Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157 == 2.4 Uplink Payload ==
158
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
176 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187 For WSC1-L, this value is 0x0D.
188
189
190 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
191
192 0x0100, Means: v1.0.0 version.
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 0x01: EU868
198
199 0x02: US915
200
201 0x03: IN865
202
203 0x04: AU915
204
205 0x05: KZ865
206
207 0x06: RU864
208
209 0x07: AS923
210
211 0x08: AS923-1
212
213 0x09: AS923-2
214
215 0x0a: AS923-3
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
242 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
243 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
244 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
245 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
246 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
247 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
272
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
302 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
303 Speed: 0 ~~ 60m/s
304 Level: 0 ~~ 17
305 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
306 (((
307 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
308 )))
309
310 (((
311 0x02=2 (0x14: No Sensor, 0x15: Value Error)
312 )))
313 )))
314 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
315 Angel: 0 ~~ 360°
316 Direction: 16 positions
317 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
318 (((
319 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
320 )))
321
322 (((
323 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
324 )))
325 )))
326 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
327 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
328 )))
329 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
330 (((
331 0x00 (00) No Rain or snow detected
332 )))
333
334 (((
335 (0x02: No Sensor,0x03: Value Error)
336 )))
337 )))
338 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
339 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
340 )))
341 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
342 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
343 )))
344 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
345 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
346 )))
347 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
349 )))
350 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
351 0mm~100mm(Rainfall in the last 24 hours)
352 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
353 (((
354 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
355 )))
356
357 (((
358 (0x03FE: No Sensor,0x03FF: Value Error)
359 )))
360 )))
361 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
363 )))
364 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
365 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
366 )))
367 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
368 0~2500μmol/m^^2^^•s
369 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
370 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
371 )))
372 |(% style="width:103px" %)(((
373 Total Solar Radiation
374 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
375 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
376 )))
377
378 (((
379 Below is an example payload:  [[image:image-20220624140615-3.png]]
380 )))
381
382
383 (((
384 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
385 )))
386
387 * (((
388 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
389 )))
390
391 (((
392 Uplink 1:  [[image:image-20220624140735-4.png]]
393 )))
394
395
396 (((
397 Uplink 2:  [[image:image-20220624140842-5.png]]
398
399 )))
400
401 * (((
402 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624141025-6.png]]
407 )))
408
409
410 Uplink 2:  [[image:image-20220624141100-7.png]]
411
412
413 === 2.4.3 Decoder in TTN V3 ===
414
415
416 (((
417 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
418 )))
419
420 (((
421 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
422 )))
423
424
425 (((
426 and put as below:
427 )))
428
429 [[image:1656051152438-578.png]]
430
431
432 == 2.5 Show data on Application Server ==
433
434
435 (((
436 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
437 )))
438
439 (((
440 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
441 )))
442
443 (((
444 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
445 )))
446
447 [[image:1656051197172-131.png]]
448
449
450
451 **Add TagoIO:**
452
453 [[image:1656051223585-631.png]]
454
455
456
457 **Authorization:**
458
459 [[image:1656051248318-368.png]]
460
461
462
463 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
464
465
466 [[image:1656051277767-168.png]]
467
468
469 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
470
471
472 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
473
474 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
475 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
476
477 There are two kinds of commands to configure WSC1-L, they are:
478
479 * (% style="color:blue" %)**General Commands**.
480
481 These commands are to configure:
482
483 * General system settings like: uplink interval.
484 * LoRaWAN protocol & radio related command.
485
486 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
487
488 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
489
490
491 * (% style="color:blue" %)**Commands special design for WSC1-L**
492
493 These commands only valid for WSC1-L, as below:
494
495
496 == 3.1 Set Transmit Interval Time ==
497
498
499 Feature: Change LoRaWAN End Node Transmit Interval.
500
501 (% style="color:#037691" %)**AT Command: AT+TDC**
502
503 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
504 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
505 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
506 30000
507 OK
508 the interval is 30000ms = 30s
509 )))
510 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
511 OK
512 Set transmit interval to 60000ms = 60 seconds
513 )))
514
515 (% style="color:#037691" %)**Downlink Command: 0x01**
516
517 Format: Command Code (0x01) followed by 3 bytes time value.
518
519 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
520
521 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
522 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
523
524 == 3.2 Set Emergency Mode ==
525
526
527 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
528
529 (% style="color:#037691" %)**AT Command:**
530
531 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
532 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
533 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
534 OK
535
536 )))
537 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
538 OK
539 )))
540
541 (% style="color:#037691" %)**Downlink Command:**
542
543 * 0xE101     Same as: AT+ALARMMOD=1
544 * 0xE100     Same as: AT+ALARMMOD=0
545
546 == 3.3 Add or Delete RS485 Sensor ==
547
548
549 (((
550 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
551 )))
552
553 (((
554 (% style="color:#037691" %)**AT Command: **
555 )))
556
557 (((
558 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
559 )))
560
561 * (((
562 Type_Code range:  A1 ~~ A4
563 )))
564 * (((
565 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
566 )))
567 * (((
568 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
569 )))
570 * (((
571 Read_Length:  RS485 response frame length supposed to receive. Max can receive
572 )))
573 * (((
574 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
575 )))
576 * (((
577 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
578 )))
579 * (((
580 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
581 )))
582
583 (((
584 **Example:**
585 )))
586
587 (((
588 User need to change external sensor use the type code as address code.
589 )))
590
591 (((
592 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
593 )))
594
595 [[image:image-20220624143553-10.png]]
596
597
598 The response frame of the sensor is as follows:
599
600 [[image:image-20220624143618-11.png]]
601
602
603 **Then the following parameters should be:**
604
605 * Address_Code range: A1
606 * Query_Length: 8
607 * Query_Command: A103000000019CAA
608 * Read_Length: 8
609 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
610 * has_CRC: 1
611 * timeout: 1500 (Fill in the test according to the actual situation)
612
613 **So the input command is:**
614
615 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
616
617
618 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
619
620 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
621 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
622 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
623
624 **Related commands:**
625
626 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
627
628 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
629
630
631 (% style="color:#037691" %)**Downlink Command:  **
632
633 **delete custom sensor A1:**
634
635 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
636
637 **Remove all custom sensors**
638
639 * 0xE5FF  
640
641 == 3.4 RS485 Test Command ==
642
643
644 (% style="color:#037691" %)**AT Command:**
645
646 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
647 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
648 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
649 Send command to 485 sensor. Range : no more than 10 bytes
650 )))|(% style="width:85px" %)OK
651
652 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
653
654 AT+RSWRITE=0103000001840A
655
656
657 (% style="color:#037691" %)**Downlink Command:**
658
659 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
660
661 == 3.5 RS485 response timeout ==
662
663
664 Feature: Set or get extended time to receive 485 sensor data.
665
666 (% style="color:#037691" %)**AT Command:**
667
668 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
669 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
670 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
671 Set response timeout to: Range : 0~~10000
672 )))|(% style="width:85px" %)OK
673
674 (% style="color:#037691" %)**Downlink Command:**
675
676 Format: Command Code (0xE0) followed by 3 bytes time value.
677
678 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
679
680 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
681 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
682
683 == 3.6 Set Sensor Type ==
684
685
686 (((
687 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
688 )))
689
690 (((
691 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
692
693 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
694 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
695 | |A4|A3|A2|A1| | |
696 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
697 | | |Solar Radiation|PAR|PM10|PM2.5|(((
698 Rain
699 Gauge
700 )))|(((
701 Air
702 Pressure
703 )))
704 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
705 |Humidity|Temperature|CO2|(((
706 Rain/Snow
707 Detect
708 )))|illuminance|(((
709 Wind
710 Direction
711 )))|Wind Speed|BAT
712 )))
713
714
715 (% style="color:#037691" %)**AT Command:**
716
717 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
718 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
719 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
720
721 Eg: The setting command **AT+STYPE=80221** means:
722
723 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
724 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
725 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
726 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
727 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
728 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
729 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
730
731 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
732
733
734 (% style="color:#037691" %)**Downlink Command:**
735
736 * 0xE400080221  Same as: AT+STYPE=80221
737
738 (% style="color:red" %)**Note:**
739
740 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
741
742
743 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
744
745
746 (% style="color:#037691" %)**AT Command:**
747
748 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
749 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
750 |(% style="width:161px" %)(((
751 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
752 )))|(% style="width:184px" %)(((
753 Set the registers read by the rain gauge
754 )))|(% style="width:85px" %)OK
755
756 (% style="color:#037691" %)**Downlink Command:**
757
758 * 0x1703  Same as: AT+RAINFALLSWITCH=3
759
760 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
761
762 4:Hourly rainfall: 0.2mm
763
764 5:Rainfall in last hour: 0.2mm
765
766 6:24-hour maximum rainfall 10.0mm
767
768 8:24-hour minimum rainfall:0.0mm
769
770 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
771
772
773 = 4. Power consumption and battery =
774
775 == 4.1 Total Power Consumption ==
776
777
778 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
779
780
781 == 4.2 Reduce power consumption ==
782
783
784 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
785
786
787 == 4.3 Battery ==
788
789
790 (((
791 All sensors are only power by external power source. If external power source is off. All sensor won't work.
792 )))
793
794 (((
795 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
796 )))
797
798
799 = 5. Main Process Unit WSC1-L =
800
801 == 5.1 Features ==
802
803
804 * Wall Attachable.
805 * LoRaWAN v1.0.3 Class A protocol.
806 * RS485 / Modbus protocol
807 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
808 * AT Commands to change parameters
809 * Remote configure parameters via LoRaWAN Downlink
810 * Firmware upgradable via program port
811 * Powered by external 12v battery
812 * Back up rechargeable 1000mAh battery
813 * IP Rating: IP65
814 * Support default sensors or 3rd party RS485 sensors
815
816 == 5.2 Power Consumption ==
817
818
819 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
820
821
822 == 5.3 Storage & Operation Temperature ==
823
824
825 -20°C to +60°C
826
827
828 == 5.4 Pin Mapping ==
829
830
831 [[image:1656054149793-239.png]]
832
833
834 == 5.5 Mechanical ==
835
836
837 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
838
839
840 == 5.6 Connect to RS485 Sensors ==
841
842
843 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
844
845
846 [[image:1656054389031-379.png]]
847
848
849 Hardware Design for the Converter Board please see:
850
851 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
852
853
854 = 6. Weather Sensors =
855
856 == 6.1 Rain Gauge ~-~- WSS-01 ==
857
858
859 (((
860 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
861 )))
862
863 (((
864 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
865 )))
866
867 (((
868 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
869 )))
870
871 (((
872 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
873 )))
874
875 (((
876 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
877 )))
878
879
880 === 6.1.1 Feature ===
881
882
883 * RS485 Rain Gauge
884 * Small dimension, easy to install
885 * Vents under funnel, avoid leaf or other things to avoid rain flow.
886 * ABS enclosure.
887 * Horizontal adjustable.
888
889 === 6.1.2 Specification ===
890
891
892 * Resolution: 0.2mm
893 * Accuracy: ±3%
894 * Range: 0 ~~ 100mm
895 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
896 * Input Power: DC 5 ~~ 24v
897 * Interface: RS485
898 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
899 * Working Humidity: <100% (no dewing)
900 * Power Consumption: 4mA @ 12v.
901
902 === 6.1.3 Dimension ===
903
904
905 [[image:1656054957406-980.png]]
906
907
908 === 6.1.4 Pin Mapping ===
909
910
911 [[image:1656054972828-692.png]]
912
913
914 === 6.1.5 Installation Notice ===
915
916
917 (((
918 Do not power on while connect the cables. Double check the wiring before power on.
919 )))
920
921 (((
922 Installation Photo as reference:
923 )))
924
925
926 (((
927 (% style="color:#4472c4" %)** Install on Ground:**
928 )))
929
930 (((
931 WSS-01 Rain Gauge include screws so can install in ground directly .
932 )))
933
934
935 (((
936 (% style="color:#4472c4" %)** Install on pole:**
937 )))
938
939 (((
940 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
941 )))
942
943 [[image:image-20220624152218-1.png||height="526" width="276"]]
944
945 WS-K2: Bracket Kit for Pole installation
946
947
948 WSSC-K2 dimension document, please see:
949
950 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
951
952
953 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
954
955
956 [[image:1656055444035-179.png]]
957
958
959 (((
960 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
961 )))
962
963 (((
964 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
965 )))
966
967 (((
968 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
969 )))
970
971
972 === 6.2.1 Feature ===
973
974
975 * RS485 wind speed / direction sensor
976 * PC enclosure, resist corrosion
977
978 === 6.2.2 Specification ===
979
980
981 * Wind speed range: 0 ~~ 60m/s
982 * Wind direction range: 0 ~~ 360°
983 * Start wind speed: ≤0.3 m/s
984 * Accuracy: ±(0.3+0.03V) m/s , ±1°
985 * Input Power: DC 5 ~~ 24v
986 * Interface: RS485
987 * Working Temperature: -30℃ ~~ 70℃
988 * Working Humidity: <100% (no dewing)
989 * Power Consumption: 13mA ~~ 12v.
990 * Cable Length: 2 meters
991
992 === 6.2.3 Dimension ===
993
994
995 [[image:image-20220624152813-2.png]]
996
997
998 === 6.2.4 Pin Mapping ===
999
1000
1001 [[image:1656056281231-994.png]]
1002
1003
1004 === 6.2.5  Angle Mapping ===
1005
1006
1007 [[image:1656056303845-585.png]]
1008
1009
1010 === 6.2.6  Installation Notice ===
1011
1012
1013 (((
1014 Do not power on while connect the cables. Double check the wiring before power on.
1015 )))
1016
1017 (((
1018 The sensor must be installed with below direction, towards North.
1019
1020
1021 )))
1022
1023 [[image:image-20220624153901-3.png]]
1024
1025
1026 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1027
1028
1029 (((
1030 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1031 )))
1032
1033 (((
1034 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1035 )))
1036
1037 (((
1038 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1039 )))
1040
1041
1042 === 6.3.1 Feature ===
1043
1044
1045 * RS485 CO2, PM2.5, PM10 sensor
1046 * NDIR to measure CO2 with Internal Temperature Compensation
1047 * Laser Beam Scattering to PM2.5 and PM10
1048
1049 === 6.3.2 Specification ===
1050
1051
1052 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1053 * CO2 resolution: 1ppm
1054 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1055 * PM2.5/PM10 resolution: 1μg/m3
1056 * Input Power: DC 7 ~~ 24v
1057 * Preheat time: 3min
1058 * Interface: RS485
1059 * Working Temperature:
1060 ** CO2: 0℃ ~~ 50℃;
1061 ** PM2.5/PM10: -30 ~~ 50℃
1062 * Working Humidity:
1063 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1064 ** CO2: 0 ~~ 95%RH
1065 * Power Consumption: 50mA@ 12v.
1066
1067 === 6.3.3 Dimension ===
1068
1069
1070 [[image:1656056708366-230.png]]
1071
1072
1073 === 6.3.4 Pin Mapping ===
1074
1075
1076 [[image:1656056722648-743.png]]
1077
1078
1079 === 6.3.5 Installation Notice ===
1080
1081
1082 Do not power on while connect the cables. Double check the wiring before power on.
1083
1084
1085 [[image:1656056751153-304.png]]
1086
1087
1088 [[image:1656056766224-773.png]]
1089
1090
1091 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1092
1093
1094 (((
1095 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1096 )))
1097
1098 (((
1099 WSS-04 has auto heating feature, this ensures measurement more reliable.
1100 )))
1101
1102 (((
1103 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1104 )))
1105
1106
1107 === 6.4.1 Feature ===
1108
1109
1110 * RS485 Rain/Snow detect sensor
1111 * Surface heating to dry
1112 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1113
1114 === 6.4.2 Specification ===
1115
1116
1117 * Detect if there is rain or snow
1118 * Input Power: DC 12 ~~ 24v
1119 * Interface: RS485
1120 * Working Temperature: -30℃ ~~ 70℃
1121 * Working Humidity: 10 ~~ 90%RH
1122 * Power Consumption:
1123 ** No heating: 12mA @ 12v,
1124 ** heating: 94ma @ 12v.
1125
1126 === 6.4.3 Dimension ===
1127
1128
1129 [[image:1656056844782-155.png]]
1130
1131
1132 === 6.4.4 Pin Mapping ===
1133
1134
1135 [[image:1656056855590-754.png]]
1136
1137
1138 === 6.4.5 Installation Notice ===
1139
1140
1141 Do not power on while connect the cables. Double check the wiring before power on.
1142
1143 (((
1144 Install with 15°degree.
1145 )))
1146
1147 [[image:1656056873783-780.png]]
1148
1149
1150 [[image:1656056883736-804.png]]
1151
1152
1153 === 6.4.6 Heating ===
1154
1155
1156 (((
1157 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1158 )))
1159
1160
1161 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1162
1163
1164 (((
1165 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1166 )))
1167
1168 (((
1169 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1170 )))
1171
1172
1173 === 6.5.1 Feature ===
1174
1175
1176 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1177
1178 === 6.5.2 Specification ===
1179
1180
1181 * Input Power: DC 12 ~~ 24v
1182 * Interface: RS485
1183 * Temperature Sensor Spec:
1184 ** Range: -30 ~~ 70℃
1185 ** resolution 0.1℃
1186 ** Accuracy: ±0.5℃
1187 * Humidity Sensor Spec:
1188 ** Range: 0 ~~ 100% RH
1189 ** resolution 0.1 %RH
1190 ** Accuracy: 3% RH
1191 * Pressure Sensor Spec:
1192 ** Range: 10 ~~ 1100hPa
1193 ** Resolution: 0.1hPa
1194 ** Accuracy: ±0.1hPa
1195 * Illuminate sensor:
1196 ** Range: 0~~2/20/200kLux
1197 ** Resolution: 10 Lux
1198 ** Accuracy: ±3%FS
1199 * Working Temperature: -30℃ ~~ 70℃
1200 * Working Humidity: 10 ~~ 90%RH
1201 * Power Consumption: 4mA @ 12v
1202
1203 === 6.5.3 Dimension ===
1204
1205
1206 [[image:1656057170639-522.png]]
1207
1208
1209 === 6.5.4 Pin Mapping ===
1210
1211
1212 [[image:1656057181899-910.png]]
1213
1214
1215 === 6.5.5 Installation Notice ===
1216
1217
1218 Do not power on while connect the cables. Double check the wiring before power on.
1219
1220 [[image:1656057199955-514.png]]
1221
1222
1223 [[image:1656057212438-475.png]]
1224
1225
1226 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1227
1228
1229 (((
1230 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1231 )))
1232
1233 (((
1234 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1235 )))
1236
1237 (((
1238 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1239 )))
1240
1241
1242 === 6.6.1 Feature ===
1243
1244
1245 * RS485 Total Solar Radiation sensor
1246 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1247 * Measure Reflected Radiation if sense area towards ground.
1248
1249 === 6.6.2 Specification ===
1250
1251
1252 * Input Power: DC 5 ~~ 24v
1253 * Interface: RS485
1254 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1255 * Measure strength range: 0 ~~ 2000W/m2
1256 * Resolution: 0.1W/m2
1257 * Accuracy: ±3%
1258 * Yearly Stability: ≤±2%
1259 * Cosine response: ≤7% (@ Sun angle 10°)
1260 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1261 * Working Temperature: -40℃ ~~ 70℃
1262 * Working Humidity: 10 ~~ 90%RH
1263 * Power Consumption: 4mA @ 12v
1264
1265 === 6.6.3 Dimension ===
1266
1267
1268 [[image:1656057348695-898.png]]
1269
1270
1271 === 6.6.4 Pin Mapping ===
1272
1273
1274 [[image:1656057359343-744.png]]
1275
1276
1277 === 6.6.5 Installation Notice ===
1278
1279
1280 Do not power on while connect the cables. Double check the wiring before power on.
1281
1282
1283 [[image:1656057369259-804.png]]
1284
1285
1286 [[image:1656057377943-564.png]]
1287
1288
1289 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1290
1291
1292 (((
1293 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1294 )))
1295
1296 (((
1297 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1298 )))
1299
1300 (((
1301 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1302 )))
1303
1304
1305 === 6.7.1 Feature ===
1306
1307
1308 (((
1309 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1310 )))
1311
1312 (((
1313 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1314 )))
1315
1316
1317 === 6.7.2 Specification ===
1318
1319
1320 * Input Power: DC 5 ~~ 24v
1321 * Interface: RS485
1322 * Response Spectrum: 400~~700nm
1323 * Measure range: 0 ~~ 2500μmol/m2•s
1324 * Resolution: 1μmol/m2•s
1325 * Accuracy: ±2%
1326 * Yearly Stability: ≤ ±2%
1327 * Working Temperature: -30℃ ~~ 75℃
1328 * Working Humidity: 10 ~~ 90%RH
1329 * Power Consumption: 3mA @ 12v
1330
1331 === 6.7.3 Dimension ===
1332
1333
1334 [[image:1656057538793-888.png]]
1335
1336
1337 === 6.7.4 Pin Mapping ===
1338
1339
1340 [[image:1656057548116-203.png]]
1341
1342
1343 === 6.7.5 Installation Notice ===
1344
1345
1346 Do not power on while connect the cables. Double check the wiring before power on.
1347
1348
1349 [[image:1656057557191-895.png]]
1350
1351
1352 [[image:1656057565783-251.png]]
1353
1354
1355 = 7. FAQ =
1356
1357 == 7.1 What else do I need to purchase to build Weather Station? ==
1358
1359
1360 Below is the installation photo and structure:
1361
1362
1363 [[image:1656057598349-319.png]]
1364
1365
1366 [[image:1656057608049-693.png]]
1367
1368
1369 == 7.2 How to upgrade firmware for WSC1-L? ==
1370
1371
1372 (((
1373 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1374 )))
1375
1376 (((
1377 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1378 )))
1379
1380
1381 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1382
1383
1384 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1385
1386
1387 == 7.4 Can I add my weather sensors? ==
1388
1389
1390 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1391
1392
1393 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1394
1395
1396 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1397
1398
1399 == 7.6  How to change the data read by the rain gauge? ==
1400
1401
1402 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1403
1404 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1405
1406 **Rainfall query value:**
1407
1408 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1409
1410 4:Hourly rainfall: 0.2mm
1411
1412 5:Rainfall in last hour: 0.2mm
1413
1414 6:24-hour maximum rainfall 10.0mm
1415
1416 8:24-hour minimum rainfall:0.0mm
1417
1418 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1419
1420 = 8. Trouble Shooting =
1421
1422 == 8.1 AT Command input doesn't work ==
1423
1424
1425 (((
1426 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1427 )))
1428
1429
1430 = 9. Order Info =
1431
1432 == 9.1 Main Process Unit ==
1433
1434
1435 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1436
1437 (% style="color:blue" %)**XX**(%%): The default frequency band
1438
1439 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1440 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1441 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1442 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1443 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1444 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1445 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1446 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1447
1448 == 9.2 Sensors ==
1449
1450
1451 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1452 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1453 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1454 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1455 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1456 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1457 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1458 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1459 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1460 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1461
1462 = 10. Support =
1463
1464
1465 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1466
1467 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1468
1469 = 11. Appendix I: Field Installation Photo =
1470
1471
1472 [[image:1656058346362-132.png||height="685" width="732"]]
1473
1474 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1475
1476
1477
1478 (% style="color:blue" %)**Wind Speed/Direction**
1479
1480 [[image:1656058373174-421.png||height="356" width="731"]]
1481
1482
1483
1484 (% style="color:blue" %)**Total Solar Radiation sensor**
1485
1486 [[image:1656058397364-282.png||height="453" width="732"]]
1487
1488
1489
1490 (% style="color:blue" %)**PAR Sensor**
1491
1492 [[image:1656058416171-615.png]]
1493
1494
1495
1496 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1497
1498 [[image:1656058441194-827.png||height="672" width="523"]]
1499
1500
1501
1502 (% style="color:blue" %)**Rain / Snow Detect**
1503
1504 [[image:1656058451456-166.png]]
1505
1506
1507
1508 (% style="color:blue" %)**Rain Gauge**
1509
1510 [[image:1656058463455-569.png||height="499" width="550"]]
1511
1512
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0