Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
175 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 [[image:image-20220624134713-1.png]]
241
242
243 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
244
245 External sensors detected by WSC1-L include :
246
247 custom sensor A1,
248
249 PAR sensor (WSS-07),
250
251 Total Solar Radiation sensor (WSS-06),
252
253 CO2/PM2.5/PM10 (WSS-03),
254
255 Wind Speed/Direction (WSS-02)
256
257
258 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
259
260 (% style="color:#037691" %)**Downlink:0x26 01**
261
262 [[image:1656049673488-415.png]]
263
264
265 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
266
267
268 (((
269 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
270 )))
271
272 (((
273 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
274 )))
275
276
277 (((
278 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
279 )))
280
281
282 (% style="color:#4472c4" %)** Uplink Payload**:
283
284 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
285 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
286
287 (% style="color:#4472c4" %)** Sensor Segment Define**:
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
290 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
291
292 (% style="color:#4472c4" %)**Sensor Type Table:**
293
294 [[image:image-20220706154434-1.png]]
295
296
297 (((
298 Below is an example payload:  [[image:image-20220624140615-3.png]]
299 )))
300
301 (((
302
303 )))
304
305 (((
306 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
307 )))
308
309 * (((
310 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
311 )))
312
313 (((
314 Uplink 1:  [[image:image-20220624140735-4.png]]
315 )))
316
317
318 (((
319 Uplink 2:  [[image:image-20220624140842-5.png]]
320
321 )))
322
323 * (((
324 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
325 )))
326
327 (((
328 Uplink 1:  [[image:image-20220624141025-6.png]]
329 )))
330
331
332 Uplink 2:  [[image:image-20220624141100-7.png]]
333
334
335 === 2.4.3 Decoder in TTN V3 ===
336
337
338 (((
339 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
340 )))
341
342 (((
343 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
344 )))
345
346
347 (((
348 and put as below:
349 )))
350
351 [[image:1656051152438-578.png]]
352
353
354 == 2.5 Show data on Application Server ==
355
356
357 (((
358 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
359 )))
360
361 (((
362 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
363 )))
364
365 (((
366 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
367 )))
368
369 [[image:1656051197172-131.png]]
370
371
372
373 **Add TagoIO:**
374
375 [[image:1656051223585-631.png]]
376
377
378
379 **Authorization:**
380
381 [[image:1656051248318-368.png]]
382
383
384
385 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
386
387
388 [[image:1656051277767-168.png]]
389
390
391 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
392
393
394 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
395
396 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
397 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
398
399 There are two kinds of commands to configure WSC1-L, they are:
400
401 * (% style="color:#4472c4" %)**General Commands**.
402
403 These commands are to configure:
404
405 * General system settings like: uplink interval.
406 * LoRaWAN protocol & radio related command.
407
408 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
409
410 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
411
412
413 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
414
415 These commands only valid for WSC1-L, as below:
416
417
418 == 3.1 Set Transmit Interval Time ==
419
420
421 Feature: Change LoRaWAN End Node Transmit Interval.
422
423 (% style="color:#037691" %)**AT Command: AT+TDC**
424
425 [[image:image-20220624142619-8.png]]
426
427
428 (% style="color:#037691" %)**Downlink Command: 0x01**
429
430 Format: Command Code (0x01) followed by 3 bytes time value.
431
432 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
433
434 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
435 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
436
437 == 3.2 Set Emergency Mode ==
438
439
440 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
441
442 (% style="color:#037691" %)**AT Command:**
443
444 [[image:image-20220624142956-9.png]]
445
446
447 (% style="color:#037691" %)**Downlink Command:**
448
449 * 0xE101     Same as: AT+ALARMMOD=1
450 * 0xE100     Same as: AT+ALARMMOD=0
451
452 == 3.3 Add or Delete RS485 Sensor ==
453
454
455 (((
456 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
457 )))
458
459 (((
460 (% style="color:#037691" %)**AT Command: **
461 )))
462
463 (((
464 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
465 )))
466
467 * (((
468 Type_Code range:  A1 ~~ A4
469 )))
470 * (((
471 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
472 )))
473 * (((
474 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
475 )))
476 * (((
477 Read_Length:  RS485 response frame length supposed to receive. Max can receive
478 )))
479 * (((
480 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
481 )))
482 * (((
483 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
484 )))
485 * (((
486 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
487 )))
488
489 (((
490 **Example:**
491 )))
492
493 (((
494 User need to change external sensor use the type code as address code.
495 )))
496
497 (((
498 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
499 )))
500
501 [[image:image-20220624143553-10.png]]
502
503
504 The response frame of the sensor is as follows:
505
506 [[image:image-20220624143618-11.png]]
507
508
509 **Then the following parameters should be:**
510
511 * Address_Code range: A1
512 * Query_Length: 8
513 * Query_Command: A103000000019CAA
514 * Read_Length: 8
515 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
516 * has_CRC: 1
517 * timeout: 1500 (Fill in the test according to the actual situation)
518
519 **So the input command is:**
520
521 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
522
523
524 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
525
526 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
527 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
528 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
529
530 **Related commands:**
531
532 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
533
534 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
535
536
537 (% style="color:#037691" %)**Downlink Command:  **
538
539 **delete custom sensor A1:**
540
541 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
542
543 **Remove all custom sensors**
544
545 * 0xE5FF  
546
547 == 3.4 RS485 Test Command ==
548
549
550 (% style="color:#037691" %)**AT Command:**
551
552 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
553 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
554 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
555 (((
556 Send command to 485 sensor
557 )))
558
559 (((
560 Range : no more than 10 bytes
561 )))
562 )))|(% style="width:85px" %)OK
563
564 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
565
566 AT+RSWRITE=0103000001840A
567
568
569 (% style="color:#037691" %)**Downlink Command:**
570
571 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
572
573 == 3.5 RS485 response timeout ==
574
575
576 Feature: Set or get extended time to receive 485 sensor data.
577
578 (% style="color:#037691" %)**AT Command:**
579
580 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
581 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
582 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
583 (((
584 Set response timeout to:
585 )))
586
587 (((
588 Range : 0~~10000
589 )))
590 )))|(% style="width:85px" %)OK
591
592 (% style="color:#037691" %)**Downlink Command:**
593
594 Format: Command Code (0xE0) followed by 3 bytes time value.
595
596 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
597
598 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
599 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
600
601 == 3.6 Set Sensor Type ==
602
603
604 (((
605 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
606 )))
607
608 (((
609 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
610 )))
611
612 [[image:image-20220624144904-12.png]]
613
614
615 (% style="color:#037691" %)**AT Command:**
616
617 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
618 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
619 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
620
621 Eg: The setting command **AT+STYPE=80221** means:
622
623 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
624 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
625 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
626 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
627 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
628 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
629 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
630
631 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
632
633
634 (% style="color:#037691" %)**Downlink Command:**
635
636 * 0xE400080221  Same as: AT+STYPE=80221
637
638 (% style="color:red" %)**Note:**
639
640 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
641
642
643 = 4. Power consumption and battery =
644
645 == 4.1 Total Power Consumption ==
646
647
648 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
649
650
651 == 4.2 Reduce power consumption ==
652
653
654 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
655
656
657 == 4.3 Battery ==
658
659
660 (((
661 All sensors are only power by external power source. If external power source is off. All sensor won't work.
662 )))
663
664 (((
665 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
666 )))
667
668
669 = 5. Main Process Unit WSC1-L =
670
671 == 5.1 Features ==
672
673
674 * Wall Attachable.
675 * LoRaWAN v1.0.3 Class A protocol.
676 * RS485 / Modbus protocol
677 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
678 * AT Commands to change parameters
679 * Remote configure parameters via LoRaWAN Downlink
680 * Firmware upgradable via program port
681 * Powered by external 12v battery
682 * Back up rechargeable 1000mAh battery
683 * IP Rating: IP65
684 * Support default sensors or 3rd party RS485 sensors
685
686 == 5.2 Power Consumption ==
687
688
689 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
690
691
692 == 5.3 Storage & Operation Temperature ==
693
694
695 -20°C to +60°C
696
697
698 == 5.4 Pin Mapping ==
699
700
701 [[image:1656054149793-239.png]]
702
703
704 == 5.5 Mechanical ==
705
706
707 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
708
709
710 == 5.6 Connect to RS485 Sensors ==
711
712
713 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
714
715
716 [[image:1656054389031-379.png]]
717
718
719 Hardware Design for the Converter Board please see:
720
721 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
722
723
724 = 6. Weather Sensors =
725
726 == 6.1 Rain Gauge ~-~- WSS-01 ==
727
728
729 (((
730 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
731 )))
732
733 (((
734 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
735 )))
736
737 (((
738 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
739 )))
740
741 (((
742 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
743 )))
744
745 (((
746 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
747 )))
748
749
750 === 6.1.1 Feature ===
751
752
753 * RS485 Rain Gauge
754 * Small dimension, easy to install
755 * Vents under funnel, avoid leaf or other things to avoid rain flow.
756 * ABS enclosure.
757 * Horizontal adjustable.
758
759 === 6.1.2 Specification ===
760
761
762 * Resolution: 0.2mm
763 * Accuracy: ±3%
764 * Range: 0 ~~ 100mm
765 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
766 * Input Power: DC 5~~24v
767 * Interface: RS485
768 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
769 * Working Humidity: <100% (no dewing)
770 * Power Consumption: 4mA @ 12v.
771
772 === 6.1.3 Dimension ===
773
774
775 [[image:1656054957406-980.png]]
776
777
778 === 6.1.4 Pin Mapping ===
779
780
781 [[image:1656054972828-692.png]]
782
783
784 === 6.1.5 Installation Notice ===
785
786
787 (((
788 Do not power on while connect the cables. Double check the wiring before power on.
789 )))
790
791 (((
792 Installation Photo as reference:
793 )))
794
795
796 (((
797 (% style="color:#4472c4" %)** Install on Ground:**
798 )))
799
800 (((
801 WSS-01 Rain Gauge include screws so can install in ground directly .
802 )))
803
804
805 (((
806 (% style="color:#4472c4" %)** Install on pole:**
807 )))
808
809 (((
810 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
811 )))
812
813 [[image:image-20220624152218-1.png||height="526" width="276"]]
814
815 WS-K2: Bracket Kit for Pole installation
816
817
818 WSSC-K2 dimension document, please see:
819
820 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
821
822
823 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
824
825
826 [[image:1656055444035-179.png]]
827
828
829 (((
830 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
831 )))
832
833 (((
834 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
835 )))
836
837 (((
838 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
839 )))
840
841
842
843 === 6.2.1 Feature ===
844
845
846 * RS485 wind speed / direction sensor
847 * PC enclosure, resist corrosion
848
849 === 6.2.2 Specification ===
850
851
852 * Wind speed range: 0 ~~ 60m/s
853 * Wind direction range: 0 ~~ 360°
854 * Start wind speed: ≤0.3m/s
855 * Accuracy: ±(0.3+0.03V)m/s , ±1°
856 * Input Power: DC 5~~24v
857 * Interface: RS485
858 * Working Temperature: -30℃~70℃
859 * Working Humidity: <100% (no dewing)
860 * Power Consumption: 13mA ~~ 12v.
861 * Cable Length: 2 meters
862
863 === 6.2.3 Dimension ===
864
865
866 [[image:image-20220624152813-2.png]]
867
868
869 === 6.2.4 Pin Mapping ===
870
871
872 [[image:1656056281231-994.png]]
873
874
875 === 6.2.5  Angle Mapping ===
876
877
878 [[image:1656056303845-585.png]]
879
880
881 === 6.2.6  Installation Notice ===
882
883
884 (((
885 Do not power on while connect the cables. Double check the wiring before power on.
886 )))
887
888 (((
889 The sensor must be installed with below direction, towards North.
890
891
892 )))
893
894 [[image:image-20220624153901-3.png]]
895
896
897 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
898
899
900 (((
901 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
902 )))
903
904 (((
905 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
906 )))
907
908 (((
909 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
910 )))
911
912
913 === 6.3.1 Feature ===
914
915
916 * RS485 CO2, PM2.5, PM10 sensor
917 * NDIR to measure CO2 with Internal Temperature Compensation
918 * Laser Beam Scattering to PM2.5 and PM10
919
920 === 6.3.2 Specification ===
921
922
923 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
924 * CO2 resolution: 1ppm
925 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
926 * PM2.5/PM10 resolution: 1μg/m3
927 * Input Power: DC 7 ~~ 24v
928 * Preheat time: 3min
929 * Interface: RS485
930 * Working Temperature:
931 ** CO2: 0℃~50℃;
932 ** PM2.5/PM10: -30 ~~ 50℃
933 * Working Humidity:
934 ** PM2.5/PM10: 15~80%RH (no dewing)
935 ** CO2: 0~95%RH
936 * Power Consumption: 50mA@ 12v.
937
938 === 6.3.3 Dimension ===
939
940
941 [[image:1656056708366-230.png]]
942
943
944 === 6.3.4 Pin Mapping ===
945
946
947 [[image:1656056722648-743.png]]
948
949
950 === 6.3.5 Installation Notice ===
951
952
953 Do not power on while connect the cables. Double check the wiring before power on.
954
955
956 [[image:1656056751153-304.png]]
957
958
959 [[image:1656056766224-773.png]]
960
961
962 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
963
964
965 (((
966 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
967 )))
968
969 (((
970 WSS-04 has auto heating feature, this ensures measurement more reliable.
971 )))
972
973 (((
974 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
975 )))
976
977
978 === 6.4.1 Feature ===
979
980
981 * RS485 Rain/Snow detect sensor
982 * Surface heating to dry
983 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
984
985 === 6.4.2 Specification ===
986
987
988 * Detect if there is rain or snow
989 * Input Power: DC 12 ~~ 24v
990 * Interface: RS485
991 * Working Temperature: -30℃~70℃
992 * Working Humidity: 10~90%RH
993 * Power Consumption:
994 ** No heating: 12mA @ 12v,
995 ** heating: 94ma @ 12v.
996
997 === 6.4.3 Dimension ===
998
999
1000 [[image:1656056844782-155.png]]
1001
1002
1003 === 6.4.4 Pin Mapping ===
1004
1005
1006 [[image:1656056855590-754.png]]
1007
1008
1009 === 6.4.5 Installation Notice ===
1010
1011
1012 Do not power on while connect the cables. Double check the wiring before power on.
1013
1014
1015 (((
1016 Install with 15°degree.
1017 )))
1018
1019 [[image:1656056873783-780.png]]
1020
1021
1022 [[image:1656056883736-804.png]]
1023
1024
1025 === 6.4.6 Heating ===
1026
1027
1028 (((
1029 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1030 )))
1031
1032
1033 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1034
1035
1036 (((
1037 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1038 )))
1039
1040 (((
1041 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1042 )))
1043
1044
1045 === 6.5.1 Feature ===
1046
1047
1048 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1049
1050 === 6.5.2 Specification ===
1051
1052
1053 * Input Power: DC 12 ~~ 24v
1054 * Interface: RS485
1055 * Temperature Sensor Spec:
1056 ** Range: -30 ~~ 70℃
1057 ** resolution 0.1℃
1058 ** Accuracy: ±0.5℃
1059 * Humidity Sensor Spec:
1060 ** Range: 0 ~~ 100% RH
1061 ** resolution 0.1 %RH
1062 ** Accuracy: 3% RH
1063 * Pressure Sensor Spec:
1064 ** Range: 10~1100hPa
1065 ** Resolution: 0.1hPa
1066 ** Accuracy: ±0.1hPa
1067 * Illuminate sensor:
1068 ** Range: 0~2/20/200kLux
1069 ** Resolution: 10 Lux
1070 ** Accuracy: ±3%FS
1071 * Working Temperature: -30℃~70℃
1072 * Working Humidity: 10~90%RH
1073 * Power Consumption: 4mA @ 12v
1074
1075 === 6.5.3 Dimension ===
1076
1077
1078 [[image:1656057170639-522.png]]
1079
1080
1081 === 6.5.4 Pin Mapping ===
1082
1083
1084 [[image:1656057181899-910.png]]
1085
1086
1087 === 6.5.5 Installation Notice ===
1088
1089
1090 Do not power on while connect the cables. Double check the wiring before power on.
1091
1092 [[image:1656057199955-514.png]]
1093
1094
1095 [[image:1656057212438-475.png]]
1096
1097
1098 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1099
1100
1101 (((
1102 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1103 )))
1104
1105 (((
1106 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1107 )))
1108
1109 (((
1110 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1111 )))
1112
1113
1114 === 6.6.1 Feature ===
1115
1116
1117 * RS485 Total Solar Radiation sensor
1118 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1119 * Measure Reflected Radiation if sense area towards ground.
1120
1121 === 6.6.2 Specification ===
1122
1123
1124 * Input Power: DC 5 ~~ 24v
1125 * Interface: RS485
1126 * Detect spectrum: 0.3~3μm(300~3000nm)
1127 * Measure strength range: 0~2000W/m2
1128 * Resolution: 0.1W/m2
1129 * Accuracy: ±3%
1130 * Yearly Stability: ≤±2%
1131 * Cosine response: ≤7% (@ Sun angle 10°)
1132 * Temperature Effect: ±2%(-10℃~40℃)
1133 * Working Temperature: -40℃~70℃
1134 * Working Humidity: 10~90%RH
1135 * Power Consumption: 4mA @ 12v
1136
1137 === 6.6.3 Dimension ===
1138
1139
1140 [[image:1656057348695-898.png]]
1141
1142
1143 === 6.6.4 Pin Mapping ===
1144
1145
1146 [[image:1656057359343-744.png]]
1147
1148
1149 === 6.6.5 Installation Notice ===
1150
1151
1152 Do not power on while connect the cables. Double check the wiring before power on.
1153
1154
1155 [[image:1656057369259-804.png]]
1156
1157
1158 [[image:1656057377943-564.png]]
1159
1160
1161 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1162
1163
1164 (((
1165 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1166 )))
1167
1168 (((
1169 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1170 )))
1171
1172 (((
1173 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1174 )))
1175
1176
1177 === 6.7.1 Feature ===
1178
1179
1180 (((
1181 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1182 )))
1183
1184 (((
1185 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1186 )))
1187
1188
1189 === 6.7.2 Specification ===
1190
1191
1192 * Input Power: DC 5 ~~ 24v
1193 * Interface: RS485
1194 * Response Spectrum: 400~700nm
1195 * Measure range: 0~2500μmol/m2•s
1196 * Resolution: 1μmol/m2•s
1197 * Accuracy: ±2%
1198 * Yearly Stability: ≤±2%
1199 * Working Temperature: -30℃~75℃
1200 * Working Humidity: 10~90%RH
1201 * Power Consumption: 3mA @ 12v
1202
1203 === 6.7.3 Dimension ===
1204
1205
1206 [[image:1656057538793-888.png]]
1207
1208
1209 === 6.7.4 Pin Mapping ===
1210
1211
1212 [[image:1656057548116-203.png]]
1213
1214
1215 === 6.7.5 Installation Notice ===
1216
1217
1218 Do not power on while connect the cables. Double check the wiring before power on.
1219
1220
1221 [[image:1656057557191-895.png]]
1222
1223
1224 [[image:1656057565783-251.png]]
1225
1226
1227 = 7. FAQ =
1228
1229 == 7.1 What else do I need to purchase to build Weather Station? ==
1230
1231
1232 Below is the installation photo and structure:
1233
1234
1235 [[image:1656057598349-319.png]]
1236
1237
1238 [[image:1656057608049-693.png]]
1239
1240
1241 == 7.2 How to upgrade firmware for WSC1-L? ==
1242
1243
1244 (((
1245 Firmware Location & Change log:
1246
1247 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1248 )))
1249
1250
1251 (((
1252 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1253 )))
1254
1255
1256 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1257
1258
1259 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1260
1261
1262 == 7.4 Can I add my weather sensors? ==
1263
1264
1265 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1266
1267
1268 = 8. Trouble Shooting =
1269
1270 == 8.1 AT Command input doesn't work ==
1271
1272
1273 (((
1274 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1275 )))
1276
1277
1278 = 9. Order Info =
1279
1280 == 9.1 Main Process Unit ==
1281
1282
1283 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1284
1285 (% style="color:blue" %)**XX**(%%): The default frequency band
1286
1287 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1288 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1289 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1290 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1291 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1292 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1293 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1294 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1295
1296 == 9.2 Sensors ==
1297
1298
1299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1300 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1301 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1302 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1303 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1304 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1305 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1306 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1307 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1308 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1309
1310 = 10. Support =
1311
1312
1313 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1314
1315 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1316
1317 = 11. Appendix I: Field Installation Photo =
1318
1319
1320 [[image:1656058346362-132.png||height="685" width="732"]]
1321
1322 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1323
1324
1325
1326 (% style="color:blue" %)**Wind Speed/Direction**
1327
1328 [[image:1656058373174-421.png||height="356" width="731"]]
1329
1330
1331
1332 (% style="color:blue" %)**Total Solar Radiation sensor**
1333
1334 [[image:1656058397364-282.png||height="453" width="732"]]
1335
1336
1337
1338 (% style="color:blue" %)**PAR Sensor**
1339
1340 [[image:1656058416171-615.png]]
1341
1342
1343
1344 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1345
1346 [[image:1656058441194-827.png||height="672" width="523"]]
1347
1348
1349
1350 (% style="color:blue" %)**Rain / Snow Detect**
1351
1352 [[image:1656058451456-166.png]]
1353
1354
1355
1356 (% style="color:blue" %)**Rain Gauge**
1357
1358 [[image:1656058463455-569.png||height="499" width="550"]]
1359
1360
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0