Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:1656035424980-692.png||height="533" width="386"]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 Overview ==
26
27
28 (((
29 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
30 )))
31
32 (((
33 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
34 )))
35
36 (((
37 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
38 )))
39
40 (((
41 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
42 )))
43
44
45 = 2. How to use =
46
47 == 2.1 Installation ==
48
49
50 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
51
52
53 [[image:1656041948552-849.png]]
54
55
56 (% style="color:blue" %)** Wiring:**
57
58 ~1. WSC1-L and sensors all powered by solar power via MPPT
59
60 2. WSC1-L and sensors connect to each other via RS485/Modbus.
61
62 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
63
64
65 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
66
67 [[image:1656042136605-251.png]]
68
69
70 (% style="color:red" %)**Notice 1:**
71
72 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
73 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
74 * Weather sensors won't work if solar panel and storage battery fails.
75
76 (% style="color:red" %)**Notice 2:**
77
78 Due to shipment and importation limitation, user is better to purchase below parts locally:
79
80 * Solar Panel
81 * Storage Battery
82 * MPPT Solar Recharger
83 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
84 * Cabinet.
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111 [[image:1656042612899-422.png]]
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20230426084533-1.png||height="231" width="497"]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
127
128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
129
130
131 **Add APP EUI in the application.**
132
133 [[image:1656042662694-311.png]]
134
135 [[image:1656042673910-429.png]]
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148 (((
149 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
150 )))
151
152 [[image:1656042745346-283.png]]
153
154
155 == 2.4 Uplink Payload ==
156
157
158 Uplink payloads include two types: Valid Sensor Value and other status / control command.
159
160 * Valid Sensor Value: Use FPORT=2
161 * Other control command: Use FPORT other than 2.
162
163 === 2.4.1 Uplink FPORT~=5, Device Status ===
164
165
166 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
167
168
169 (((
170 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
171 )))
172
173 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
174 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
175 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
176
177 [[image:1656043061044-343.png]]
178
179
180 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
181
182
183 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
184
185 For WSC1-L, this value is 0x0D.
186
187
188 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
189
190 0x0100, Means: v1.0.0 version.
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 0x01: EU868
196
197 0x02: US915
198
199 0x03: IN865
200
201 0x04: AU915
202
203 0x05: KZ865
204
205 0x06: RU864
206
207 0x07: AS923
208
209 0x08: AS923-1
210
211 0x09: AS923-2
212
213 0x0a: AS923-3
214
215
216 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
217
218 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
219
220
221 ==== (% style="color:#037691" %)**BAT:**(%%) ====
222
223 (((
224 shows the battery voltage for WSC1-L MCU.
225 )))
226
227 (((
228 Ex1: 0x0BD6/1000 = 3.03 V
229 )))
230
231
232 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
233
234 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
235 |Byte3|Byte2|Byte1
236
237 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
238
239 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
240 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
241 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
242 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
243 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
244 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
245 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
298 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
299 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
300 Speed: 0 ~~ 60m/s
301 Level: 0 ~~ 17
302 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
303 (((
304 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
305 )))
306
307 (((
308 0x02=2 (0x14: No Sensor, 0x15: Value Error)
309 )))
310 )))
311 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
312 Angel: 0 ~~ 360°
313 Direction: 16 positions
314 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
315 (((
316 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
317 )))
318
319 (((
320 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
321 )))
322 )))
323 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
324 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
325 )))
326 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
327 (((
328 0x00 (00) No Rain or snow detected
329 )))
330
331 (((
332 (0x02: No Sensor,0x03: Value Error)
333 )))
334 )))
335 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
336 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
337 )))
338 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
339 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
340 )))
341 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
342 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
343 )))
344 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
345 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
346 )))
347 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
348 0mm~100mm(Rainfall in the last 24 hours)
349 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
350 (((
351 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
352 )))
353
354 (((
355 (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 )))
358 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
359 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
360 )))
361 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
363 )))
364 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
365 0~2500μmol/m^^2^^•s
366 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
367 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
368 )))
369 |(% style="width:103px" %)(((
370 Total Solar Radiation
371 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
373 )))
374
375 (((
376 Below is an example payload:  [[image:image-20220624140615-3.png]]
377 )))
378
379
380 (((
381 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
382 )))
383
384 * (((
385 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
386 )))
387
388 (((
389 Uplink 1:  [[image:image-20220624140735-4.png]]
390 )))
391
392
393 (((
394 Uplink 2:  [[image:image-20220624140842-5.png]]
395
396 )))
397
398 * (((
399 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
400 )))
401
402 (((
403 Uplink 1:  [[image:image-20220624141025-6.png]]
404 )))
405
406
407 Uplink 2:  [[image:image-20220624141100-7.png]]
408
409
410 === 2.4.3 Decoder in TTN V3 ===
411
412
413 (((
414 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
415 )))
416
417 (((
418 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
419 )))
420
421 (((
422 and put as below:
423 )))
424
425 [[image:1656051152438-578.png]]
426
427
428 == 2.5 Show data on Application Server ==
429
430
431 (((
432 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
433 )))
434
435 (((
436 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
437 )))
438
439 (((
440 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
441 )))
442
443 [[image:1656051197172-131.png]]
444
445
446 **Add TagoIO:**
447
448 [[image:1656051223585-631.png]]
449
450
451 **Authorization:**
452
453 [[image:1656051248318-368.png]]
454
455
456 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
457
458 [[image:1656051277767-168.png]]
459
460
461 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
462
463
464 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
465
466 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
467 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
468
469 There are two kinds of commands to configure WSC1-L, they are:
470
471 * (% style="color:blue" %)**General Commands**.
472
473 These commands are to configure:
474
475 * General system settings like: uplink interval.
476 * LoRaWAN protocol & radio related command.
477
478 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
479
480 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
481
482
483 * (% style="color:blue" %)**Commands special design for WSC1-L**
484
485 These commands only valid for WSC1-L, as below:
486
487
488 == 3.1 Set Transmit Interval Time ==
489
490
491 Feature: Change LoRaWAN End Node Transmit Interval.
492
493 (% style="color:#037691" %)**AT Command: AT+TDC**
494
495 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
496 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
497 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
498 30000
499 OK
500 the interval is 30000ms = 30s
501 )))
502 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
503 OK
504 Set transmit interval to 60000ms = 60 seconds
505 )))
506
507 (% style="color:#037691" %)**Downlink Command: 0x01**
508
509 Format: Command Code (0x01) followed by 3 bytes time value.
510
511 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
512
513 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
514 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
515
516 == 3.2 Set Emergency Mode ==
517
518
519 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
520
521 (% style="color:#037691" %)**AT Command:**
522
523 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
524 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
525 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
526 OK
527
528 )))
529 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
530 OK
531 )))
532
533 (% style="color:#037691" %)**Downlink Command:**
534
535 * 0xE101     Same as: AT+ALARMMOD=1
536 * 0xE100     Same as: AT+ALARMMOD=0
537
538 == 3.3 Add or Delete RS485 Sensor ==
539
540
541 (((
542 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
543 )))
544
545 (((
546 (% style="color:#037691" %)**AT Command: **
547 )))
548
549 (((
550 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
551 )))
552
553 * (((
554 Type_Code range:  A1 ~~ A4
555 )))
556 * (((
557 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
558 )))
559 * (((
560 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
561 )))
562 * (((
563 Read_Length:  RS485 response frame length supposed to receive. Max can receive
564 )))
565 * (((
566 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
567 )))
568 * (((
569 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
570 )))
571 * (((
572 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
573 )))
574
575 (((
576 **Example:**
577 )))
578
579 (((
580 User need to change external sensor use the type code as address code.
581 )))
582
583 (((
584 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
585 )))
586
587 [[image:image-20220624143553-10.png]]
588
589
590 The response frame of the sensor is as follows:
591
592 [[image:image-20220624143618-11.png]]
593
594
595 **Then the following parameters should be:**
596
597 * Address_Code range: A1
598 * Query_Length: 8
599 * Query_Command: A103000000019CAA
600 * Read_Length: 8
601 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
602 * has_CRC: 1
603 * timeout: 1500 (Fill in the test according to the actual situation)
604
605 **So the input command is:**
606
607 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
608
609
610 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
611
612 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
613 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
614 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
615
616 **Related commands:**
617
618 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
619
620 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
621
622
623 (% style="color:#037691" %)**Downlink Command:  **
624
625 **delete custom sensor A1:**
626
627 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
628
629 **Remove all custom sensors**
630
631 * 0xE5FF  
632
633 == 3.4 RS485 Test Command ==
634
635
636 (% style="color:#037691" %)**AT Command:**
637
638 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
639 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
640 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
641 Send command to 485 sensor. Range : no more than 10 bytes
642 )))|(% style="width:85px" %)OK
643
644 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
645
646 AT+RSWRITE=0103000001840A
647
648
649 (% style="color:#037691" %)**Downlink Command:**
650
651 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
652
653 == 3.5 RS485 response timeout ==
654
655
656 Feature: Set or get extended time to receive 485 sensor data.
657
658 (% style="color:#037691" %)**AT Command:**
659
660 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
661 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
662 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
663 Set response timeout to: Range : 0~~10000
664 )))|(% style="width:85px" %)OK
665
666 (% style="color:#037691" %)**Downlink Command:**
667
668 Format: Command Code (0xE0) followed by 3 bytes time value.
669
670 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
671
672 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
673 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
674
675 == 3.6 Set Sensor Type ==
676
677
678 (((
679 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
680 )))
681
682 (((
683 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
684
685 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
686 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
687 | |A4|A3|A2|A1| | |
688 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
689 | | |Solar Radiation|PAR|PM10|PM2.5|(((
690 Rain
691 Gauge
692 )))|(((
693 Air
694 Pressure
695 )))
696 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
697 |Humidity|Temperature|CO2|(((
698 Rain/Snow
699 Detect
700 )))|illuminance|(((
701 Wind
702 Direction
703 )))|Wind Speed|BAT
704 )))
705
706
707 (% style="color:#037691" %)**AT Command:**
708
709 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
710 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
711 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
712
713 Eg: The setting command **AT+STYPE=80221** means:
714
715 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
716 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
717 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
718 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
719 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
720 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
721 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
722
723 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
724
725
726 (% style="color:#037691" %)**Downlink Command:**
727
728 * 0xE400080221  Same as: AT+STYPE=80221
729
730 (% style="color:red" %)**Note:**
731
732 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
733
734
735 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
736
737
738 (% style="color:#037691" %)**AT Command:**
739
740 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
741 |=(% style="width: 172px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 175px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
742 |(% style="width:161px" %)(((
743 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
744 )))|(% style="width:184px" %)(((
745 Set the registers read by the rain gauge
746 )))|(% style="width:85px" %)OK
747
748 (% style="color:#037691" %)**Downlink Command:**
749
750 * 0x1703  Same as: AT+RAINFALLSWITCH=3
751
752 3: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
753
754 4: Hourly rainfall: 0.2mm
755
756 5: Rainfall in last hour: 0.2mm
757
758 6: 24-hour maximum rainfall 10.0mm
759
760 8: 24-hour minimum rainfall:0.0mm
761
762 10: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
763
764
765 = 4. Power consumption and battery =
766
767 == 4.1 Total Power Consumption ==
768
769
770 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
771
772
773 == 4.2 Reduce power consumption ==
774
775
776 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
777
778
779 == 4.3 Battery ==
780
781
782 (((
783 All sensors are only power by external power source. If external power source is off. All sensor won't work.
784 )))
785
786 (((
787 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
788 )))
789
790
791 = 5. Main Process Unit WSC1-L =
792
793 == 5.1 Features ==
794
795
796 * Wall Attachable.
797 * LoRaWAN v1.0.3 Class A protocol.
798 * RS485 / Modbus protocol
799 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
800 * AT Commands to change parameters
801 * Remote configure parameters via LoRaWAN Downlink
802 * Firmware upgradable via program port
803 * Powered by external 12v battery
804 * Back up rechargeable 1000mAh battery
805 * IP Rating: IP65
806 * Support default sensors or 3rd party RS485 sensors
807
808 == 5.2 Power Consumption ==
809
810
811 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
812
813
814 == 5.3 Storage & Operation Temperature ==
815
816
817 -20°C to +60°C
818
819
820 == 5.4 Pin Mapping ==
821
822
823 [[image:1656054149793-239.png]]
824
825
826 == 5.5 Mechanical ==
827
828
829 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
830
831
832 == 5.6 Connect to RS485 Sensors ==
833
834
835 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
836
837
838 [[image:1656054389031-379.png]]
839
840
841 Hardware Design for the Converter Board please see:
842
843 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
844
845
846 = 6. Weather Sensors =
847
848 == 6.1 Rain Gauge ~-~- WSS-01 ==
849
850
851 (((
852 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
853 )))
854
855 (((
856 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
857 )))
858
859 (((
860 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
861 )))
862
863 (((
864 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
865 )))
866
867 (((
868 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
869 )))
870
871
872 === 6.1.1 Feature ===
873
874
875 * RS485 Rain Gauge
876 * Small dimension, easy to install
877 * Vents under funnel, avoid leaf or other things to avoid rain flow.
878 * ABS enclosure.
879 * Horizontal adjustable.
880
881 === 6.1.2 Specification ===
882
883
884 * Resolution: 0.2mm
885 * Accuracy: ±3%
886 * Range: 0 ~~ 100mm
887 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
888 * Input Power: DC 5 ~~ 24v
889 * Interface: RS485
890 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
891 * Working Humidity: <100% (no dewing)
892 * Power Consumption: 4mA @ 12v.
893
894 === 6.1.3 Dimension ===
895
896
897 [[image:1656054957406-980.png]]
898
899
900 === 6.1.4 Pin Mapping ===
901
902
903 [[image:1656054972828-692.png]]
904
905
906 === 6.1.5 Installation Notice ===
907
908
909 (((
910 Do not power on while connect the cables. Double check the wiring before power on.
911 )))
912
913 (((
914 Installation Photo as reference:
915 )))
916
917
918 (((
919 (% style="color:#4472c4" %)** Install on Ground:**
920 )))
921
922 (((
923 WSS-01 Rain Gauge include screws so can install in ground directly .
924 )))
925
926
927 (((
928 (% style="color:#4472c4" %)** Install on pole:**
929 )))
930
931 (((
932 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
933 )))
934
935 [[image:image-20220624152218-1.png||height="526" width="276"]]
936
937 WS-K2: Bracket Kit for Pole installation
938
939
940 WSSC-K2 dimension document, please see:
941
942 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
943
944
945 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
946
947
948 [[image:1656055444035-179.png]]
949
950
951 (((
952 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
953 )))
954
955 (((
956 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
957 )))
958
959 (((
960 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
961 )))
962
963
964 === 6.2.1 Feature ===
965
966
967 * RS485 wind speed / direction sensor
968 * PC enclosure, resist corrosion
969
970 === 6.2.2 Specification ===
971
972
973 * Wind speed range: 0 ~~ 60m/s
974 * Wind direction range: 0 ~~ 360°
975 * Start wind speed: ≤0.3 m/s
976 * Accuracy: ±(0.3+0.03V) m/s , ±1°
977 * Input Power: DC 5 ~~ 24v
978 * Interface: RS485
979 * Working Temperature: -30℃ ~~ 70℃
980 * Working Humidity: <100% (no dewing)
981 * Power Consumption: 13mA ~~ 12v.
982 * Cable Length: 2 meters
983
984 === 6.2.3 Dimension ===
985
986
987 [[image:image-20220624152813-2.png]]
988
989
990 === 6.2.4 Pin Mapping ===
991
992
993 [[image:1656056281231-994.png]]
994
995
996 === 6.2.5  Angle Mapping ===
997
998
999 [[image:1656056303845-585.png]]
1000
1001
1002 === 6.2.6  Installation Notice ===
1003
1004
1005 (((
1006 Do not power on while connect the cables. Double check the wiring before power on.
1007 )))
1008
1009 (((
1010 The sensor must be installed with below direction, towards North.
1011
1012
1013 )))
1014
1015 [[image:image-20220624153901-3.png]]
1016
1017
1018 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1019
1020
1021 (((
1022 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1023 )))
1024
1025 (((
1026 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1027 )))
1028
1029 (((
1030 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1031 )))
1032
1033
1034 === 6.3.1 Feature ===
1035
1036
1037 * RS485 CO2, PM2.5, PM10 sensor
1038 * NDIR to measure CO2 with Internal Temperature Compensation
1039 * Laser Beam Scattering to PM2.5 and PM10
1040
1041 === 6.3.2 Specification ===
1042
1043
1044 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1045 * CO2 resolution: 1ppm
1046 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1047 * PM2.5/PM10 resolution: 1μg/m3
1048 * Input Power: DC 7 ~~ 24v
1049 * Preheat time: 3min
1050 * Interface: RS485
1051 * Working Temperature:
1052 ** CO2: 0℃ ~~ 50℃;
1053 ** PM2.5/PM10: -30 ~~ 50℃
1054 * Working Humidity:
1055 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1056 ** CO2: 0 ~~ 95%RH
1057 * Power Consumption: 50mA@ 12v.
1058
1059 === 6.3.3 Dimension ===
1060
1061
1062 [[image:1656056708366-230.png]]
1063
1064
1065 === 6.3.4 Pin Mapping ===
1066
1067
1068 [[image:1656056722648-743.png]]
1069
1070
1071 === 6.3.5 Installation Notice ===
1072
1073
1074 Do not power on while connect the cables. Double check the wiring before power on.
1075
1076
1077 [[image:1656056751153-304.png]]
1078
1079
1080 [[image:1656056766224-773.png]]
1081
1082
1083 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1084
1085
1086 (((
1087 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1088 )))
1089
1090 (((
1091 WSS-04 has auto heating feature, this ensures measurement more reliable.
1092 )))
1093
1094 (((
1095 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1096 )))
1097
1098
1099 === 6.4.1 Feature ===
1100
1101
1102 * RS485 Rain/Snow detect sensor
1103 * Surface heating to dry
1104 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1105
1106 === 6.4.2 Specification ===
1107
1108
1109 * Detect if there is rain or snow
1110 * Input Power: DC 12 ~~ 24v
1111 * Interface: RS485
1112 * Working Temperature: -30℃ ~~ 70℃
1113 * Working Humidity: 10 ~~ 90%RH
1114 * Power Consumption:
1115 ** No heating: 12mA @ 12v,
1116 ** heating: 94ma @ 12v.
1117
1118 === 6.4.3 Dimension ===
1119
1120
1121 [[image:1656056844782-155.png]]
1122
1123
1124 === 6.4.4 Pin Mapping ===
1125
1126
1127 [[image:1656056855590-754.png]]
1128
1129
1130 === 6.4.5 Installation Notice ===
1131
1132
1133 Do not power on while connect the cables. Double check the wiring before power on.
1134
1135 (((
1136 Install with 15°degree.
1137 )))
1138
1139 [[image:1656056873783-780.png]]
1140
1141
1142 [[image:1656056883736-804.png]]
1143
1144
1145 === 6.4.6 Heating ===
1146
1147
1148 (((
1149 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1150 )))
1151
1152
1153 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1154
1155
1156 (((
1157 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1158 )))
1159
1160 (((
1161 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1162 )))
1163
1164
1165 === 6.5.1 Feature ===
1166
1167
1168 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1169
1170 === 6.5.2 Specification ===
1171
1172
1173 * Input Power: DC 12 ~~ 24v
1174 * Interface: RS485
1175 * Temperature Sensor Spec:
1176 ** Range: -30 ~~ 70℃
1177 ** resolution 0.1℃
1178 ** Accuracy: ±0.5℃
1179 * Humidity Sensor Spec:
1180 ** Range: 0 ~~ 100% RH
1181 ** resolution 0.1 %RH
1182 ** Accuracy: 3% RH
1183 * Pressure Sensor Spec:
1184 ** Range: 10 ~~ 1100hPa
1185 ** Resolution: 0.1hPa
1186 ** Accuracy: ±0.1hPa
1187 * Illuminate sensor:
1188 ** Range: 0~~2/20/200kLux
1189 ** Resolution: 10 Lux
1190 ** Accuracy: ±3%FS
1191 * Working Temperature: -30℃ ~~ 70℃
1192 * Working Humidity: 10 ~~ 90%RH
1193 * Power Consumption: 4mA @ 12v
1194
1195 === 6.5.3 Dimension ===
1196
1197
1198 [[image:1656057170639-522.png]]
1199
1200
1201 === 6.5.4 Pin Mapping ===
1202
1203
1204 [[image:1656057181899-910.png]]
1205
1206
1207 === 6.5.5 Installation Notice ===
1208
1209
1210 Do not power on while connect the cables. Double check the wiring before power on.
1211
1212 [[image:1656057199955-514.png]]
1213
1214
1215 [[image:1656057212438-475.png]]
1216
1217
1218 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1219
1220
1221 (((
1222 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1223 )))
1224
1225 (((
1226 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1227 )))
1228
1229 (((
1230 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1231 )))
1232
1233
1234 === 6.6.1 Feature ===
1235
1236
1237 * RS485 Total Solar Radiation sensor
1238 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1239 * Measure Reflected Radiation if sense area towards ground.
1240
1241 === 6.6.2 Specification ===
1242
1243
1244 * Input Power: DC 5 ~~ 24v
1245 * Interface: RS485
1246 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1247 * Measure strength range: 0 ~~ 2000W/m2
1248 * Resolution: 0.1W/m2
1249 * Accuracy: ±3%
1250 * Yearly Stability: ≤±2%
1251 * Cosine response: ≤7% (@ Sun angle 10°)
1252 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1253 * Working Temperature: -40℃ ~~ 70℃
1254 * Working Humidity: 10 ~~ 90%RH
1255 * Power Consumption: 4mA @ 12v
1256
1257 === 6.6.3 Dimension ===
1258
1259
1260 [[image:1656057348695-898.png]]
1261
1262
1263 === 6.6.4 Pin Mapping ===
1264
1265
1266 [[image:1656057359343-744.png]]
1267
1268
1269 === 6.6.5 Installation Notice ===
1270
1271
1272 Do not power on while connect the cables. Double check the wiring before power on.
1273
1274
1275 [[image:1656057369259-804.png]]
1276
1277
1278 [[image:1656057377943-564.png]]
1279
1280
1281 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1282
1283
1284 (((
1285 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1286 )))
1287
1288 (((
1289 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1290 )))
1291
1292 (((
1293 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1294 )))
1295
1296
1297 === 6.7.1 Feature ===
1298
1299
1300 (((
1301 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1302 )))
1303
1304 (((
1305 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1306 )))
1307
1308
1309 === 6.7.2 Specification ===
1310
1311
1312 * Input Power: DC 5 ~~ 24v
1313 * Interface: RS485
1314 * Response Spectrum: 400~~700nm
1315 * Measure range: 0 ~~ 2500μmol/m2•s
1316 * Resolution: 1μmol/m2•s
1317 * Accuracy: ±2%
1318 * Yearly Stability: ≤ ±2%
1319 * Working Temperature: -30℃ ~~ 75℃
1320 * Working Humidity: 10 ~~ 90%RH
1321 * Power Consumption: 3mA @ 12v
1322
1323 === 6.7.3 Dimension ===
1324
1325
1326 [[image:1656057538793-888.png]]
1327
1328
1329 === 6.7.4 Pin Mapping ===
1330
1331
1332 [[image:1656057548116-203.png]]
1333
1334
1335 === 6.7.5 Installation Notice ===
1336
1337
1338 Do not power on while connect the cables. Double check the wiring before power on.
1339
1340
1341 [[image:1656057557191-895.png]]
1342
1343
1344 [[image:1656057565783-251.png]]
1345
1346
1347 = 7. FAQ =
1348
1349 == 7.1 What else do I need to purchase to build Weather Station? ==
1350
1351
1352 Below is the installation photo and structure:
1353
1354
1355 [[image:1656057598349-319.png]]
1356
1357
1358 [[image:1656057608049-693.png]]
1359
1360
1361 == 7.2 How to upgrade firmware for WSC1-L? ==
1362
1363
1364 (((
1365 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1366 )))
1367
1368 (((
1369 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1370 )))
1371
1372
1373 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1374
1375
1376 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1377
1378
1379 == 7.4 Can I add my weather sensors? ==
1380
1381
1382 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1383
1384
1385 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1386
1387
1388 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1389
1390
1391 == 7.6  How to change the data read by the rain gauge? ==
1392
1393
1394 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1395
1396 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1397
1398 **Rainfall query value:**
1399
1400 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1401
1402 4:Current Hourly rainfall: etc 0.2mm
1403
1404 5:Rainfall in last hour:etc 0.2mm
1405
1406 6:24-hour maximum rainfall etc  10.0mm
1407
1408 8:24-hour minimum rainfall:etc  0.0mm
1409
1410 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1411
1412 = 8. Trouble Shooting =
1413
1414 == 8.1 AT Command input doesn't work ==
1415
1416
1417 (((
1418 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1419 )))
1420
1421
1422 == 8.2  Possible reasons why the device is unresponsive: ==
1423
1424 ~1. Check whether the battery voltage is lower than 2.8V
1425 2. Check whether the jumper of the device is correctly connected
1426
1427 [[image:image-20240330173015-1.png]]
1428 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1429
1430 [[image:image-20240330173044-2.png]]
1431
1432
1433 = 9. Order Info =
1434
1435 == 9.1 Main Process Unit ==
1436
1437
1438 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1439
1440 (% style="color:blue" %)**XX**(%%): The default frequency band
1441
1442 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1443 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1444 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1445 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1446 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1447 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1448 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1449 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1450
1451 == 9.2 Sensors ==
1452
1453
1454 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1455 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1456 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1457 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1458 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1459 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1460 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1461 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1462 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1463 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1464
1465 = 10. Support =
1466
1467
1468 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1469
1470 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1471
1472 = 11. Appendix I: Field Installation Photo =
1473
1474
1475 [[image:1656058346362-132.png||height="685" width="732"]]
1476
1477 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1478
1479
1480
1481 (% style="color:blue" %)**Wind Speed/Direction**
1482
1483 [[image:1656058373174-421.png||height="356" width="731"]]
1484
1485
1486
1487 (% style="color:blue" %)**Total Solar Radiation sensor**
1488
1489 [[image:1656058397364-282.png||height="453" width="732"]]
1490
1491
1492
1493 (% style="color:blue" %)**PAR Sensor**
1494
1495 [[image:1656058416171-615.png]]
1496
1497
1498
1499 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1500
1501 [[image:1656058441194-827.png||height="672" width="523"]]
1502
1503
1504
1505 (% style="color:blue" %)**Rain / Snow Detect**
1506
1507 [[image:1656058451456-166.png]]
1508
1509
1510
1511 (% style="color:blue" %)**Rain Gauge**
1512
1513 [[image:1656058463455-569.png||height="499" width="550"]]
1514
1515
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0