =
2118
2119
2120 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2121
2122 = 10. FCC Warning =
2123
2124
2125 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2126
2127 (1) This device may not cause harmful interference;
2128
2129 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0