Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157 == 2.4 Uplink Payload ==
158
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
176 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187 For WSC1-L, this value is 0x0D.
188
189
190 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
191
192 0x0100, Means: v1.0.0 version.
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 0x01: EU868
198
199 0x02: US915
200
201 0x03: IN865
202
203 0x04: AU915
204
205 0x05: KZ865
206
207 0x06: RU864
208
209 0x07: AS923
210
211 0x08: AS923-1
212
213 0x09: AS923-2
214
215 0x0a: AS923-3
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
242 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
243 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
244 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
245 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
246 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
247 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
272
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
302 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
303 Speed: 0 ~~ 60m/s
304 Level: 0 ~~ 17
305 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
306 (((
307 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
308 )))
309
310 (((
311 0x02=2 (0x14: No Sensor, 0x15: Value Error)
312 )))
313 )))
314 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
315 Angel: 0 ~~ 360°
316 Direction: 16 positions
317 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
318 (((
319 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
320 )))
321
322 (((
323 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
324 )))
325 )))
326 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
327 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
328 )))
329 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
330 (((
331 0x00 (00) No Rain or snow detected
332 )))
333
334 (((
335 (0x02: No Sensor,0x03: Value Error)
336 )))
337 )))
338 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
339 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
340 )))
341 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
342 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
343 )))
344 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
345 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
346 )))
347 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
349 )))
350 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
351 0mm~100mm(Rainfall in the last 24 hours)
352 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
353 (((
354 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
355 )))
356
357 (((
358 (0x03FE: No Sensor,0x03FF: Value Error)
359 )))
360 )))
361 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
363 )))
364 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
365 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
366 )))
367 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
368 0~2500μmol/m^^2^^•s
369 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
370 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
371 )))
372 |(% style="width:103px" %)(((
373 Total Solar Radiation
374 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
375 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
376 )))
377
378 (((
379 Below is an example payload:  [[image:image-20220624140615-3.png]]
380 )))
381
382
383 (((
384 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
385 )))
386
387 * (((
388 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
389 )))
390
391 (((
392 Uplink 1:  [[image:image-20220624140735-4.png]]
393 )))
394
395
396 (((
397 Uplink 2:  [[image:image-20220624140842-5.png]]
398
399 )))
400
401 * (((
402 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624141025-6.png]]
407 )))
408
409
410 Uplink 2:  [[image:image-20220624141100-7.png]]
411
412
413 === 2.4.3 Decoder in TTN V3 ===
414
415
416 (((
417 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
418 )))
419
420 (((
421 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
422 )))
423
424
425 (((
426 and put as below:
427 )))
428
429 [[image:1656051152438-578.png]]
430
431
432 == 2.5 Show data on Application Server ==
433
434
435 (((
436 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
437 )))
438
439 (((
440 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
441 )))
442
443 (((
444 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
445 )))
446
447 [[image:1656051197172-131.png]]
448
449
450
451 **Add TagoIO:**
452
453 [[image:1656051223585-631.png]]
454
455
456
457 **Authorization:**
458
459 [[image:1656051248318-368.png]]
460
461
462
463 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
464
465
466 [[image:1656051277767-168.png]]
467
468
469 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
470
471
472 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
473
474 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
475 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
476
477 There are two kinds of commands to configure WSC1-L, they are:
478
479 * (% style="color:blue" %)**General Commands**.
480
481 These commands are to configure:
482
483 * General system settings like: uplink interval.
484 * LoRaWAN protocol & radio related command.
485
486 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
487
488 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
489
490
491 * (% style="color:blue" %)**Commands special design for WSC1-L**
492
493 These commands only valid for WSC1-L, as below:
494
495
496 == 3.1 Set Transmit Interval Time ==
497
498
499 Feature: Change LoRaWAN End Node Transmit Interval.
500
501 (% style="color:#037691" %)**AT Command: AT+TDC**
502
503 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
504 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
505 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
506 30000
507 OK
508 the interval is 30000ms = 30s
509 )))
510 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
511 OK
512 Set transmit interval to 60000ms = 60 seconds
513 )))
514
515 (% style="color:#037691" %)**Downlink Command: 0x01**
516
517 Format: Command Code (0x01) followed by 3 bytes time value.
518
519 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
520
521 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
522 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
523
524 == 3.2 Set Emergency Mode ==
525
526
527 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
528
529 (% style="color:#037691" %)**AT Command:**
530
531 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
532 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
533 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
534 OK
535
536 )))
537 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
538 OK
539 )))
540
541 (% style="color:#037691" %)**Downlink Command:**
542
543 * 0xE101     Same as: AT+ALARMMOD=1
544 * 0xE100     Same as: AT+ALARMMOD=0
545
546 == 3.3 Add or Delete RS485 Sensor ==
547
548
549 (((
550 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
551 )))
552
553 (((
554 (% style="color:#037691" %)**AT Command: **
555 )))
556
557 (((
558 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
559 )))
560
561 * (((
562 Type_Code range:  A1 ~~ A4
563 )))
564 * (((
565 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
566 )))
567 * (((
568 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
569 )))
570 * (((
571 Read_Length:  RS485 response frame length supposed to receive. Max can receive
572 )))
573 * (((
574 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
575 )))
576 * (((
577 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
578 )))
579 * (((
580 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
581 )))
582
583 (((
584 **Example:**
585 )))
586
587 (((
588 User need to change external sensor use the type code as address code.
589 )))
590
591 (((
592 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
593 )))
594
595 [[image:image-20220624143553-10.png]]
596
597
598 The response frame of the sensor is as follows:
599
600 [[image:image-20220624143618-11.png]]
601
602
603 **Then the following parameters should be:**
604
605 * Address_Code range: A1
606 * Query_Length: 8
607 * Query_Command: A103000000019CAA
608 * Read_Length: 8
609 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
610 * has_CRC: 1
611 * timeout: 1500 (Fill in the test according to the actual situation)
612
613 **So the input command is:**
614
615 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
616
617
618 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
619
620 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
621 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
622 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
623
624 **Related commands:**
625
626 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
627
628 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
629
630
631 (% style="color:#037691" %)**Downlink Command:  **
632
633 **delete custom sensor A1:**
634
635 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
636
637 **Remove all custom sensors**
638
639 * 0xE5FF  
640
641 == 3.4 RS485 Test Command ==
642
643
644 (% style="color:#037691" %)**AT Command:**
645
646 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
647 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
648 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
649 Send command to 485 sensor. Range : no more than 10 bytes
650 )))|(% style="width:85px" %)OK
651
652 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
653
654 AT+RSWRITE=0103000001840A
655
656
657 (% style="color:#037691" %)**Downlink Command:**
658
659 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
660
661 == 3.5 RS485 response timeout ==
662
663
664 Feature: Set or get extended time to receive 485 sensor data.
665
666 (% style="color:#037691" %)**AT Command:**
667
668 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
669 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
670 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
671 Set response timeout to: Range : 0~~10000
672 )))|(% style="width:85px" %)OK
673
674 (% style="color:#037691" %)**Downlink Command:**
675
676 Format: Command Code (0xE0) followed by 3 bytes time value.
677
678 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
679
680 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
681 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
682
683 == 3.6 Set Sensor Type ==
684
685
686 (((
687 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
688 )))
689
690 (((
691 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
692
693 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
694 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
695 | |A4|A3|A2|A1| | |
696 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
697 | | |Solar Radiation|PAR|PM10|PM2.5|(((
698 Rain
699 Gauge
700 )))|(((
701 Air
702 Pressure
703 )))
704 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
705 |Humidity|Temperature|CO2|(((
706 Rain/Snow
707 Detect
708 )))|illuminance|(((
709 Wind
710 Direction
711 )))|Wind Speed|BAT
712 )))
713
714
715 (% style="color:#037691" %)**AT Command:**
716
717 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
718 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
719 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
720
721 Eg: The setting command **AT+STYPE=80221** means:
722
723 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
724 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
725 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
726 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
727 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
728 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
729 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
730
731 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
732
733
734 (% style="color:#037691" %)**Downlink Command:**
735
736 * 0xE400080221  Same as: AT+STYPE=80221
737
738 (% style="color:red" %)**Note:**
739
740 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
741
742
743 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
744
745
746 (% style="color:#037691" %)**AT Command:**
747
748 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
749 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
750 |(% style="width:161px" %)(((
751 AT+RAINFALLSWITCH=1(Range: 1~~10)
752 )))|(% style="width:184px" %)(((
753 Set the registers read by the rain gauge
754 )))|(% style="width:85px" %)OK
755
756 (% style="color:#037691" %)**Downlink Command:**
757
758 * 0x1701  Same as: AT+RAINFALLSWITCH=1
759
760 [[image:image-20231030102056-3.png]]
761
762 = 4. Power consumption and battery =
763
764 == 4.1 Total Power Consumption ==
765
766
767 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
768
769
770 == 4.2 Reduce power consumption ==
771
772
773 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
774
775
776 == 4.3 Battery ==
777
778
779 (((
780 All sensors are only power by external power source. If external power source is off. All sensor won't work.
781 )))
782
783 (((
784 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
785 )))
786
787
788 = 5. Main Process Unit WSC1-L =
789
790 == 5.1 Features ==
791
792
793 * Wall Attachable.
794 * LoRaWAN v1.0.3 Class A protocol.
795 * RS485 / Modbus protocol
796 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
797 * AT Commands to change parameters
798 * Remote configure parameters via LoRaWAN Downlink
799 * Firmware upgradable via program port
800 * Powered by external 12v battery
801 * Back up rechargeable 1000mAh battery
802 * IP Rating: IP65
803 * Support default sensors or 3rd party RS485 sensors
804
805 == 5.2 Power Consumption ==
806
807
808 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
809
810
811 == 5.3 Storage & Operation Temperature ==
812
813
814 -20°C to +60°C
815
816
817 == 5.4 Pin Mapping ==
818
819
820 [[image:1656054149793-239.png]]
821
822
823 == 5.5 Mechanical ==
824
825
826 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
827
828
829 == 5.6 Connect to RS485 Sensors ==
830
831
832 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
833
834
835 [[image:1656054389031-379.png]]
836
837
838 Hardware Design for the Converter Board please see:
839
840 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
841
842
843 = 6. Weather Sensors =
844
845 == 6.1 Rain Gauge ~-~- WSS-01 ==
846
847
848 (((
849 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
850 )))
851
852 (((
853 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
854 )))
855
856 (((
857 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
858 )))
859
860 (((
861 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
862 )))
863
864 (((
865 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
866 )))
867
868
869 === 6.1.1 Feature ===
870
871
872 * RS485 Rain Gauge
873 * Small dimension, easy to install
874 * Vents under funnel, avoid leaf or other things to avoid rain flow.
875 * ABS enclosure.
876 * Horizontal adjustable.
877
878 === 6.1.2 Specification ===
879
880
881 * Resolution: 0.2mm
882 * Accuracy: ±3%
883 * Range: 0 ~~ 100mm
884 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
885 * Input Power: DC 5 ~~ 24v
886 * Interface: RS485
887 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
888 * Working Humidity: <100% (no dewing)
889 * Power Consumption: 4mA @ 12v.
890
891 === 6.1.3 Dimension ===
892
893
894 [[image:1656054957406-980.png]]
895
896
897 === 6.1.4 Pin Mapping ===
898
899
900 [[image:1656054972828-692.png]]
901
902
903 === 6.1.5 Installation Notice ===
904
905
906 (((
907 Do not power on while connect the cables. Double check the wiring before power on.
908 )))
909
910 (((
911 Installation Photo as reference:
912 )))
913
914
915 (((
916 (% style="color:#4472c4" %)** Install on Ground:**
917 )))
918
919 (((
920 WSS-01 Rain Gauge include screws so can install in ground directly .
921 )))
922
923
924 (((
925 (% style="color:#4472c4" %)** Install on pole:**
926 )))
927
928 (((
929 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
930 )))
931
932 [[image:image-20220624152218-1.png||height="526" width="276"]]
933
934 WS-K2: Bracket Kit for Pole installation
935
936
937 WSSC-K2 dimension document, please see:
938
939 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
940
941
942 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
943
944
945 [[image:1656055444035-179.png]]
946
947
948 (((
949 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
950 )))
951
952 (((
953 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
954 )))
955
956 (((
957 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
958 )))
959
960
961 === 6.2.1 Feature ===
962
963
964 * RS485 wind speed / direction sensor
965 * PC enclosure, resist corrosion
966
967 === 6.2.2 Specification ===
968
969
970 * Wind speed range: 0 ~~ 60m/s
971 * Wind direction range: 0 ~~ 360°
972 * Start wind speed: ≤0.3 m/s
973 * Accuracy: ±(0.3+0.03V) m/s , ±1°
974 * Input Power: DC 5 ~~ 24v
975 * Interface: RS485
976 * Working Temperature: -30℃ ~~ 70℃
977 * Working Humidity: <100% (no dewing)
978 * Power Consumption: 13mA ~~ 12v.
979 * Cable Length: 2 meters
980
981 === 6.2.3 Dimension ===
982
983
984 [[image:image-20220624152813-2.png]]
985
986
987 === 6.2.4 Pin Mapping ===
988
989
990 [[image:1656056281231-994.png]]
991
992
993 === 6.2.5  Angle Mapping ===
994
995
996 [[image:1656056303845-585.png]]
997
998
999 === 6.2.6  Installation Notice ===
1000
1001
1002 (((
1003 Do not power on while connect the cables. Double check the wiring before power on.
1004 )))
1005
1006 (((
1007 The sensor must be installed with below direction, towards North.
1008
1009
1010 )))
1011
1012 [[image:image-20220624153901-3.png]]
1013
1014
1015 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1016
1017
1018 (((
1019 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1020 )))
1021
1022 (((
1023 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1024 )))
1025
1026 (((
1027 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1028 )))
1029
1030
1031 === 6.3.1 Feature ===
1032
1033
1034 * RS485 CO2, PM2.5, PM10 sensor
1035 * NDIR to measure CO2 with Internal Temperature Compensation
1036 * Laser Beam Scattering to PM2.5 and PM10
1037
1038 === 6.3.2 Specification ===
1039
1040
1041 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1042 * CO2 resolution: 1ppm
1043 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1044 * PM2.5/PM10 resolution: 1μg/m3
1045 * Input Power: DC 7 ~~ 24v
1046 * Preheat time: 3min
1047 * Interface: RS485
1048 * Working Temperature:
1049 ** CO2: 0℃ ~~ 50℃;
1050 ** PM2.5/PM10: -30 ~~ 50℃
1051 * Working Humidity:
1052 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1053 ** CO2: 0 ~~ 95%RH
1054 * Power Consumption: 50mA@ 12v.
1055
1056 === 6.3.3 Dimension ===
1057
1058
1059 [[image:1656056708366-230.png]]
1060
1061
1062 === 6.3.4 Pin Mapping ===
1063
1064
1065 [[image:1656056722648-743.png]]
1066
1067
1068 === 6.3.5 Installation Notice ===
1069
1070
1071 Do not power on while connect the cables. Double check the wiring before power on.
1072
1073
1074 [[image:1656056751153-304.png]]
1075
1076
1077 [[image:1656056766224-773.png]]
1078
1079
1080 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1081
1082
1083 (((
1084 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1085 )))
1086
1087 (((
1088 WSS-04 has auto heating feature, this ensures measurement more reliable.
1089 )))
1090
1091 (((
1092 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1093 )))
1094
1095
1096 === 6.4.1 Feature ===
1097
1098
1099 * RS485 Rain/Snow detect sensor
1100 * Surface heating to dry
1101 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1102
1103 === 6.4.2 Specification ===
1104
1105
1106 * Detect if there is rain or snow
1107 * Input Power: DC 12 ~~ 24v
1108 * Interface: RS485
1109 * Working Temperature: -30℃ ~~ 70℃
1110 * Working Humidity: 10 ~~ 90%RH
1111 * Power Consumption:
1112 ** No heating: 12mA @ 12v,
1113 ** heating: 94ma @ 12v.
1114
1115 === 6.4.3 Dimension ===
1116
1117
1118 [[image:1656056844782-155.png]]
1119
1120
1121 === 6.4.4 Pin Mapping ===
1122
1123
1124 [[image:1656056855590-754.png]]
1125
1126
1127 === 6.4.5 Installation Notice ===
1128
1129
1130 Do not power on while connect the cables. Double check the wiring before power on.
1131
1132 (((
1133 Install with 15°degree.
1134 )))
1135
1136 [[image:1656056873783-780.png]]
1137
1138
1139 [[image:1656056883736-804.png]]
1140
1141
1142 === 6.4.6 Heating ===
1143
1144
1145 (((
1146 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1147 )))
1148
1149
1150 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1151
1152
1153 (((
1154 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1155 )))
1156
1157 (((
1158 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1159 )))
1160
1161
1162 === 6.5.1 Feature ===
1163
1164
1165 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1166
1167 === 6.5.2 Specification ===
1168
1169
1170 * Input Power: DC 12 ~~ 24v
1171 * Interface: RS485
1172 * Temperature Sensor Spec:
1173 ** Range: -30 ~~ 70℃
1174 ** resolution 0.1℃
1175 ** Accuracy: ±0.5℃
1176 * Humidity Sensor Spec:
1177 ** Range: 0 ~~ 100% RH
1178 ** resolution 0.1 %RH
1179 ** Accuracy: 3% RH
1180 * Pressure Sensor Spec:
1181 ** Range: 10 ~~ 1100hPa
1182 ** Resolution: 0.1hPa
1183 ** Accuracy: ±0.1hPa
1184 * Illuminate sensor:
1185 ** Range: 0~~2/20/200kLux
1186 ** Resolution: 10 Lux
1187 ** Accuracy: ±3%FS
1188 * Working Temperature: -30℃ ~~ 70℃
1189 * Working Humidity: 10 ~~ 90%RH
1190 * Power Consumption: 4mA @ 12v
1191
1192 === 6.5.3 Dimension ===
1193
1194
1195 [[image:1656057170639-522.png]]
1196
1197
1198 === 6.5.4 Pin Mapping ===
1199
1200
1201 [[image:1656057181899-910.png]]
1202
1203
1204 === 6.5.5 Installation Notice ===
1205
1206
1207 Do not power on while connect the cables. Double check the wiring before power on.
1208
1209 [[image:1656057199955-514.png]]
1210
1211
1212 [[image:1656057212438-475.png]]
1213
1214
1215 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1216
1217
1218 (((
1219 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1220 )))
1221
1222 (((
1223 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1224 )))
1225
1226 (((
1227 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1228 )))
1229
1230
1231 === 6.6.1 Feature ===
1232
1233
1234 * RS485 Total Solar Radiation sensor
1235 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1236 * Measure Reflected Radiation if sense area towards ground.
1237
1238 === 6.6.2 Specification ===
1239
1240
1241 * Input Power: DC 5 ~~ 24v
1242 * Interface: RS485
1243 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1244 * Measure strength range: 0 ~~ 2000W/m2
1245 * Resolution: 0.1W/m2
1246 * Accuracy: ±3%
1247 * Yearly Stability: ≤±2%
1248 * Cosine response: ≤7% (@ Sun angle 10°)
1249 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1250 * Working Temperature: -40℃ ~~ 70℃
1251 * Working Humidity: 10 ~~ 90%RH
1252 * Power Consumption: 4mA @ 12v
1253
1254 === 6.6.3 Dimension ===
1255
1256
1257 [[image:1656057348695-898.png]]
1258
1259
1260 === 6.6.4 Pin Mapping ===
1261
1262
1263 [[image:1656057359343-744.png]]
1264
1265
1266 === 6.6.5 Installation Notice ===
1267
1268
1269 Do not power on while connect the cables. Double check the wiring before power on.
1270
1271
1272 [[image:1656057369259-804.png]]
1273
1274
1275 [[image:1656057377943-564.png]]
1276
1277
1278 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1279
1280
1281 (((
1282 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1283 )))
1284
1285 (((
1286 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1287 )))
1288
1289 (((
1290 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1291 )))
1292
1293
1294 === 6.7.1 Feature ===
1295
1296
1297 (((
1298 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1299 )))
1300
1301 (((
1302 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1303 )))
1304
1305
1306 === 6.7.2 Specification ===
1307
1308
1309 * Input Power: DC 5 ~~ 24v
1310 * Interface: RS485
1311 * Response Spectrum: 400~~700nm
1312 * Measure range: 0 ~~ 2500μmol/m2•s
1313 * Resolution: 1μmol/m2•s
1314 * Accuracy: ±2%
1315 * Yearly Stability: ≤ ±2%
1316 * Working Temperature: -30℃ ~~ 75℃
1317 * Working Humidity: 10 ~~ 90%RH
1318 * Power Consumption: 3mA @ 12v
1319
1320 === 6.7.3 Dimension ===
1321
1322
1323 [[image:1656057538793-888.png]]
1324
1325
1326 === 6.7.4 Pin Mapping ===
1327
1328
1329 [[image:1656057548116-203.png]]
1330
1331
1332 === 6.7.5 Installation Notice ===
1333
1334
1335 Do not power on while connect the cables. Double check the wiring before power on.
1336
1337
1338 [[image:1656057557191-895.png]]
1339
1340
1341 [[image:1656057565783-251.png]]
1342
1343
1344 = 7. FAQ =
1345
1346 == 7.1 What else do I need to purchase to build Weather Station? ==
1347
1348
1349 Below is the installation photo and structure:
1350
1351
1352 [[image:1656057598349-319.png]]
1353
1354
1355 [[image:1656057608049-693.png]]
1356
1357
1358 == 7.2 How to upgrade firmware for WSC1-L? ==
1359
1360
1361 (((
1362 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1363 )))
1364
1365 (((
1366 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1367 )))
1368
1369
1370 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1371
1372
1373 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1374
1375
1376 == 7.4 Can I add my weather sensors? ==
1377
1378
1379 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1380
1381
1382 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1383
1384
1385 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1386
1387
1388 == 7.6  How to change the data read by the rain gauge? ==
1389
1390 AT+RAINFALLSWITCH=1(Range: 1~~10) 1-10 corresponds to the sensor register.
1391
1392 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/Dragino%20LoRaWAN%20Weather%20Station%20User%20Manual/WebHome/image-20231030102056-3.png?rev=1.1||alt="image-20231030102056-3.png"]]
1393
1394 = 8. Trouble Shooting =
1395
1396 == 8.1 AT Command input doesn't work ==
1397
1398
1399 (((
1400 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1401 )))
1402
1403
1404 = 9. Order Info =
1405
1406 == 9.1 Main Process Unit ==
1407
1408
1409 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1410
1411 (% style="color:blue" %)**XX**(%%): The default frequency band
1412
1413 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1414 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1415 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1416 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1417 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1418 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1419 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1420 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1421
1422 == 9.2 Sensors ==
1423
1424
1425 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1426 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1427 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1428 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1429 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1430 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1431 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1432 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1433 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1434 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1435
1436 = 10. Support =
1437
1438
1439 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1440
1441 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1442
1443 = 11. Appendix I: Field Installation Photo =
1444
1445
1446 [[image:1656058346362-132.png||height="685" width="732"]]
1447
1448 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1449
1450
1451
1452 (% style="color:blue" %)**Wind Speed/Direction**
1453
1454 [[image:1656058373174-421.png||height="356" width="731"]]
1455
1456
1457
1458 (% style="color:blue" %)**Total Solar Radiation sensor**
1459
1460 [[image:1656058397364-282.png||height="453" width="732"]]
1461
1462
1463
1464 (% style="color:blue" %)**PAR Sensor**
1465
1466 [[image:1656058416171-615.png]]
1467
1468
1469
1470 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1471
1472 [[image:1656058441194-827.png||height="672" width="523"]]
1473
1474
1475
1476 (% style="color:blue" %)**Rain / Snow Detect**
1477
1478 [[image:1656058451456-166.png]]
1479
1480
1481
1482 (% style="color:blue" %)**Rain Gauge**
1483
1484 [[image:1656058463455-569.png||height="499" width="550"]]
1485
1486
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0