Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83 == 2.2 How it works? ==
84
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105
106 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
107
108
109 [[image:1656042612899-422.png]]
110
111
112
113 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
114
115
116 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
117
118 Each WSC1-L is shipped with a sticker with the default device EUI as below:
119
120 [[image:image-20230426084533-1.png||height="231" width="497"]]
121
122
123 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
124
125 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
126
127 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158 == 2.4 Uplink Payload ==
159
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167 === 2.4.1 Uplink FPORT~=5, Device Status ===
168
169
170 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
171
172
173 (((
174 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
175 )))
176
177 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
178 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
179 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
180
181 [[image:1656043061044-343.png]]
182
183
184 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
185
186
187 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
188
189 For WSC1-L, this value is 0x0D.
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199 0x01: EU868
200
201 0x02: US915
202
203 0x03: IN865
204
205 0x04: AU915
206
207 0x05: KZ865
208
209 0x06: RU864
210
211 0x07: AS923
212
213 0x08: AS923-1
214
215 0x09: AS923-2
216
217 0x0a: AS923-3
218
219
220 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
221
222 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC1-L MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
244 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
245 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
246 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
247 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
248 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
249 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
250
251 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
252
253 External sensors detected by WSC1-L include :
254
255 custom sensor A1,
256
257 PAR sensor (WSS-07),
258
259 Total Solar Radiation sensor (WSS-06),
260
261 CO2/PM2.5/PM10 (WSS-03),
262
263 Wind Speed/Direction (WSS-02)
264
265
266 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
267
268 (% style="color:#037691" %)**Downlink:0x26 01**
269
270 [[image:1656049673488-415.png]]
271
272
273 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
274
275
276 (((
277 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
278 )))
279
280 (((
281 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
282 )))
283
284
285 (((
286 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
287 )))
288
289
290 (% style="color:#4472c4" %)** Uplink Payload**:
291
292 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
293 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
294
295 (% style="color:#4472c4" %)** Sensor Segment Define**:
296
297 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
298 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
299
300 (% style="color:#4472c4" %)**Sensor Type Table:**
301
302 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
303 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
304 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
305 Speed: 0 ~~ 60m/s
306 Level: 0 ~~ 17
307 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
308 (((
309 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
310 )))
311
312 (((
313 0x02=2 (0x14: No Sensor, 0x15: Value Error)
314 )))
315 )))
316 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
317 Angel: 0 ~~ 360°
318 Direction: 16 positions
319 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
320 (((
321 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
322 )))
323
324 (((
325 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
326 )))
327 )))
328 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
329 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
330 )))
331 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
332 (((
333 0x00 (00) No Rain or snow detected
334 )))
335
336 (((
337 (0x02: No Sensor,0x03: Value Error)
338 )))
339 )))
340 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
341 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
342 )))
343 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
344 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
345 )))
346 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
347 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
348 )))
349 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
350 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
351 )))
352 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
353 0mm~100mm(Rainfall in the last 24 hours)
354 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
355 (((
356 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
357 )))
358
359 (((
360 (0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 )))
363 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
364 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
367 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
370 0~2500μmol/m^^2^^•s
371 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
373 )))
374 |(% style="width:103px" %)(((
375 Total Solar Radiation
376 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
377 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
378 )))
379
380 (((
381 Below is an example payload:  [[image:image-20220624140615-3.png]]
382 )))
383
384
385 (((
386 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
387 )))
388
389 * (((
390 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
391 )))
392
393 (((
394 Uplink 1:  [[image:image-20220624140735-4.png]]
395 )))
396
397
398 (((
399 Uplink 2:  [[image:image-20220624140842-5.png]]
400
401 )))
402
403 * (((
404 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
405 )))
406
407 (((
408 Uplink 1:  [[image:image-20220624141025-6.png]]
409 )))
410
411
412 Uplink 2:  [[image:image-20220624141100-7.png]]
413
414
415 === 2.4.3 Decoder in TTN V3 ===
416
417
418 (((
419 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
420 )))
421
422 (((
423 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
424 )))
425
426
427 (((
428 and put as below:
429 )))
430
431 [[image:1656051152438-578.png]]
432
433
434 == 2.5 Show data on Application Server ==
435
436
437 (((
438 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
439 )))
440
441 (((
442 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
443 )))
444
445 (((
446 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
447 )))
448
449 [[image:1656051197172-131.png]]
450
451
452
453 **Add TagoIO:**
454
455 [[image:1656051223585-631.png]]
456
457
458
459 **Authorization:**
460
461 [[image:1656051248318-368.png]]
462
463
464
465 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
466
467
468 [[image:1656051277767-168.png]]
469
470
471 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
472
473
474 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
475
476 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
477 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
478
479 There are two kinds of commands to configure WSC1-L, they are:
480
481 * (% style="color:blue" %)**General Commands**.
482
483 These commands are to configure:
484
485 * General system settings like: uplink interval.
486 * LoRaWAN protocol & radio related command.
487
488 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
489
490 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
491
492
493 * (% style="color:blue" %)**Commands special design for WSC1-L**
494
495 These commands only valid for WSC1-L, as below:
496
497
498 == 3.1 Set Transmit Interval Time ==
499
500
501 Feature: Change LoRaWAN End Node Transmit Interval.
502
503 (% style="color:#037691" %)**AT Command: AT+TDC**
504
505 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
506 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
507 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
508 30000
509 OK
510 the interval is 30000ms = 30s
511 )))
512 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
513 OK
514 Set transmit interval to 60000ms = 60 seconds
515 )))
516
517 (% style="color:#037691" %)**Downlink Command: 0x01**
518
519 Format: Command Code (0x01) followed by 3 bytes time value.
520
521 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
522
523 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
524 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
525
526
527 == 3.2 Set Emergency Mode ==
528
529
530 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
531
532 (% style="color:#037691" %)**AT Command:**
533
534 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
535 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
536 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
537 OK
538
539 )))
540 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
541 OK
542 )))
543
544 (% style="color:#037691" %)**Downlink Command:**
545
546 * 0xE101     Same as: AT+ALARMMOD=1
547 * 0xE100     Same as: AT+ALARMMOD=0
548
549
550 == 3.3 Add or Delete RS485 Sensor ==
551
552
553 (((
554 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
555 )))
556
557 (((
558 (% style="color:#037691" %)**AT Command: **
559 )))
560
561 (((
562 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
563 )))
564
565 * (((
566 Type_Code range:  A1 ~~ A4
567 )))
568 * (((
569 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
570 )))
571 * (((
572 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
573 )))
574 * (((
575 Read_Length:  RS485 response frame length supposed to receive. Max can receive
576 )))
577 * (((
578 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
579 )))
580 * (((
581 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
582 )))
583 * (((
584 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
585 )))
586
587 (((
588 **Example:**
589 )))
590
591 (((
592 User need to change external sensor use the type code as address code.
593 )))
594
595 (((
596 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
597 )))
598
599 [[image:image-20220624143553-10.png]]
600
601
602 The response frame of the sensor is as follows:
603
604 [[image:image-20220624143618-11.png]]
605
606
607 **Then the following parameters should be:**
608
609 * Address_Code range: A1
610 * Query_Length: 8
611 * Query_Command: A103000000019CAA
612 * Read_Length: 8
613 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
614 * has_CRC: 1
615 * timeout: 1500 (Fill in the test according to the actual situation)
616
617 **So the input command is:**
618
619 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
620
621
622 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
623
624 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
625 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
626 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
627
628 **Related commands:**
629
630 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
631
632 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
633
634
635 (% style="color:#037691" %)**Downlink Command:  **
636
637 **delete custom sensor A1:**
638
639 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
640
641 **Remove all custom sensors**
642
643 * 0xE5FF  
644
645
646 == 3.4 RS485 Test Command ==
647
648
649 (% style="color:#037691" %)**AT Command:**
650
651 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
652 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
653 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
654 Send command to 485 sensor. Range : no more than 10 bytes
655 )))|(% style="width:85px" %)OK
656
657 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
658
659 AT+RSWRITE=0103000001840A
660
661
662 (% style="color:#037691" %)**Downlink Command:**
663
664 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
665
666
667 == 3.5 RS485 response timeout ==
668
669
670 Feature: Set or get extended time to receive 485 sensor data.
671
672 (% style="color:#037691" %)**AT Command:**
673
674 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
675 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
676 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
677 Set response timeout to: Range : 0~~10000
678 )))|(% style="width:85px" %)OK
679
680 (% style="color:#037691" %)**Downlink Command:**
681
682 Format: Command Code (0xE0) followed by 3 bytes time value.
683
684 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
685
686 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
687 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
688
689
690 == 3.6 Set Sensor Type ==
691
692
693 (((
694 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
695 )))
696
697 (((
698 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
699
700 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
701 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
702 | |A4|A3|A2|A1| | |
703 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
704 | | |Solar Radiation|PAR|PM10|PM2.5|(((
705 Rain
706 Gauge
707 )))|(((
708 Air
709 Pressure
710 )))
711 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
712 |Humidity|Temperature|CO2|(((
713 Rain/Snow
714 Detect
715 )))|illuminance|(((
716 Wind
717 Direction
718 )))|Wind Speed|BAT
719 )))
720
721
722 (% style="color:#037691" %)**AT Command:**
723
724 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
725 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
726 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
727
728 Eg: The setting command **AT+STYPE=80221** means:
729
730 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
731 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
732 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
733 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
734 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
735 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
736 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
737
738 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
739
740
741 (% style="color:#037691" %)**Downlink Command:**
742
743 * 0xE400080221  Same as: AT+STYPE=80221
744
745 (% style="color:red" %)**Note:**
746
747 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
748
749
750 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
751
752
753 (% style="color:#037691" %)**AT Command:**
754
755 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
756 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
757 |(% style="width:161px" %)(((
758 AT+RAINFALLSWITCH=1(Range: 1~~10)
759 )))|(% style="width:184px" %)(((
760 Set the registers read by the rain gauge
761 )))|(% style="width:85px" %)OK
762
763 (% style="color:#037691" %)**Downlink Command:**
764
765 * 0x1701  Same as: AT+RAINFALLSWITCH=1
766
767 [[image:image-20231030102056-3.png]]
768
769 = 4. Power consumption and battery =
770
771 == 4.1 Total Power Consumption ==
772
773
774 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
775
776
777 == 4.2 Reduce power consumption ==
778
779
780 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
781
782
783 == 4.3 Battery ==
784
785
786 (((
787 All sensors are only power by external power source. If external power source is off. All sensor won't work.
788 )))
789
790 (((
791 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
792 )))
793
794
795 = 5. Main Process Unit WSC1-L =
796
797 == 5.1 Features ==
798
799
800 * Wall Attachable.
801 * LoRaWAN v1.0.3 Class A protocol.
802 * RS485 / Modbus protocol
803 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
804 * AT Commands to change parameters
805 * Remote configure parameters via LoRaWAN Downlink
806 * Firmware upgradable via program port
807 * Powered by external 12v battery
808 * Back up rechargeable 1000mAh battery
809 * IP Rating: IP65
810 * Support default sensors or 3rd party RS485 sensors
811
812
813 == 5.2 Power Consumption ==
814
815
816 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
817
818
819 == 5.3 Storage & Operation Temperature ==
820
821
822 -20°C to +60°C
823
824
825 == 5.4 Pin Mapping ==
826
827
828 [[image:1656054149793-239.png]]
829
830
831 == 5.5 Mechanical ==
832
833
834 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
835
836
837 == 5.6 Connect to RS485 Sensors ==
838
839
840 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
841
842
843 [[image:1656054389031-379.png]]
844
845
846 Hardware Design for the Converter Board please see:
847
848 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
849
850
851 = 6. Weather Sensors =
852
853 == 6.1 Rain Gauge ~-~- WSS-01 ==
854
855
856 (((
857 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
858 )))
859
860 (((
861 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
862 )))
863
864 (((
865 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
866 )))
867
868 (((
869 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
870 )))
871
872 (((
873 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
874 )))
875
876
877 === 6.1.1 Feature ===
878
879
880 * RS485 Rain Gauge
881 * Small dimension, easy to install
882 * Vents under funnel, avoid leaf or other things to avoid rain flow.
883 * ABS enclosure.
884 * Horizontal adjustable.
885
886
887 === 6.1.2 Specification ===
888
889
890 * Resolution: 0.2mm
891 * Accuracy: ±3%
892 * Range: 0 ~~ 100mm
893 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
894 * Input Power: DC 5 ~~ 24v
895 * Interface: RS485
896 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
897 * Working Humidity: <100% (no dewing)
898 * Power Consumption: 4mA @ 12v.
899
900
901 === 6.1.3 Dimension ===
902
903
904 [[image:1656054957406-980.png]]
905
906
907 === 6.1.4 Pin Mapping ===
908
909
910 [[image:1656054972828-692.png]]
911
912
913 === 6.1.5 Installation Notice ===
914
915
916 (((
917 Do not power on while connect the cables. Double check the wiring before power on.
918 )))
919
920 (((
921 Installation Photo as reference:
922 )))
923
924
925 (((
926 (% style="color:#4472c4" %)** Install on Ground:**
927 )))
928
929 (((
930 WSS-01 Rain Gauge include screws so can install in ground directly .
931 )))
932
933
934 (((
935 (% style="color:#4472c4" %)** Install on pole:**
936 )))
937
938 (((
939 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
940 )))
941
942 [[image:image-20220624152218-1.png||height="526" width="276"]]
943
944 WS-K2: Bracket Kit for Pole installation
945
946
947 WSSC-K2 dimension document, please see:
948
949 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
950
951
952 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
953
954
955 [[image:1656055444035-179.png]]
956
957
958 (((
959 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
960 )))
961
962 (((
963 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
964 )))
965
966 (((
967 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
968 )))
969
970
971 === 6.2.1 Feature ===
972
973
974 * RS485 wind speed / direction sensor
975 * PC enclosure, resist corrosion
976
977
978 === 6.2.2 Specification ===
979
980
981 * Wind speed range: 0 ~~ 60m/s
982 * Wind direction range: 0 ~~ 360°
983 * Start wind speed: ≤0.3 m/s
984 * Accuracy: ±(0.3+0.03V) m/s , ±1°
985 * Input Power: DC 5 ~~ 24v
986 * Interface: RS485
987 * Working Temperature: -30℃ ~~ 70℃
988 * Working Humidity: <100% (no dewing)
989 * Power Consumption: 13mA ~~ 12v.
990 * Cable Length: 2 meters
991
992
993 === 6.2.3 Dimension ===
994
995
996 [[image:image-20220624152813-2.png]]
997
998
999 === 6.2.4 Pin Mapping ===
1000
1001
1002 [[image:1656056281231-994.png]]
1003
1004
1005 === 6.2.5  Angle Mapping ===
1006
1007
1008 [[image:1656056303845-585.png]]
1009
1010
1011 === 6.2.6  Installation Notice ===
1012
1013
1014 (((
1015 Do not power on while connect the cables. Double check the wiring before power on.
1016 )))
1017
1018 (((
1019 The sensor must be installed with below direction, towards North.
1020
1021
1022 )))
1023
1024 [[image:image-20220624153901-3.png]]
1025
1026
1027 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1028
1029
1030 (((
1031 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1032 )))
1033
1034 (((
1035 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1036 )))
1037
1038 (((
1039 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1040 )))
1041
1042
1043 === 6.3.1 Feature ===
1044
1045
1046 * RS485 CO2, PM2.5, PM10 sensor
1047 * NDIR to measure CO2 with Internal Temperature Compensation
1048 * Laser Beam Scattering to PM2.5 and PM10
1049
1050
1051 === 6.3.2 Specification ===
1052
1053
1054 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1055 * CO2 resolution: 1ppm
1056 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1057 * PM2.5/PM10 resolution: 1μg/m3
1058 * Input Power: DC 7 ~~ 24v
1059 * Preheat time: 3min
1060 * Interface: RS485
1061 * Working Temperature:
1062 ** CO2: 0℃ ~~ 50℃;
1063 ** PM2.5/PM10: -30 ~~ 50℃
1064 * Working Humidity:
1065 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1066 ** CO2: 0 ~~ 95%RH
1067 * Power Consumption: 50mA@ 12v.
1068
1069
1070 === 6.3.3 Dimension ===
1071
1072
1073 [[image:1656056708366-230.png]]
1074
1075
1076 === 6.3.4 Pin Mapping ===
1077
1078
1079 [[image:1656056722648-743.png]]
1080
1081
1082 === 6.3.5 Installation Notice ===
1083
1084
1085 Do not power on while connect the cables. Double check the wiring before power on.
1086
1087
1088 [[image:1656056751153-304.png]]
1089
1090
1091 [[image:1656056766224-773.png]]
1092
1093
1094 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1095
1096
1097 (((
1098 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1099 )))
1100
1101 (((
1102 WSS-04 has auto heating feature, this ensures measurement more reliable.
1103 )))
1104
1105 (((
1106 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1107 )))
1108
1109
1110 === 6.4.1 Feature ===
1111
1112
1113 * RS485 Rain/Snow detect sensor
1114 * Surface heating to dry
1115 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1116
1117
1118 === 6.4.2 Specification ===
1119
1120
1121 * Detect if there is rain or snow
1122 * Input Power: DC 12 ~~ 24v
1123 * Interface: RS485
1124 * Working Temperature: -30℃ ~~ 70℃
1125 * Working Humidity: 10 ~~ 90%RH
1126 * Power Consumption:
1127 ** No heating: 12mA @ 12v,
1128 ** heating: 94ma @ 12v.
1129
1130
1131 === 6.4.3 Dimension ===
1132
1133
1134 [[image:1656056844782-155.png]]
1135
1136
1137 === 6.4.4 Pin Mapping ===
1138
1139
1140 [[image:1656056855590-754.png]]
1141
1142
1143 === 6.4.5 Installation Notice ===
1144
1145
1146 Do not power on while connect the cables. Double check the wiring before power on.
1147
1148 (((
1149 Install with 15°degree.
1150 )))
1151
1152 [[image:1656056873783-780.png]]
1153
1154
1155 [[image:1656056883736-804.png]]
1156
1157
1158 === 6.4.6 Heating ===
1159
1160
1161 (((
1162 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1163 )))
1164
1165
1166 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1167
1168
1169 (((
1170 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1171 )))
1172
1173 (((
1174 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1175 )))
1176
1177
1178 === 6.5.1 Feature ===
1179
1180
1181 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1182
1183
1184 === 6.5.2 Specification ===
1185
1186
1187 * Input Power: DC 12 ~~ 24v
1188 * Interface: RS485
1189 * Temperature Sensor Spec:
1190 ** Range: -30 ~~ 70℃
1191 ** resolution 0.1℃
1192 ** Accuracy: ±0.5℃
1193 * Humidity Sensor Spec:
1194 ** Range: 0 ~~ 100% RH
1195 ** resolution 0.1 %RH
1196 ** Accuracy: 3% RH
1197 * Pressure Sensor Spec:
1198 ** Range: 10 ~~ 1100hPa
1199 ** Resolution: 0.1hPa
1200 ** Accuracy: ±0.1hPa
1201 * Illuminate sensor:
1202 ** Range: 0~~2/20/200kLux
1203 ** Resolution: 10 Lux
1204 ** Accuracy: ±3%FS
1205 * Working Temperature: -30℃ ~~ 70℃
1206 * Working Humidity: 10 ~~ 90%RH
1207 * Power Consumption: 4mA @ 12v
1208
1209
1210 === 6.5.3 Dimension ===
1211
1212
1213 [[image:1656057170639-522.png]]
1214
1215
1216 === 6.5.4 Pin Mapping ===
1217
1218
1219 [[image:1656057181899-910.png]]
1220
1221
1222 === 6.5.5 Installation Notice ===
1223
1224
1225 Do not power on while connect the cables. Double check the wiring before power on.
1226
1227 [[image:1656057199955-514.png]]
1228
1229
1230 [[image:1656057212438-475.png]]
1231
1232
1233 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1234
1235
1236 (((
1237 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1238 )))
1239
1240 (((
1241 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1242 )))
1243
1244 (((
1245 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1246 )))
1247
1248
1249 === 6.6.1 Feature ===
1250
1251
1252 * RS485 Total Solar Radiation sensor
1253 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1254 * Measure Reflected Radiation if sense area towards ground.
1255
1256
1257 === 6.6.2 Specification ===
1258
1259
1260 * Input Power: DC 5 ~~ 24v
1261 * Interface: RS485
1262 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1263 * Measure strength range: 0 ~~ 2000W/m2
1264 * Resolution: 0.1W/m2
1265 * Accuracy: ±3%
1266 * Yearly Stability: ≤±2%
1267 * Cosine response: ≤7% (@ Sun angle 10°)
1268 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1269 * Working Temperature: -40℃ ~~ 70℃
1270 * Working Humidity: 10 ~~ 90%RH
1271 * Power Consumption: 4mA @ 12v
1272
1273
1274 === 6.6.3 Dimension ===
1275
1276
1277 [[image:1656057348695-898.png]]
1278
1279
1280 === 6.6.4 Pin Mapping ===
1281
1282
1283 [[image:1656057359343-744.png]]
1284
1285
1286 === 6.6.5 Installation Notice ===
1287
1288
1289 Do not power on while connect the cables. Double check the wiring before power on.
1290
1291
1292 [[image:1656057369259-804.png]]
1293
1294
1295 [[image:1656057377943-564.png]]
1296
1297
1298 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1299
1300
1301 (((
1302 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1303 )))
1304
1305 (((
1306 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1307 )))
1308
1309 (((
1310 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1311 )))
1312
1313
1314 === 6.7.1 Feature ===
1315
1316
1317 (((
1318 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1319 )))
1320
1321 (((
1322 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1323 )))
1324
1325
1326 === 6.7.2 Specification ===
1327
1328
1329 * Input Power: DC 5 ~~ 24v
1330 * Interface: RS485
1331 * Response Spectrum: 400~~700nm
1332 * Measure range: 0 ~~ 2500μmol/m2•s
1333 * Resolution: 1μmol/m2•s
1334 * Accuracy: ±2%
1335 * Yearly Stability: ≤ ±2%
1336 * Working Temperature: -30℃ ~~ 75℃
1337 * Working Humidity: 10 ~~ 90%RH
1338 * Power Consumption: 3mA @ 12v
1339
1340
1341 === 6.7.3 Dimension ===
1342
1343
1344 [[image:1656057538793-888.png]]
1345
1346
1347 === 6.7.4 Pin Mapping ===
1348
1349
1350 [[image:1656057548116-203.png]]
1351
1352
1353 === 6.7.5 Installation Notice ===
1354
1355
1356 Do not power on while connect the cables. Double check the wiring before power on.
1357
1358
1359 [[image:1656057557191-895.png]]
1360
1361
1362 [[image:1656057565783-251.png]]
1363
1364
1365 = 7. FAQ =
1366
1367 == 7.1 What else do I need to purchase to build Weather Station? ==
1368
1369
1370 Below is the installation photo and structure:
1371
1372
1373 [[image:1656057598349-319.png]]
1374
1375
1376 [[image:1656057608049-693.png]]
1377
1378
1379 == 7.2 How to upgrade firmware for WSC1-L? ==
1380
1381
1382 (((
1383 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1384 )))
1385
1386 (((
1387 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1388 )))
1389
1390
1391 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1392
1393
1394 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1395
1396
1397 == 7.4 Can I add my weather sensors? ==
1398
1399
1400 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1401
1402
1403 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1404
1405
1406 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1407
1408
1409 = 8. Trouble Shooting =
1410
1411 == 8.1 AT Command input doesn't work ==
1412
1413
1414 (((
1415 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1416 )))
1417
1418
1419 = 9. Order Info =
1420
1421 == 9.1 Main Process Unit ==
1422
1423
1424 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1425
1426 (% style="color:blue" %)**XX**(%%): The default frequency band
1427
1428 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1429 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1430 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1431 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1432 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1433 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1434 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1435 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1436
1437
1438 == 9.2 Sensors ==
1439
1440
1441 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1442 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1443 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1444 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1445 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1446 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1447 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1448 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1449 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1450 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1451
1452
1453 = 10. Support =
1454
1455
1456 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1457
1458 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1459
1460
1461 = 11. Appendix I: Field Installation Photo =
1462
1463
1464 [[image:1656058346362-132.png||height="685" width="732"]]
1465
1466 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1467
1468
1469
1470 (% style="color:blue" %)**Wind Speed/Direction**
1471
1472 [[image:1656058373174-421.png||height="356" width="731"]]
1473
1474
1475
1476 (% style="color:blue" %)**Total Solar Radiation sensor**
1477
1478 [[image:1656058397364-282.png||height="453" width="732"]]
1479
1480
1481
1482 (% style="color:blue" %)**PAR Sensor**
1483
1484 [[image:1656058416171-615.png]]
1485
1486
1487
1488 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1489
1490 [[image:1656058441194-827.png||height="672" width="523"]]
1491
1492
1493
1494 (% style="color:blue" %)**Rain / Snow Detect**
1495
1496 [[image:1656058451456-166.png]]
1497
1498
1499
1500 (% style="color:blue" %)**Rain Gauge**
1501
1502 [[image:1656058463455-569.png||height="499" width="550"]]
1503
1504
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0