Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240106164829-3.png]]
6
7
8
9
10
11
12
13
14 **Table of Contents :**
15
16 {{toc/}}
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
26
27
28 The Dragino LDS12-LB/LS is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
29
30 The LDS12-LB/LS can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
31
32 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
33
34 The LoRa wireless technology used in LDS12-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
35
36 LDS12-LB/LS (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
37
38 LDS12-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.
39
40 Each LDS12-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41
42 [[image:image-20230615152941-1.png||height="459" width="800"]]
43
44
45 == 1.2 ​Features ==
46
47
48 * LoRaWAN 1.0.3 Class A
49 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
50 * Ultra-low power consumption
51 * Laser technology for distance detection
52 * Measure Distance: 0.1m~~12m
53 * Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
54 * Monitor Battery Level
55 * Support Bluetooth v5.1 and LoRaWAN remote configure
56 * Support wireless OTA update firmware
57 * AT Commands to change parameters
58 * Downlink to change configure
59 * 8500mAh Li/SOCl2 Battery (LDS12-LB)
60 * Solar panel + 3000mAh Li-on battery (LDS12-LS)
61
62 == 1.3 Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**Probe Specification:**
71
72 * Storage temperature: -20℃~~75℃
73 * Operating temperature : -20℃~~60℃
74 * Measure Distance:
75 ** 0.1m ~~ 12m @ 90% Reflectivity
76 ** 0.1m ~~ 4m @ 10% Reflectivity
77 * Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
78 * Distance resolution : 1cm
79 * Ambient light immunity : 70klux
80 * Enclosure rating : IP65
81 * Light source : LED
82 * Central wavelength : 850nm
83 * FOV : 3.6°
84 * Material of enclosure : ABS+PC
85 * Wire length : 25cm
86
87 (% style="color:#037691" %)**LoRa Spec:**
88
89 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
90 * Max +22 dBm constant RF output vs.
91 * RX sensitivity: down to -139 dBm.
92 * Excellent blocking immunity
93
94 (% style="color:#037691" %)**Battery:**
95
96 * Li/SOCI2 un-chargeable battery
97 * Capacity: 8500mAh
98 * Self-Discharge: <1% / Year @ 25°C
99 * Max continuously current: 130mA
100 * Max boost current: 2A, 1 second
101
102 (% style="color:#037691" %)**Power Consumption**
103
104 * Sleep Mode: 5uA @ 3.3v
105 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
106
107 == 1.4 Applications ==
108
109
110 * Horizontal distance measurement
111 * Parking management system
112 * Object proximity and presence detection
113 * Intelligent trash can management system
114 * Robot obstacle avoidance
115 * Automatic control
116 * Sewer
117
118 (% style="display:none" %)
119
120 == 1.5 Sleep mode and working mode ==
121
122
123 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
124
125 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
126
127
128 == 1.6 Button & LEDs ==
129
130
131 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
132
133 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
134 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
135 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
136 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
137 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
138 )))
139 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
140 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
141 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
142 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
143 )))
144 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
145
146 == 1.7 BLE connection ==
147
148
149 LDS12-LB/LS support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.8 Pin Definitions ==
161
162
163 [[image:image-20230805144259-1.png||height="413" width="741"]]
164
165 == 1.9 Mechanical ==
166
167 === 1.9.1 for LB version ===
168
169
170 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/DDS75-LB_LoRaWAN_Distance_Detection_Sensor_User_Manual/WebHome/image-20240105152536-3.png?rev=1.1||alt="image-20240105152536-3.png"]]
171
172
173 (% id="cke_bm_173180S" style="color:blue; display:none" %)** **(% style="color:blue" %)**Probe Mechanical:**
174
175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
176
177
178 === 1.9.2 for LS version ===
179
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
182
183
184 = 2. Configure LDS12-LB/LS to connect to LoRaWAN network =
185
186 == 2.1 How it works ==
187
188
189 The LDS12-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
190
191 (% style="display:none" %) (%%)
192
193 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
194
195
196 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
197
198 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
199
200 [[image:image-20230615153004-2.png||height="436" width="760"]]
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB/LS.
203
204 Each LDS12-LB/LS is shipped with a sticker with the default device EUI as below:
205
206 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
207
208
209 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
210
211
212 (% style="color:blue" %)**Register the device**
213
214 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
215
216
217 (% style="color:blue" %)**Add APP EUI and DEV EUI**
218
219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
220
221
222 (% style="color:blue" %)**Add APP EUI in the application**
223
224
225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
226
227
228 (% style="color:blue" %)**Add APP KEY**
229
230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
231
232
233 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB/LS
234
235
236 Press the button for 5 seconds to activate the LDS12-LB/LS.
237
238 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239
240 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241
242
243 == 2.3 ​Uplink Payload ==
244
245 === 2.3.1 Device Status, FPORT~=5 ===
246
247
248 Users can use the downlink command(**0x26 01**) to ask LDS12-LB/LS to send device configure detail, include device configure status. LDS12-LB/LS will uplink a payload via FPort=5 to server.
249
250 The Payload format is as below.
251
252 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
253 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 **Size(bytes)**
255 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
257
258 Example parse in TTNv3
259
260 [[image:image-20230805103904-1.png||height="131" width="711"]]
261
262 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB/LS, this value is 0x24
263
264 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265
266 (% style="color:blue" %)**Frequency Band**:
267
268 0x01: EU868
269
270 0x02: US915
271
272 0x03: IN865
273
274 0x04: AU915
275
276 0x05: KZ865
277
278 0x06: RU864
279
280 0x07: AS923
281
282 0x08: AS923-1
283
284 0x09: AS923-2
285
286 0x0a: AS923-3
287
288 0x0b: CN470
289
290 0x0c: EU433
291
292 0x0d: KR920
293
294 0x0e: MA869
295
296 (% style="color:blue" %)**Sub-Band**:
297
298 AU915 and US915:value 0x00 ~~ 0x08
299
300 CN470: value 0x0B ~~ 0x0C
301
302 Other Bands: Always 0x00
303
304 (% style="color:blue" %)**Battery Info**:
305
306 Check the battery voltage.
307
308 Ex1: 0x0B45 = 2885mV
309
310 Ex2: 0x0B49 = 2889mV
311
312
313 === 2.3.2 Uplink Payload, FPORT~=2 ===
314
315
316 (((
317 LDS12-LB/LS will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB/LS will:
318
319 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
320
321 Uplink Payload totals 11 bytes.
322 )))
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 [[Message Type>>||anchor="HMessageType"]]
334 )))
335
336 [[image:image-20230805104104-2.png||height="136" width="754"]]
337
338
339 ==== (% style="color:blue" %)**Battery Info**(%%) ====
340
341
342 Check the battery voltage for LDS12-LB/LS.
343
344 Ex1: 0x0B45 = 2885mV
345
346 Ex2: 0x0B49 = 2889mV
347
348
349 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350
351
352 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
353
354
355 **Example**:
356
357 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
358
359 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
360
361
362 ==== (% style="color:blue" %)**Distance**(%%) ====
363
364
365 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366
367
368 **Example**:
369
370 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371
372
373 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374
375
376 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377
378
379 **Example**:
380
381 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382
383 Customers can judge whether they need to adjust the environment based on the signal strength.
384
385
386 **1) When the sensor detects valid data:**
387
388 [[image:image-20230805155335-1.png||height="145" width="724"]]
389
390
391 **2) When the sensor detects invalid data:**
392
393 [[image:image-20230805155428-2.png||height="139" width="726"]]
394
395
396 **3) When the sensor is not connected:**
397
398 [[image:image-20230805155515-3.png||height="143" width="725"]]
399
400
401 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
402
403
404 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
405
406 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
407
408 **Example:**
409
410 If byte[0]&0x01=0x00 : Normal uplink packet.
411
412 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
413
414
415 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
416
417
418 Characterize the internal temperature value of the sensor.
419
420 **Example: **
421 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
422 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
423
424
425 ==== (% style="color:blue" %)**Message Type**(%%) ====
426
427
428 (((
429 For a normal uplink payload, the message type is always 0x01.
430 )))
431
432 (((
433 Valid Message Type:
434 )))
435
436 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:499px" %)
437 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
438 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
439 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
440
441 [[image:image-20230805150315-4.png||height="233" width="723"]]
442
443
444 === 2.3.3 Historical measuring distance, FPORT~=3 ===
445
446
447 LDS12-LB/LS stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
448
449 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
450
451 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
452 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
453 **Size(bytes)**
454 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
455 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
456 Reserve(0xFF)
457 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
458 LiDAR temp
459 )))|(% style="width:85px" %)Unix TimeStamp
460
461 **Interrupt flag & Interrupt level:**
462
463 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
464 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
465 **Size(bit)**
466 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
467 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
468 Interrupt flag
469 )))
470
471 * (((
472 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB/LS will send max bytes according to the current DR and Frequency bands.
473 )))
474
475 For example, in the US915 band, the max payload for different DR is:
476
477 **a) DR0:** max is 11 bytes so one entry of data
478
479 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
480
481 **c) DR2:** total payload includes 11 entries of data
482
483 **d) DR3:** total payload includes 22 entries of data.
484
485 If LDS12-LB/LS doesn't have any data in the polling time. It will uplink 11 bytes of 0
486
487
488 **Downlink:**
489
490 0x31 64 CC 68 0C 64 CC 69 74 05
491
492 [[image:image-20230805144936-2.png||height="113" width="746"]]
493
494 **Uplink:**
495
496 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
497
498
499 **Parsed Value:**
500
501 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
502
503
504 [360,176,30,High,True,2023-08-04 02:53:00],
505
506 [355,168,30,Low,False,2023-08-04 02:53:29],
507
508 [245,211,30,Low,False,2023-08-04 02:54:29],
509
510 [57,700,30,Low,False,2023-08-04 02:55:29],
511
512 [361,164,30,Low,True,2023-08-04 02:56:00],
513
514 [337,184,30,Low,False,2023-08-04 02:56:40],
515
516 [20,4458,30,Low,False,2023-08-04 02:57:40],
517
518 [362,173,30,Low,False,2023-08-04 02:58:53],
519
520
521 **History read from serial port:**
522
523 [[image:image-20230805145056-3.png]]
524
525
526 === 2.3.5 Decode payload in The Things Network ===
527
528
529 While using TTN network, you can add the payload format to decode the payload.
530
531 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
532
533
534 (((
535 The payload decoder function for TTN is here:
536 )))
537
538 (((
539 LDS12-LB/LS TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
540 )))
541
542
543 == 2.4 ​Show Data in DataCake IoT Server ==
544
545
546 (((
547 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
548 )))
549
550
551 (((
552 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
553 )))
554
555 (((
556 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
557 )))
558
559
560 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
561
562
563 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
564
565
566 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
567
568 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB/LS and add DevEUI.**
569
570 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
571
572
573 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
574
575 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
576
577
578 == 2.5 Datalog Feature ==
579
580
581 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB/LS will store the reading for future retrieving purposes.
582
583
584 === 2.5.1 Ways to get datalog via LoRaWAN ===
585
586
587 Set PNACKMD=1, LDS12-LB/LS will wait for ACK for every uplink, when there is no LoRaWAN network, LDS12-LB/LS will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
588
589 * (((
590 a) LDS12-LB/LS will do an ACK check for data records sending to make sure every data arrive server.
591 )))
592 * (((
593 b) LDS12-LB/LS will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB/LS won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB/LS gets a ACK, LDS12-LB/LS will consider there is a network connection and resend all NONE-ACK messages.
594 )))
595
596 === 2.5.2 Unix TimeStamp ===
597
598
599 LDS12-LB/LS uses Unix TimeStamp format based on
600
601 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
602
603 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
604
605 Below is the converter example
606
607 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
608
609
610 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
611
612
613 === 2.5.3 Set Device Time ===
614
615
616 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
617
618 Once LDS12-LB/LS Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB/LS. If LDS12-LB/LS fails to get the time from the server, LDS12-LB/LS will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
619
620 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
621
622
623 === 2.5.4 Poll sensor value ===
624
625
626 Users can poll sensor values based on timestamps. Below is the downlink command.
627
628 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:425.818px" %)
629 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
630 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
631 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
632
633 (((
634 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
635 )))
636
637 (((
638 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
639 )))
640
641 (((
642 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
643 )))
644
645 (((
646 Uplink Internal =5s,means LDS12-LB/LS will send one packet every 5s. range 5~~255s.
647 )))
648
649
650 == 2.6 Frequency Plans ==
651
652
653 The LDS12-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
654
655 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
656
657
658 == 2.7 LiDAR ToF Measurement ==
659
660 === 2.7.1 Principle of Distance Measurement ===
661
662
663 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
664
665 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
666
667
668 === 2.7.2 Distance Measurement Characteristics ===
669
670
671 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
672
673 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
674
675
676 (((
677 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
678 )))
679
680 (((
681 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
682 )))
683
684 (((
685 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
686 )))
687
688
689 (((
690 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
691 )))
692
693 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
694
695 (((
696 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
697 )))
698
699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
700
701 (((
702 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
703 )))
704
705
706 === 2.7.3 Notice of usage ===
707
708
709 Possible invalid /wrong reading for LiDAR ToF tech:
710
711 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
712 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
713 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
714 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
715
716 === 2.7.4 Reflectivity of different objects ===
717
718
719 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:379px" %)
720 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
721 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
722 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
723 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
724 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
725 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
726 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
727 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
728 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
729 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
730 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
731 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
732 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
733 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
734 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
735 |(% style="width:53px" %)15|(% style="width:229px" %)(((
736 Unpolished white metal surface
737 )))|(% style="width:93px" %)130%
738 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
739 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
740 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
741
742 = 3. Configure LDS12-LB/LS =
743
744 == 3.1 Configure Methods ==
745
746
747 LDS12-LB/LS supports below configure method:
748
749 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
750
751 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
752
753 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
754
755 == 3.2 General Commands ==
756
757
758 These commands are to configure:
759
760 * General system settings like: uplink interval.
761
762 * LoRaWAN protocol & radio related command.
763
764 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
765
766 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
767
768
769 == 3.3 Commands special design for LDS12-LB/LS ==
770
771
772 These commands only valid for LDS12-LB/LS, as below:
773
774
775 === 3.3.1 Set Transmit Interval Time ===
776
777
778 (((
779 Feature: Change LoRaWAN End Node Transmit Interval.
780 )))
781
782 (((
783 (% style="color:blue" %)**AT Command: AT+TDC**
784 )))
785
786 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
787 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
788 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
789 30000
790 OK
791 the interval is 30000ms = 30s
792 )))
793 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
794 OK
795 Set transmit interval to 60000ms = 60 seconds
796 )))
797
798 (((
799 (% style="color:blue" %)**Downlink Command: 0x01**
800 )))
801
802 (((
803 Format: Command Code (0x01) followed by 3 bytes time value.
804 )))
805
806 (((
807 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
808 )))
809
810 * (((
811 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
812 )))
813 * (((
814 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
815
816
817
818 )))
819
820 === 3.3.2 Set Interrupt Mode ===
821
822
823 Feature, Set Interrupt mode for pin of GPIO_EXTI.
824
825 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
826
827 (% style="color:blue" %)**AT Command: AT+INTMOD**
828
829 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
830 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
831 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
832 0
833 OK
834 the mode is 0 =Disable Interrupt
835 )))
836 |(% style="width:154px" %)(((
837 AT+INTMOD=2(default)
838 )))|(% style="width:196px" %)(((
839 Set Transmit Interval
840 0. (Disable Interrupt),
841 ~1. (Trigger by rising and falling edge)
842 2. (Trigger by falling edge)
843 3. (Trigger by rising edge)
844 )))|(% style="width:157px" %)OK
845
846 (% style="color:blue" %)**Downlink Command: 0x06**
847
848 Format: Command Code (0x06) followed by 3 bytes.
849
850 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
851
852 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
853
854 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
855
856 === 3.3.3 Set Power Output Duration ===
857
858
859 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
860
861 ~1. first enable the power output to external sensor,
862
863 2. keep it on as per duration, read sensor value and construct uplink payload
864
865 3. final, close the power output.
866
867 (% style="color:blue" %)**AT Command: AT+3V3T**
868
869 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
870 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
872 OK
873 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
876
877 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 Format: Command Code (0x07) followed by 3 bytes.
879
880 The first byte is 01,the second and third bytes are the time to turn on.
881
882 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
885
886
887 = 4. Battery & Power Consumption =
888
889
890 LDS12-LB use ER26500 + SPC1520 battery pack and LDS12-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
891
892 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
893
894
895 = 5. OTA Firmware update =
896
897
898 (% class="wikigeneratedid" %)
899 User can change firmware LDS12-LB/LS to:
900
901 * Change Frequency band/ region.
902
903 * Update with new features.
904
905 * Fix bugs.
906
907 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
908
909 Methods to Update Firmware:
910
911 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
912
913 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
914
915 = 6. Case Study =
916
917 == 6.1 Calcultate vechicel / object pass through number ==
918
919
920 (% class="wikigeneratedid" %)
921 A demo software is designed to calculate the objects pass through Area 1 and Area 2 as below figure. In this mode, The LDS12-LB/LS will continue to measure the distance and count the pass objects in Area 1, Area 2, according to the distance change. Note, in this mode, The LDS12-LB/LS need to powered by external power, the internal battery is not enough for such calculation, battery will running out very soon.
922
923 (% class="wikigeneratedid" %)
924 [[image:image-20240118001756-1.png||height="500" width="571"]]
925
926
927 To acheive this purpose, user can use the continously measure mode ( which has the uplink Fport=6)
928
929 (% style="color:red" %)**Note: Unreleased features, need to test please contact us.**
930
931 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
932 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
933 **Size(bytes)**
934 )))|=(% style="width: 30px; background-color:#4F81BD; color: white;" %)2|=(% style="width: 50px; background-color: #4F81BD; color: white;" %)**2**|=(% style="width: 50px; background-color: #4F81BD; color: white;" %)**2**|=(% style="width: 70px; background-color:#4F81BD; color: white;" %)**4**|=(% style="background-color:#4F81BD; color: white; width: 50px;" %)**2**|=(% style="background-color: #4F81BD; color: white; width: 50px;" %)2|=(% style="background-color:#4F81BD; color: white; width: 70px;" %)4|=(% style="background-color:#4F81BD; color: white; width: 80px;" %)1
935 |(% style="width:62.5px" %)Value|(% style="width:38px" %)BAT|(% style="width:59px" %)Lower1|(% style="width:71px" %)Upper1|(% style="width:67px" %)Count1_ times|(% style="width:61px" %)Lower2|(% style="width:71px" %)Upper2|(% style="width:71px" %)Count2_ times|(% style="width:71px" %)Interrupt flag & Interrupt level
936
937 [[image:image-20240118092651-1.png||height="269" width="1091"]]
938
939 (% style="color:blue" %)**Battery Info**
940
941 Check the battery voltage.
942
943 Ex1: 0x0B45 = 2885mV
944
945 Ex2: 0x0B49 = 2889mV
946
947
948 (% style="color:blue" %)**Lower1**
949
950 Area 1 Range Minimum distance.(Max 1200cm)
951
952 Ex: 0x0064 = 100cm
953
954
955 (% style="color:blue" %)**Upper1**
956
957 Area 1 Range Maximum distance.(Max 1200cm)
958
959 Ex: 0x01C2 = 450cm
960
961
962 (% style="color:blue" %)**Count1 times**
963
964 Area 1 Total count.
965
966 Ex: 0x000002A0~-~-~-~-> 672 times
967
968
969 (% style="color:blue" %)**Lower2**
970
971 Area 2 Range Minimum distance.(Max 1200cm)
972
973 Ex: 0x01C2 = 450cm
974
975
976 (% style="color:blue" %)**Upper2**
977
978 Area 2 Range Maximum distance.(Max 1200cm)
979
980 Ex: 0x0320 = 800cm
981
982
983 (% style="color:blue" %)**Count2 times **
984
985 Area 2 Total count.
986
987 Ex: 00000010 ~-~-~-~-> 16 times
988
989
990
991 (% style="color:blue" %)**Interrupt flag & Interrupt Level**
992
993 This data field shows if this packet is generated by interrupt or not.
994
995 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
996
997 **Example:**
998
999 If byte[0]&0x01=0x00 : Normal uplink packet.
1000
1001 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
1002
1003
1004
1005 === 6.1.1 Set LDS12 in the counting mode ===
1006
1007 Feature, Set the distance count mode.
1008
1009 (% style="color:blue" %)**AT Command: AT+MEACOUNT**
1010
1011 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1012 |=(% style="width: 160px; background-color:#4F81BD; color: white;" %)**Command Example**|=(% style="width:210px; background-color:#4F81BD; color: white;" %)**Function**|=(% style="width:140px; background-color:#4F81BD; color: white;" %)**Response**
1013 |(% style="width:235px" %)AT+MEACOUNT=?|(% style="width:267px" %)Gets the current measurement count mode and locale Settings|(% style="width:306px" %)1,20,100,450,450,800
1014 OK
1015 |(% style="width:235px" %)AT+MEACOUNT=0,0,0,0,0,0|(% style="width:267px" %)disable measurement count mode|(% style="width:306px" %)OK
1016
1017 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1018 |=(% style="width: 160px; background-color:#4F81BD; color: white;" %)**Command Example**|=(% style="width:190px; background-color:#4F81BD; color: white;" %)**Function**|=(% style="width:160px; background-color:#4F81BD; color: white;" %)**Parameter**
1019 |(% colspan="1" rowspan="6" style="width:158px" %)(((
1020
1021
1022
1023
1024
1025
1026
1027
1028 AT+MEACOUNT=
1029
1030 1,20,100,450,450,800
1031 )))|(% style="width:278px" %)The first bit sets the measurement count mode|(% style="width:302px" %)00: Off mode
1032 01: Enable mode
1033 |(% style="width:278px" %)The second bit sets the acquisition distance of several times per second.|(% style="width:302px" %)(((
1034
1035
1036 Max: 20 times/s
1037 )))
1038 |(% style="width:278px" %)The third bit sets the minimum distance of area 1 detection range.|(% colspan="1" rowspan="2" style="width:302px" %)(((
1039
1040
1041 Max: 1200cm
1042
1043
1044 If both values are 0, area 1 is not set and area 1 is not detected.
1045 )))
1046 |(% style="width:278px" %)The fourth bit sets the maximum distance of area 1 detection range.
1047 |(% style="width:278px" %)The fifth bit sets the minimum distance of area 2 detection range.|(% colspan="1" rowspan="2" style="width:302px" %)(((
1048
1049
1050 Max: 1200cm
1051
1052
1053 If both values are 0, area 2 is not set and area 2 is not detected.
1054 )))
1055 |(% style="width:278px" %)The sixth bit sets the maximum distance of area 2 detection range.
1056
1057 (% style="color:blue" %)**Downlink Command: 0x08**
1058
1059 Format: Command Code (0x08) followed by 10 bytes.
1060
1061 If the downlink payload=**08 01 14 00 64 01 C2 01 C2 03 20**, it means enable the measurement count mode(0x01), and it means set 0x14=20 collection times per second, the closest distance of the area 1 range is 0x0064=100cm, the farthest distance of the area 1 range is 0x01C2=450cm, the closest distance of the area 2 range is 0x01C2=450cm, the farthest distance of the area 2 range is 0x0320=800cm, while type code is 0x08.
1062
1063 * Example 0: Downlink Payload: 08 01 14 00 00 00 00 01 C2 03 20  **~-~-->**  AT+MOD=1,20,0,0,450,800
1064 * Example 1: Downlink Payload: 08 01 14 00 64 01 C2 00 00 00 00  **~-~-->**  AT+MOD=1,20,100,145,0,0
1065
1066
1067 === ===
1068
1069 === 6.1.2 Channel 1/ channel 2 count Settings ===
1070
1071 Feature, Set the channel 1/ channel 2 count value.
1072
1073 (% style="color:blue" %)**AT Command: AT+SETCNT**
1074
1075 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:511px" %)
1076 |=(% style="width: 171px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 196px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 149px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
1077 |(% style="width:171px" %)AT+SETCNT=1,0|(% style="width:196px" %)Set the count of channel 1 to 0.|(% style="width:149px" %)OK
1078 |(% style="width:171px" %)AT+SETCNT=2,30|(% style="width:196px" %)Set the count of channel 2 to 30.|(% style="width:149px" %)OK
1079
1080 (% style="color:blue" %)**Downlink Command: 0x09 01/0x09 02**
1081
1082 Format: Command Code (0x09 01/0x09 02) followed by 4 bytes.
1083
1084 * Example 0: Downlink Payload: 09 01 00 00 00 00  **~-~-->**  AT+SETCNT=1,0
1085 * Example 1: Downlink Payload: 09 02 00 00 00 1E  **~-~-->**  AT+SETCNT=2,30
1086
1087
1088
1089
1090 = 7. FAQ =
1091
1092 == 7.1 What is the frequency plan for LDS12-LB/LS? ==
1093
1094
1095 LDS12-LB/LS use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1096
1097
1098 = 8. Trouble Shooting =
1099
1100 == 8.1 AT Command input doesn't work ==
1101
1102
1103 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1104
1105
1106 == 8.2 Significant error between the output distant value of LiDAR and actual distance ==
1107
1108
1109 (((
1110 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
1111 )))
1112
1113 (((
1114 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
1115 )))
1116
1117
1118 (((
1119 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1120 )))
1121
1122 (((
1123 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
1124 )))
1125
1126
1127 = 9. Order Info =
1128
1129
1130 **Part Number: (% style="color:blue" %)LDS12-LB-XX or LDS12-LS-XX(%%)**
1131
1132 (% style="color:red" %)**XX**(%%): **The default frequency band**
1133
1134 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1135
1136 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1137
1138 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1139
1140 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1141
1142 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1143
1144 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1145
1146 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1147
1148 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1149
1150 = 10. ​Packing Info =
1151
1152
1153 (% style="color:#037691" %)**Package Includes**:
1154
1155 * LDS12-LB or LDS12-LS LoRaWAN LiDAR ToF Distance Sensor x 1
1156
1157 (% style="color:#037691" %)**Dimension and weight**:
1158
1159 * Device Size: cm
1160
1161 * Device Weight: g
1162
1163 * Package Size / pcs : cm
1164
1165 * Weight / pcs : g
1166
1167 = 11. Support =
1168
1169
1170 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1171
1172 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0