Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:1656035424980-692.png||height="533" width="386"]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 Overview ==
26
27
28 (((
29 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
30 )))
31
32 (((
33 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
34 )))
35
36 (((
37 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
38 )))
39
40 (((
41 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
42 )))
43
44
45 = 2. How to use =
46
47 == 2.1 Installation ==
48
49
50 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
51
52
53 [[image:1656041948552-849.png]]
54
55
56 (% style="color:blue" %)** Wiring:**
57
58 ~1. WSC1-L and sensors all powered by solar power via MPPT
59
60 2. WSC1-L and sensors connect to each other via RS485/Modbus.
61
62 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
63
64
65 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
66
67 [[image:1656042136605-251.png]]
68
69
70 (% style="color:red" %)**Notice 1:**
71
72 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
73 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
74 * Weather sensors won't work if solar panel and storage battery fails.
75
76 (% style="color:red" %)**Notice 2:**
77
78 Due to shipment and importation limitation, user is better to purchase below parts locally:
79
80 * Solar Panel
81 * Storage Battery
82 * MPPT Solar Recharger
83 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
84 * Cabinet.
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112 [[image:1656042612899-422.png]]
113
114
115 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
116
117
118 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
119
120 Each WSC1-L is shipped with a sticker with the default device EUI as below:
121
122 [[image:image-20230426084533-1.png||height="231" width="497"]]
123
124
125 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
126
127 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
128
129 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
130
131
132 **Add APP EUI in the application.**
133
134 [[image:1656042662694-311.png]]
135
136 [[image:1656042673910-429.png]]
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153 [[image:1656042745346-283.png]]
154
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
176 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 0x01: EU868
197
198 0x02: US915
199
200 0x03: IN865
201
202 0x04: AU915
203
204 0x05: KZ865
205
206 0x06: RU864
207
208 0x07: AS923
209
210 0x08: AS923-1
211
212 0x09: AS923-2
213
214 0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
299 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
300 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
301 Speed: 0 ~~ 60m/s
302 Level: 0 ~~ 17
303 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
304 (((
305 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
306 )))
307
308 (((
309 0x02=2 (0x14: No Sensor, 0x15: Value Error)
310 )))
311 )))
312 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
313 Angel: 0 ~~ 360°
314 Direction: 16 positions
315 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
316 (((
317 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
318 )))
319
320 (((
321 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
322 )))
323 )))
324 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
325 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
326 )))
327 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
328 (((
329 0x00 (00) No Rain or snow detected
330 )))
331
332 (((
333 (0x02: No Sensor,0x03: Value Error)
334 )))
335 )))
336 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
337 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
338 )))
339 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
340 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
341 )))
342 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
343 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
344 )))
345 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
346 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
347 )))
348 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
349 0mm~100mm(Rainfall in the last 24 hours)
350 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 (((
352 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
353 )))
354
355 (((
356 (0x03FE: No Sensor,0x03FF: Value Error)
357 )))
358 )))
359 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
360 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
363 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
364 )))
365 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
366 0~2500μmol/m^^2^^•s
367 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
368 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
369 )))
370 |(% style="width:103px" %)(((
371 Total Solar Radiation
372 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
373 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
374 )))
375
376 (((
377 Below is an example payload:  [[image:image-20220624140615-3.png]]
378 )))
379
380
381 (((
382 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
383 )))
384
385 * (((
386 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
387 )))
388
389 (((
390 Uplink 1:  [[image:image-20220624140735-4.png]]
391 )))
392
393
394 (((
395 Uplink 2:  [[image:image-20220624140842-5.png]]
396
397 )))
398
399 * (((
400 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
401 )))
402
403 (((
404 Uplink 1:  [[image:image-20220624141025-6.png]]
405 )))
406
407
408 Uplink 2:  [[image:image-20220624141100-7.png]]
409
410
411 === 2.4.3 Decoder in TTN V3 ===
412
413
414 (((
415 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
416 )))
417
418 (((
419 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
420 )))
421
422 (((
423 and put as below:
424 )))
425
426 [[image:1656051152438-578.png]]
427
428
429 == 2.5 Show data on Application Server ==
430
431
432 (((
433 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
434 )))
435
436 (((
437 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
438 )))
439
440 (((
441 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
442 )))
443
444 [[image:1656051197172-131.png]]
445
446
447 **Add TagoIO:**
448
449 [[image:1656051223585-631.png]]
450
451
452 **Authorization:**
453
454 [[image:1656051248318-368.png]]
455
456
457 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
458
459 [[image:1656051277767-168.png]]
460
461
462 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
463
464
465 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
466
467 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
468 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
469
470 There are two kinds of commands to configure WSC1-L, they are:
471
472 * (% style="color:blue" %)**General Commands**.
473
474 These commands are to configure:
475
476 * General system settings like: uplink interval.
477 * LoRaWAN protocol & radio related command.
478
479 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
480
481 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
482
483
484 * (% style="color:blue" %)**Commands special design for WSC1-L**
485
486 These commands only valid for WSC1-L, as below:
487
488
489 == 3.1 Set Transmit Interval Time ==
490
491
492 Feature: Change LoRaWAN End Node Transmit Interval.
493
494 (% style="color:#037691" %)**AT Command: AT+TDC**
495
496 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
497 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
498 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
499 30000
500 OK
501 the interval is 30000ms = 30s
502 )))
503 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
504 OK
505 Set transmit interval to 60000ms = 60 seconds
506 )))
507
508 (% style="color:#037691" %)**Downlink Command: 0x01**
509
510 Format: Command Code (0x01) followed by 3 bytes time value.
511
512 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
513
514 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
515 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
516
517 == 3.2 Set Emergency Mode ==
518
519
520 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
521
522 (% style="color:#037691" %)**AT Command:**
523
524 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
525 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
526 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
527 OK
528
529 )))
530 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
531 OK
532 )))
533
534 (% style="color:#037691" %)**Downlink Command:**
535
536 * 0xE101     Same as: AT+ALARMMOD=1
537 * 0xE100     Same as: AT+ALARMMOD=0
538
539 == 3.3 Add or Delete RS485 Sensor ==
540
541
542 (((
543 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
544 )))
545
546 (((
547 (% style="color:#037691" %)**AT Command: **
548 )))
549
550 (((
551 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
552 )))
553
554 * (((
555 Type_Code range:  A1 ~~ A4
556 )))
557 * (((
558 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
559 )))
560 * (((
561 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
562 )))
563 * (((
564 Read_Length:  RS485 response frame length supposed to receive. Max can receive
565 )))
566 * (((
567 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
568 )))
569 * (((
570 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
571 )))
572 * (((
573 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
574 )))
575
576 (((
577 **Example:**
578 )))
579
580 (((
581 User need to change external sensor use the type code as address code.
582 )))
583
584 (((
585 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
586 )))
587
588 [[image:image-20220624143553-10.png]]
589
590
591 The response frame of the sensor is as follows:
592
593 [[image:image-20220624143618-11.png]]
594
595
596 **Then the following parameters should be:**
597
598 * Address_Code range: A1
599 * Query_Length: 8
600 * Query_Command: A103000000019CAA
601 * Read_Length: 8
602 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
603 * has_CRC: 1
604 * timeout: 1500 (Fill in the test according to the actual situation)
605
606 **So the input command is:**
607
608 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
609
610
611 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
612
613 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
614 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
615 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
616
617 **Related commands:**
618
619 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
620
621 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
622
623
624 (% style="color:#037691" %)**Downlink Command:  **
625
626 **delete custom sensor A1:**
627
628 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
629
630 **Remove all custom sensors**
631
632 * 0xE5FF  
633
634 == 3.4 RS485 Test Command ==
635
636
637 (% style="color:#037691" %)**AT Command:**
638
639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
640 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
641 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
642 Send command to 485 sensor. Range : no more than 10 bytes
643 )))|(% style="width:85px" %)OK
644
645 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
646
647 AT+RSWRITE=0103000001840A
648
649
650 (% style="color:#037691" %)**Downlink Command:**
651
652 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
653
654 == 3.5 RS485 response timeout ==
655
656
657 Feature: Set or get extended time to receive 485 sensor data.
658
659 (% style="color:#037691" %)**AT Command:**
660
661 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
662 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
663 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
664 Set response timeout to: Range : 0~~10000
665 )))|(% style="width:85px" %)OK
666
667 (% style="color:#037691" %)**Downlink Command:**
668
669 Format: Command Code (0xE0) followed by 3 bytes time value.
670
671 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
672
673 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
674 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
675
676 == 3.6 Set Sensor Type ==
677
678
679 (((
680 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
681 )))
682
683 (((
684 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
685
686 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
687 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
688 | |A4|A3|A2|A1| | |
689 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
690 | | |Solar Radiation|PAR|PM10|PM2.5|(((
691 Rain
692 Gauge
693 )))|(((
694 Air
695 Pressure
696 )))
697 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
698 |Humidity|Temperature|CO2|(((
699 Rain/Snow
700 Detect
701 )))|illuminance|(((
702 Wind
703 Direction
704 )))|Wind Speed|BAT
705 )))
706
707
708 (% style="color:#037691" %)**AT Command:**
709
710 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
711 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
712 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
713
714 Eg: The setting command **AT+STYPE=80221** means:
715
716 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
717 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
718 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
719 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
720 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
721 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
722 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
723
724 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
725
726
727 (% style="color:#037691" %)**Downlink Command:**
728
729 * 0xE400080221  Same as: AT+STYPE=80221
730
731 (% style="color:red" %)**Note:**
732
733 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
734
735
736 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
737
738
739 (% style="color:#037691" %)**AT Command:**
740
741 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
742 |=(% style="width: 172px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 175px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
743 |(% style="width:161px" %)(((
744 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
745 )))|(% style="width:184px" %)(((
746 Set the registers read by the rain gauge
747 )))|(% style="width:85px" %)OK
748
749 (% style="color:#037691" %)**Downlink Command:**
750
751 * 0x1703  Same as: AT+RAINFALLSWITCH=3
752
753 3: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
754
755 4: Hourly rainfall: 0.2mm
756
757 5: Rainfall in last hour: 0.2mm
758
759 6: 24-hour maximum rainfall 10.0mm
760
761 8: 24-hour minimum rainfall:0.0mm
762
763 10: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
764
765
766 = 4. Power consumption and battery =
767
768 == 4.1 Total Power Consumption ==
769
770
771 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
772
773
774 == 4.2 Reduce power consumption ==
775
776
777 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
778
779
780 == 4.3 Battery ==
781
782
783 (((
784 All sensors are only power by external power source. If external power source is off. All sensor won't work.
785 )))
786
787 (((
788 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
789 )))
790
791
792 = 5. Main Process Unit WSC1-L =
793
794 == 5.1 Features ==
795
796
797 * Wall Attachable.
798 * LoRaWAN v1.0.3 Class A protocol.
799 * RS485 / Modbus protocol
800 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
801 * AT Commands to change parameters
802 * Remote configure parameters via LoRaWAN Downlink
803 * Firmware upgradable via program port
804 * Powered by external 12v battery
805 * Back up rechargeable 1000mAh battery
806 * IP Rating: IP65
807 * Support default sensors or 3rd party RS485 sensors
808
809 == 5.2 Power Consumption ==
810
811
812 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
813
814
815 == 5.3 Storage & Operation Temperature ==
816
817
818 -20°C to +60°C
819
820
821 == 5.4 Pin Mapping ==
822
823
824 [[image:1656054149793-239.png]]
825
826
827 == 5.5 Mechanical ==
828
829
830 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
831
832
833 == 5.6 Connect to RS485 Sensors ==
834
835
836 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
837
838
839 [[image:1656054389031-379.png]]
840
841
842 Hardware Design for the Converter Board please see:
843
844 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
845
846
847 = 6. Weather Sensors =
848
849 == 6.1 Rain Gauge ~-~- WSS-01 ==
850
851
852 (((
853 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
854 )))
855
856 (((
857 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
858 )))
859
860 (((
861 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
862 )))
863
864 (((
865 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
866 )))
867
868 (((
869 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
870 )))
871
872
873 === 6.1.1 Feature ===
874
875
876 * RS485 Rain Gauge
877 * Small dimension, easy to install
878 * Vents under funnel, avoid leaf or other things to avoid rain flow.
879 * ABS enclosure.
880 * Horizontal adjustable.
881
882 === 6.1.2 Specification ===
883
884
885 * Resolution: 0.2mm
886 * Accuracy: ±3%
887 * Range: 0 ~~ 100mm
888 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
889 * Input Power: DC 5 ~~ 24v
890 * Interface: RS485
891 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
892 * Working Humidity: <100% (no dewing)
893 * Power Consumption: 4mA @ 12v.
894
895 === 6.1.3 Dimension ===
896
897
898 [[image:1656054957406-980.png]]
899
900
901 === 6.1.4 Pin Mapping ===
902
903
904 [[image:1656054972828-692.png]]
905
906
907 === 6.1.5 Installation Notice ===
908
909
910 (((
911 Do not power on while connect the cables. Double check the wiring before power on.
912 )))
913
914 (((
915 Installation Photo as reference:
916 )))
917
918
919 (((
920 (% style="color:#4472c4" %)** Install on Ground:**
921 )))
922
923 (((
924 WSS-01 Rain Gauge include screws so can install in ground directly .
925 )))
926
927
928 (((
929 (% style="color:#4472c4" %)** Install on pole:**
930 )))
931
932 (((
933 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
934 )))
935
936 [[image:image-20220624152218-1.png||height="526" width="276"]]
937
938 WS-K2: Bracket Kit for Pole installation
939
940
941 WSSC-K2 dimension document, please see:
942
943 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
944
945
946 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
947
948
949 [[image:1656055444035-179.png]]
950
951
952 (((
953 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
954 )))
955
956 (((
957 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
958 )))
959
960 (((
961 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
962 )))
963
964
965 === 6.2.1 Feature ===
966
967
968 * RS485 wind speed / direction sensor
969 * PC enclosure, resist corrosion
970
971 === 6.2.2 Specification ===
972
973
974 * Wind speed range: 0 ~~ 60m/s
975 * Wind direction range: 0 ~~ 360°
976 * Start wind speed: ≤0.3 m/s
977 * Accuracy: ±(0.3+0.03V) m/s , ±1°
978 * Input Power: DC 5 ~~ 24v
979 * Interface: RS485
980 * Working Temperature: -30℃ ~~ 70℃
981 * Working Humidity: <100% (no dewing)
982 * Power Consumption: 13mA ~~ 12v.
983 * Cable Length: 2 meters
984
985 === 6.2.3 Dimension ===
986
987
988 [[image:image-20220624152813-2.png]]
989
990
991 === 6.2.4 Pin Mapping ===
992
993
994 [[image:1656056281231-994.png]]
995
996
997 === 6.2.5  Angle Mapping ===
998
999
1000 [[image:1656056303845-585.png]]
1001
1002
1003 === 6.2.6  Installation Notice ===
1004
1005
1006 (((
1007 Do not power on while connect the cables. Double check the wiring before power on.
1008 )))
1009
1010 (((
1011 The sensor must be installed with below direction, towards North.
1012
1013
1014 )))
1015
1016 [[image:image-20220624153901-3.png]]
1017
1018
1019 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1020
1021
1022 (((
1023 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1024 )))
1025
1026 (((
1027 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1028 )))
1029
1030 (((
1031 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1032 )))
1033
1034
1035 === 6.3.1 Feature ===
1036
1037
1038 * RS485 CO2, PM2.5, PM10 sensor
1039 * NDIR to measure CO2 with Internal Temperature Compensation
1040 * Laser Beam Scattering to PM2.5 and PM10
1041
1042 === 6.3.2 Specification ===
1043
1044
1045 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1046 * CO2 resolution: 1ppm
1047 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1048 * PM2.5/PM10 resolution: 1μg/m3
1049 * Input Power: DC 7 ~~ 24v
1050 * Preheat time: 3min
1051 * Interface: RS485
1052 * Working Temperature:
1053 ** CO2: 0℃ ~~ 50℃;
1054 ** PM2.5/PM10: -30 ~~ 50℃
1055 * Working Humidity:
1056 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1057 ** CO2: 0 ~~ 95%RH
1058 * Power Consumption: 50mA@ 12v.
1059
1060 === 6.3.3 Dimension ===
1061
1062
1063 [[image:1656056708366-230.png]]
1064
1065
1066 === 6.3.4 Pin Mapping ===
1067
1068
1069 [[image:1656056722648-743.png]]
1070
1071
1072 === 6.3.5 Installation Notice ===
1073
1074
1075 Do not power on while connect the cables. Double check the wiring before power on.
1076
1077
1078 [[image:1656056751153-304.png]]
1079
1080
1081 [[image:1656056766224-773.png]]
1082
1083
1084 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1085
1086
1087 (((
1088 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1089 )))
1090
1091 (((
1092 WSS-04 has auto heating feature, this ensures measurement more reliable.
1093 )))
1094
1095 (((
1096 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1097 )))
1098
1099
1100 === 6.4.1 Feature ===
1101
1102
1103 * RS485 Rain/Snow detect sensor
1104 * Surface heating to dry
1105 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1106
1107 === 6.4.2 Specification ===
1108
1109
1110 * Detect if there is rain or snow
1111 * Input Power: DC 12 ~~ 24v
1112 * Interface: RS485
1113 * Working Temperature: -30℃ ~~ 70℃
1114 * Working Humidity: 10 ~~ 90%RH
1115 * Power Consumption:
1116 ** No heating: 12mA @ 12v,
1117 ** heating: 94ma @ 12v.
1118
1119 === 6.4.3 Dimension ===
1120
1121
1122 [[image:1656056844782-155.png]]
1123
1124
1125 === 6.4.4 Pin Mapping ===
1126
1127
1128 [[image:1656056855590-754.png]]
1129
1130
1131 === 6.4.5 Installation Notice ===
1132
1133
1134 Do not power on while connect the cables. Double check the wiring before power on.
1135
1136 (((
1137 Install with 15°degree.
1138 )))
1139
1140 [[image:1656056873783-780.png]]
1141
1142
1143 [[image:1656056883736-804.png]]
1144
1145
1146 === 6.4.6 Heating ===
1147
1148
1149 (((
1150 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1151 )))
1152
1153
1154 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1155
1156
1157 (((
1158 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1159 )))
1160
1161 (((
1162 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1163 )))
1164
1165
1166 === 6.5.1 Feature ===
1167
1168
1169 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1170
1171 === 6.5.2 Specification ===
1172
1173
1174 * Input Power: DC 12 ~~ 24v
1175 * Interface: RS485
1176 * Temperature Sensor Spec:
1177 ** Range: -30 ~~ 70℃
1178 ** resolution 0.1℃
1179 ** Accuracy: ±0.5℃
1180 * Humidity Sensor Spec:
1181 ** Range: 0 ~~ 100% RH
1182 ** resolution 0.1 %RH
1183 ** Accuracy: 3% RH
1184 * Pressure Sensor Spec:
1185 ** Range: 10 ~~ 1100hPa
1186 ** Resolution: 0.1hPa
1187 ** Accuracy: ±0.1hPa
1188 * Illuminate sensor:
1189 ** Range: 0~~2/20/200kLux
1190 ** Resolution: 10 Lux
1191 ** Accuracy: ±3%FS
1192 * Working Temperature: -30℃ ~~ 70℃
1193 * Working Humidity: 10 ~~ 90%RH
1194 * Power Consumption: 4mA @ 12v
1195
1196 === 6.5.3 Dimension ===
1197
1198
1199 [[image:1656057170639-522.png]]
1200
1201
1202 === 6.5.4 Pin Mapping ===
1203
1204
1205 [[image:1656057181899-910.png]]
1206
1207
1208 === 6.5.5 Installation Notice ===
1209
1210
1211 Do not power on while connect the cables. Double check the wiring before power on.
1212
1213 [[image:1656057199955-514.png]]
1214
1215
1216 [[image:1656057212438-475.png]]
1217
1218
1219 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1220
1221
1222 (((
1223 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1224 )))
1225
1226 (((
1227 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1228 )))
1229
1230 (((
1231 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1232 )))
1233
1234
1235 === 6.6.1 Feature ===
1236
1237
1238 * RS485 Total Solar Radiation sensor
1239 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1240 * Measure Reflected Radiation if sense area towards ground.
1241
1242 === 6.6.2 Specification ===
1243
1244
1245 * Input Power: DC 5 ~~ 24v
1246 * Interface: RS485
1247 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1248 * Measure strength range: 0 ~~ 2000W/m2
1249 * Resolution: 0.1W/m2
1250 * Accuracy: ±3%
1251 * Yearly Stability: ≤±2%
1252 * Cosine response: ≤7% (@ Sun angle 10°)
1253 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1254 * Working Temperature: -40℃ ~~ 70℃
1255 * Working Humidity: 10 ~~ 90%RH
1256 * Power Consumption: 4mA @ 12v
1257
1258 === 6.6.3 Dimension ===
1259
1260
1261 [[image:1656057348695-898.png]]
1262
1263
1264 === 6.6.4 Pin Mapping ===
1265
1266
1267 [[image:1656057359343-744.png]]
1268
1269
1270 === 6.6.5 Installation Notice ===
1271
1272
1273 Do not power on while connect the cables. Double check the wiring before power on.
1274
1275
1276 [[image:1656057369259-804.png]]
1277
1278
1279 [[image:1656057377943-564.png]]
1280
1281
1282 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1283
1284
1285 (((
1286 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1287 )))
1288
1289 (((
1290 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1291 )))
1292
1293 (((
1294 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1295 )))
1296
1297
1298 === 6.7.1 Feature ===
1299
1300
1301 (((
1302 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1303 )))
1304
1305 (((
1306 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1307 )))
1308
1309
1310 === 6.7.2 Specification ===
1311
1312
1313 * Input Power: DC 5 ~~ 24v
1314 * Interface: RS485
1315 * Response Spectrum: 400~~700nm
1316 * Measure range: 0 ~~ 2500μmol/m2•s
1317 * Resolution: 1μmol/m2•s
1318 * Accuracy: ±2%
1319 * Yearly Stability: ≤ ±2%
1320 * Working Temperature: -30℃ ~~ 75℃
1321 * Working Humidity: 10 ~~ 90%RH
1322 * Power Consumption: 3mA @ 12v
1323
1324 === 6.7.3 Dimension ===
1325
1326
1327 [[image:1656057538793-888.png]]
1328
1329
1330 === 6.7.4 Pin Mapping ===
1331
1332
1333 [[image:1656057548116-203.png]]
1334
1335
1336 === 6.7.5 Installation Notice ===
1337
1338
1339 Do not power on while connect the cables. Double check the wiring before power on.
1340
1341
1342 [[image:1656057557191-895.png]]
1343
1344
1345 [[image:1656057565783-251.png]]
1346
1347
1348 = 7. FAQ =
1349
1350 == 7.1 What else do I need to purchase to build Weather Station? ==
1351
1352
1353 Below is the installation photo and structure:
1354
1355
1356 [[image:1656057598349-319.png]]
1357
1358
1359 [[image:1656057608049-693.png]]
1360
1361
1362 == 7.2 How to upgrade firmware for WSC1-L? ==
1363
1364
1365 (((
1366 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1367 )))
1368
1369 (((
1370 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1371 )))
1372
1373
1374 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1375
1376
1377 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1378
1379
1380 == 7.4 Can I add my weather sensors? ==
1381
1382
1383 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1384
1385
1386 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1387
1388
1389 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1390
1391
1392 == 7.6  How to change the data read by the rain gauge? ==
1393
1394
1395 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1396
1397 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1398
1399 **Rainfall query value:**
1400
1401 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1402
1403 4:Current Hourly rainfall: etc 0.2mm
1404
1405 5:Rainfall in last hour:etc 0.2mm
1406
1407 6:24-hour maximum rainfall etc  10.0mm
1408
1409 8:24-hour minimum rainfall:etc  0.0mm
1410
1411 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1412
1413 = 8. Trouble Shooting =
1414
1415 == 8.1 AT Command input doesn't work ==
1416
1417
1418 (((
1419 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1420 )))
1421
1422
1423 = 9. Order Info =
1424
1425 == 9.1 Main Process Unit ==
1426
1427
1428 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1429
1430 (% style="color:blue" %)**XX**(%%): The default frequency band
1431
1432 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1433 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1434 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1435 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1436 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1437 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1438 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1439 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1440
1441 == 9.2 Sensors ==
1442
1443
1444 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1445 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1446 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1447 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1448 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1449 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1450 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1451 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1452 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1453 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1454
1455 = 10. Support =
1456
1457
1458 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1459
1460 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1461
1462 = 11. Appendix I: Field Installation Photo =
1463
1464
1465 [[image:1656058346362-132.png||height="685" width="732"]]
1466
1467 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1468
1469
1470
1471 (% style="color:blue" %)**Wind Speed/Direction**
1472
1473 [[image:1656058373174-421.png||height="356" width="731"]]
1474
1475
1476
1477 (% style="color:blue" %)**Total Solar Radiation sensor**
1478
1479 [[image:1656058397364-282.png||height="453" width="732"]]
1480
1481
1482
1483 (% style="color:blue" %)**PAR Sensor**
1484
1485 [[image:1656058416171-615.png]]
1486
1487
1488
1489 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1490
1491 [[image:1656058441194-827.png||height="672" width="523"]]
1492
1493
1494
1495 (% style="color:blue" %)**Rain / Snow Detect**
1496
1497 [[image:1656058451456-166.png]]
1498
1499
1500
1501 (% style="color:blue" %)**Rain Gauge**
1502
1503 [[image:1656058463455-569.png||height="499" width="550"]]
1504
1505
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0