Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20230426084533-1.png||height="231" width="497"]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
127
128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (((
152 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
153 )))
154
155
156 [[image:1656042745346-283.png]]
157
158
159 == 2.4 Uplink Payload ==
160
161
162 Uplink payloads include two types: Valid Sensor Value and other status / control command.
163
164 * Valid Sensor Value: Use FPORT=2
165 * Other control command: Use FPORT other than 2.
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171
172 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
173
174
175 (((
176 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
177 )))
178
179 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
180 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
181 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
182
183 [[image:1656043061044-343.png]]
184
185
186 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
195
196 0x0100, Means: v1.0.0 version.
197
198
199 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
200
201 0x01: EU868
202
203 0x02: US915
204
205 0x03: IN865
206
207 0x04: AU915
208
209 0x05: KZ865
210
211 0x06: RU864
212
213 0x07: AS923
214
215 0x08: AS923-1
216
217 0x09: AS923-2
218
219 0x0a: AS923-3
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227 ==== (% style="color:#037691" %)**BAT:**(%%) ====
228
229 (((
230 shows the battery voltage for WSC1-L MCU.
231 )))
232
233 (((
234 Ex1: 0x0BD6/1000 = 3.03 V
235 )))
236
237
238 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
241 |Byte3|Byte2|Byte1
242
243 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
244
245 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
246 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
247 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
248 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
249 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
250 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
251 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
276
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
305 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
306 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
307 Speed: 0 ~~ 60m/s
308 Level: 0 ~~ 17
309 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
310 (((
311 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
312 )))
313
314 (((
315 0x02=2 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 )))
318 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
319 Angel: 0 ~~ 360°
320 Direction: 16 positions
321 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
322 (((
323 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
324 )))
325
326 (((
327 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
328 )))
329 )))
330 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
331 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
332 )))
333 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
334 (((
335 0x00 (00) No Rain or snow detected
336 )))
337
338 (((
339 (0x02: No Sensor,0x03: Value Error)
340 )))
341 )))
342 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
343 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
344 )))
345 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
346 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
347 )))
348 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
349 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
350 )))
351 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
352 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
353 )))
354 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
355 0mm~100mm(Rainfall in the last 24 hours)
356 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 (((
358 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
359 )))
360
361 (((
362 (0x03FE: No Sensor,0x03FF: Value Error)
363 )))
364 )))
365 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
366 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
367 )))
368 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
369 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
370 )))
371 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
372 0~2500μmol/m^^2^^•s
373 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
375 )))
376 |(% style="width:103px" %)(((
377 Total Solar Radiation
378 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
380 )))
381
382 (((
383 Below is an example payload:  [[image:image-20220624140615-3.png]]
384 )))
385
386
387 (((
388 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
389 )))
390
391 * (((
392 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
393 )))
394
395 (((
396 Uplink 1:  [[image:image-20220624140735-4.png]]
397 )))
398
399
400 (((
401 Uplink 2:  [[image:image-20220624140842-5.png]]
402
403 )))
404
405 * (((
406 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
407 )))
408
409 (((
410 Uplink 1:  [[image:image-20220624141025-6.png]]
411 )))
412
413
414 Uplink 2:  [[image:image-20220624141100-7.png]]
415
416
417 === 2.4.3 Decoder in TTN V3 ===
418
419
420 (((
421 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
422 )))
423
424 (((
425 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
426 )))
427
428
429 (((
430 and put as below:
431 )))
432
433 [[image:1656051152438-578.png]]
434
435
436 == 2.5 Show data on Application Server ==
437
438
439 (((
440 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
441 )))
442
443 (((
444 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
445 )))
446
447 (((
448 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
449 )))
450
451 [[image:1656051197172-131.png]]
452
453
454
455 **Add TagoIO:**
456
457 [[image:1656051223585-631.png]]
458
459
460
461 **Authorization:**
462
463 [[image:1656051248318-368.png]]
464
465
466
467 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
468
469
470 [[image:1656051277767-168.png]]
471
472
473 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
474
475
476 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
477
478 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
479 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
480
481 There are two kinds of commands to configure WSC1-L, they are:
482
483 * (% style="color:blue" %)**General Commands**.
484
485 These commands are to configure:
486
487 * General system settings like: uplink interval.
488 * LoRaWAN protocol & radio related command.
489
490 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
491
492 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
493
494
495 * (% style="color:blue" %)**Commands special design for WSC1-L**
496
497 These commands only valid for WSC1-L, as below:
498
499
500 == 3.1 Set Transmit Interval Time ==
501
502
503 Feature: Change LoRaWAN End Node Transmit Interval.
504
505 (% style="color:#037691" %)**AT Command: AT+TDC**
506
507 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
508 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
509 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
510 30000
511 OK
512 the interval is 30000ms = 30s
513 )))
514 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
515 OK
516 Set transmit interval to 60000ms = 60 seconds
517 )))
518
519 (% style="color:#037691" %)**Downlink Command: 0x01**
520
521 Format: Command Code (0x01) followed by 3 bytes time value.
522
523 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
524
525 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
526 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
527
528
529
530 == 3.2 Set Emergency Mode ==
531
532
533 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
534
535 (% style="color:#037691" %)**AT Command:**
536
537 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
538 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
539 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
540 OK
541
542 )))
543 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
544 OK
545 )))
546
547 (% style="color:#037691" %)**Downlink Command:**
548
549 * 0xE101     Same as: AT+ALARMMOD=1
550 * 0xE100     Same as: AT+ALARMMOD=0
551
552
553
554 == 3.3 Add or Delete RS485 Sensor ==
555
556
557 (((
558 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
559 )))
560
561 (((
562 (% style="color:#037691" %)**AT Command: **
563 )))
564
565 (((
566 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
567 )))
568
569 * (((
570 Type_Code range:  A1 ~~ A4
571 )))
572 * (((
573 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
574 )))
575 * (((
576 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
577 )))
578 * (((
579 Read_Length:  RS485 response frame length supposed to receive. Max can receive
580 )))
581 * (((
582 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
583 )))
584 * (((
585 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
586 )))
587 * (((
588 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
589 )))
590
591 (((
592 **Example:**
593 )))
594
595 (((
596 User need to change external sensor use the type code as address code.
597 )))
598
599 (((
600 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
601 )))
602
603 [[image:image-20220624143553-10.png]]
604
605
606 The response frame of the sensor is as follows:
607
608 [[image:image-20220624143618-11.png]]
609
610
611 **Then the following parameters should be:**
612
613 * Address_Code range: A1
614 * Query_Length: 8
615 * Query_Command: A103000000019CAA
616 * Read_Length: 8
617 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
618 * has_CRC: 1
619 * timeout: 1500 (Fill in the test according to the actual situation)
620
621 **So the input command is:**
622
623 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
624
625
626 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
627
628 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
629 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
630 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
631
632 **Related commands:**
633
634 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
635
636 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
637
638
639 (% style="color:#037691" %)**Downlink Command:  **
640
641 **delete custom sensor A1:**
642
643 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
644
645 **Remove all custom sensors**
646
647 * 0xE5FF  
648
649
650
651 == 3.4 RS485 Test Command ==
652
653
654 (% style="color:#037691" %)**AT Command:**
655
656 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
657 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
658 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
659 Send command to 485 sensor. Range : no more than 10 bytes
660 )))|(% style="width:85px" %)OK
661
662 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
663
664 AT+RSWRITE=0103000001840A
665
666
667 (% style="color:#037691" %)**Downlink Command:**
668
669 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
670
671
672
673 == 3.5 RS485 response timeout ==
674
675
676 Feature: Set or get extended time to receive 485 sensor data.
677
678 (% style="color:#037691" %)**AT Command:**
679
680 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
681 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
682 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
683 Set response timeout to: Range : 0~~10000
684 )))|(% style="width:85px" %)OK
685
686 (% style="color:#037691" %)**Downlink Command:**
687
688 Format: Command Code (0xE0) followed by 3 bytes time value.
689
690 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
691
692 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
693 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
694
695
696
697 == 3.6 Set Sensor Type ==
698
699
700 (((
701 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
702 )))
703
704 (((
705 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
706
707 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
708 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
709 | |A4|A3|A2|A1| | |
710 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
711 | | |Solar Radiation|PAR|PM10|PM2.5|(((
712 Rain
713 Gauge
714 )))|(((
715 Air
716 Pressure
717 )))
718 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
719 |Humidity|Temperature|CO2|(((
720 Rain/Snow
721 Detect
722 )))|illuminance|(((
723 Wind
724 Direction
725 )))|Wind Speed|BAT
726 )))
727
728
729 (% style="color:#037691" %)**AT Command:**
730
731 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
732 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
733 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
734
735 Eg: The setting command **AT+STYPE=80221** means:
736
737 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
738 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
739 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
740 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
741 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
742 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
743 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
744
745 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
746
747
748 (% style="color:#037691" %)**Downlink Command:**
749
750 * 0xE400080221  Same as: AT+STYPE=80221
751
752 (% style="color:red" %)**Note:**
753
754 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
755
756
757 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
758
759
760 (% style="color:#037691" %)**AT Command:**
761
762 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
763 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
764 |(% style="width:161px" %)(((
765 AT+RAINFALLSWITCH=1(Range: 1~~10)
766 )))|(% style="width:184px" %)(((
767 Set the registers read by the rain gauge
768 )))|(% style="width:85px" %)OK
769
770 (% style="color:#037691" %)**Downlink Command:**
771
772 * 0x1701  Same as: AT+RAINFALLSWITCH=1
773
774
775
776 = 4. Power consumption and battery =
777
778 == 4.1 Total Power Consumption ==
779
780
781 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
782
783
784 == 4.2 Reduce power consumption ==
785
786
787 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
788
789
790 == 4.3 Battery ==
791
792
793 (((
794 All sensors are only power by external power source. If external power source is off. All sensor won't work.
795 )))
796
797 (((
798 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
799 )))
800
801
802 = 5. Main Process Unit WSC1-L =
803
804 == 5.1 Features ==
805
806
807 * Wall Attachable.
808 * LoRaWAN v1.0.3 Class A protocol.
809 * RS485 / Modbus protocol
810 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
811 * AT Commands to change parameters
812 * Remote configure parameters via LoRaWAN Downlink
813 * Firmware upgradable via program port
814 * Powered by external 12v battery
815 * Back up rechargeable 1000mAh battery
816 * IP Rating: IP65
817 * Support default sensors or 3rd party RS485 sensors
818
819
820
821 == 5.2 Power Consumption ==
822
823
824 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
825
826
827 == 5.3 Storage & Operation Temperature ==
828
829
830 -20°C to +60°C
831
832
833 == 5.4 Pin Mapping ==
834
835
836 [[image:1656054149793-239.png]]
837
838
839 == 5.5 Mechanical ==
840
841
842 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
843
844
845 == 5.6 Connect to RS485 Sensors ==
846
847
848 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
849
850
851 [[image:1656054389031-379.png]]
852
853
854 Hardware Design for the Converter Board please see:
855
856 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
857
858
859 = 6. Weather Sensors =
860
861 == 6.1 Rain Gauge ~-~- WSS-01 ==
862
863
864 (((
865 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
866 )))
867
868 (((
869 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
870 )))
871
872 (((
873 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
874 )))
875
876 (((
877 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
878 )))
879
880 (((
881 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
882 )))
883
884
885 === 6.1.1 Feature ===
886
887
888 * RS485 Rain Gauge
889 * Small dimension, easy to install
890 * Vents under funnel, avoid leaf or other things to avoid rain flow.
891 * ABS enclosure.
892 * Horizontal adjustable.
893
894
895
896 === 6.1.2 Specification ===
897
898
899 * Resolution: 0.2mm
900 * Accuracy: ±3%
901 * Range: 0 ~~ 100mm
902 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
903 * Input Power: DC 5 ~~ 24v
904 * Interface: RS485
905 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
906 * Working Humidity: <100% (no dewing)
907 * Power Consumption: 4mA @ 12v.
908
909
910
911 === 6.1.3 Dimension ===
912
913
914 [[image:1656054957406-980.png]]
915
916
917 === 6.1.4 Pin Mapping ===
918
919
920 [[image:1656054972828-692.png]]
921
922
923 === 6.1.5 Installation Notice ===
924
925
926 (((
927 Do not power on while connect the cables. Double check the wiring before power on.
928 )))
929
930 (((
931 Installation Photo as reference:
932 )))
933
934
935 (((
936 (% style="color:#4472c4" %)** Install on Ground:**
937 )))
938
939 (((
940 WSS-01 Rain Gauge include screws so can install in ground directly .
941 )))
942
943
944 (((
945 (% style="color:#4472c4" %)** Install on pole:**
946 )))
947
948 (((
949 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
950 )))
951
952 [[image:image-20220624152218-1.png||height="526" width="276"]]
953
954 WS-K2: Bracket Kit for Pole installation
955
956
957 WSSC-K2 dimension document, please see:
958
959 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
960
961
962 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
963
964
965 [[image:1656055444035-179.png]]
966
967
968 (((
969 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
970 )))
971
972 (((
973 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
974 )))
975
976 (((
977 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
978 )))
979
980
981 === 6.2.1 Feature ===
982
983
984 * RS485 wind speed / direction sensor
985 * PC enclosure, resist corrosion
986
987
988
989 === 6.2.2 Specification ===
990
991
992 * Wind speed range: 0 ~~ 60m/s
993 * Wind direction range: 0 ~~ 360°
994 * Start wind speed: ≤0.3 m/s
995 * Accuracy: ±(0.3+0.03V) m/s , ±1°
996 * Input Power: DC 5 ~~ 24v
997 * Interface: RS485
998 * Working Temperature: -30℃ ~~ 70℃
999 * Working Humidity: <100% (no dewing)
1000 * Power Consumption: 13mA ~~ 12v.
1001 * Cable Length: 2 meters
1002
1003
1004
1005 === 6.2.3 Dimension ===
1006
1007
1008 [[image:image-20220624152813-2.png]]
1009
1010
1011 === 6.2.4 Pin Mapping ===
1012
1013
1014 [[image:1656056281231-994.png]]
1015
1016
1017 === 6.2.5  Angle Mapping ===
1018
1019
1020 [[image:1656056303845-585.png]]
1021
1022
1023 === 6.2.6  Installation Notice ===
1024
1025
1026 (((
1027 Do not power on while connect the cables. Double check the wiring before power on.
1028 )))
1029
1030 (((
1031 The sensor must be installed with below direction, towards North.
1032
1033
1034 )))
1035
1036 [[image:image-20220624153901-3.png]]
1037
1038
1039 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1040
1041
1042 (((
1043 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1044 )))
1045
1046 (((
1047 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1048 )))
1049
1050 (((
1051 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1052 )))
1053
1054
1055 === 6.3.1 Feature ===
1056
1057
1058 * RS485 CO2, PM2.5, PM10 sensor
1059 * NDIR to measure CO2 with Internal Temperature Compensation
1060 * Laser Beam Scattering to PM2.5 and PM10
1061
1062
1063
1064 === 6.3.2 Specification ===
1065
1066
1067 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1068 * CO2 resolution: 1ppm
1069 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1070 * PM2.5/PM10 resolution: 1μg/m3
1071 * Input Power: DC 7 ~~ 24v
1072 * Preheat time: 3min
1073 * Interface: RS485
1074 * Working Temperature:
1075 ** CO2: 0℃ ~~ 50℃;
1076 ** PM2.5/PM10: -30 ~~ 50℃
1077 * Working Humidity:
1078 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1079 ** CO2: 0 ~~ 95%RH
1080 * Power Consumption: 50mA@ 12v.
1081
1082
1083
1084 === 6.3.3 Dimension ===
1085
1086
1087 [[image:1656056708366-230.png]]
1088
1089
1090 === 6.3.4 Pin Mapping ===
1091
1092
1093 [[image:1656056722648-743.png]]
1094
1095
1096 === 6.3.5 Installation Notice ===
1097
1098
1099 Do not power on while connect the cables. Double check the wiring before power on.
1100
1101
1102 [[image:1656056751153-304.png]]
1103
1104
1105 [[image:1656056766224-773.png]]
1106
1107
1108 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1109
1110
1111 (((
1112 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1113 )))
1114
1115 (((
1116 WSS-04 has auto heating feature, this ensures measurement more reliable.
1117 )))
1118
1119 (((
1120 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1121 )))
1122
1123
1124 === 6.4.1 Feature ===
1125
1126
1127 * RS485 Rain/Snow detect sensor
1128 * Surface heating to dry
1129 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1130
1131
1132
1133 === 6.4.2 Specification ===
1134
1135
1136 * Detect if there is rain or snow
1137 * Input Power: DC 12 ~~ 24v
1138 * Interface: RS485
1139 * Working Temperature: -30℃ ~~ 70℃
1140 * Working Humidity: 10 ~~ 90%RH
1141 * Power Consumption:
1142 ** No heating: 12mA @ 12v,
1143 ** heating: 94ma @ 12v.
1144
1145
1146
1147 === 6.4.3 Dimension ===
1148
1149
1150 [[image:1656056844782-155.png]]
1151
1152
1153 === 6.4.4 Pin Mapping ===
1154
1155
1156 [[image:1656056855590-754.png]]
1157
1158
1159 === 6.4.5 Installation Notice ===
1160
1161
1162 Do not power on while connect the cables. Double check the wiring before power on.
1163
1164 (((
1165 Install with 15°degree.
1166 )))
1167
1168 [[image:1656056873783-780.png]]
1169
1170
1171 [[image:1656056883736-804.png]]
1172
1173
1174 === 6.4.6 Heating ===
1175
1176
1177 (((
1178 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1179 )))
1180
1181
1182 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1183
1184
1185 (((
1186 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1187 )))
1188
1189 (((
1190 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1191 )))
1192
1193
1194 === 6.5.1 Feature ===
1195
1196
1197 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1198
1199
1200
1201 === 6.5.2 Specification ===
1202
1203
1204 * Input Power: DC 12 ~~ 24v
1205 * Interface: RS485
1206 * Temperature Sensor Spec:
1207 ** Range: -30 ~~ 70℃
1208 ** resolution 0.1℃
1209 ** Accuracy: ±0.5℃
1210 * Humidity Sensor Spec:
1211 ** Range: 0 ~~ 100% RH
1212 ** resolution 0.1 %RH
1213 ** Accuracy: 3% RH
1214 * Pressure Sensor Spec:
1215 ** Range: 10 ~~ 1100hPa
1216 ** Resolution: 0.1hPa
1217 ** Accuracy: ±0.1hPa
1218 * Illuminate sensor:
1219 ** Range: 0~~2/20/200kLux
1220 ** Resolution: 10 Lux
1221 ** Accuracy: ±3%FS
1222 * Working Temperature: -30℃ ~~ 70℃
1223 * Working Humidity: 10 ~~ 90%RH
1224 * Power Consumption: 4mA @ 12v
1225
1226
1227
1228 === 6.5.3 Dimension ===
1229
1230
1231 [[image:1656057170639-522.png]]
1232
1233
1234 === 6.5.4 Pin Mapping ===
1235
1236
1237 [[image:1656057181899-910.png]]
1238
1239
1240 === 6.5.5 Installation Notice ===
1241
1242
1243 Do not power on while connect the cables. Double check the wiring before power on.
1244
1245 [[image:1656057199955-514.png]]
1246
1247
1248 [[image:1656057212438-475.png]]
1249
1250
1251 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1252
1253
1254 (((
1255 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1256 )))
1257
1258 (((
1259 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1260 )))
1261
1262 (((
1263 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1264 )))
1265
1266
1267 === 6.6.1 Feature ===
1268
1269
1270 * RS485 Total Solar Radiation sensor
1271 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1272 * Measure Reflected Radiation if sense area towards ground.
1273
1274
1275
1276 === 6.6.2 Specification ===
1277
1278
1279 * Input Power: DC 5 ~~ 24v
1280 * Interface: RS485
1281 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1282 * Measure strength range: 0 ~~ 2000W/m2
1283 * Resolution: 0.1W/m2
1284 * Accuracy: ±3%
1285 * Yearly Stability: ≤±2%
1286 * Cosine response: ≤7% (@ Sun angle 10°)
1287 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1288 * Working Temperature: -40℃ ~~ 70℃
1289 * Working Humidity: 10 ~~ 90%RH
1290 * Power Consumption: 4mA @ 12v
1291
1292
1293
1294 === 6.6.3 Dimension ===
1295
1296
1297 [[image:1656057348695-898.png]]
1298
1299
1300 === 6.6.4 Pin Mapping ===
1301
1302
1303 [[image:1656057359343-744.png]]
1304
1305
1306 === 6.6.5 Installation Notice ===
1307
1308
1309 Do not power on while connect the cables. Double check the wiring before power on.
1310
1311
1312 [[image:1656057369259-804.png]]
1313
1314
1315 [[image:1656057377943-564.png]]
1316
1317
1318 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1319
1320
1321 (((
1322 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1323 )))
1324
1325 (((
1326 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1327 )))
1328
1329 (((
1330 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1331 )))
1332
1333
1334 === 6.7.1 Feature ===
1335
1336
1337 (((
1338 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1339 )))
1340
1341 (((
1342 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1343 )))
1344
1345
1346 === 6.7.2 Specification ===
1347
1348
1349 * Input Power: DC 5 ~~ 24v
1350 * Interface: RS485
1351 * Response Spectrum: 400~~700nm
1352 * Measure range: 0 ~~ 2500μmol/m2•s
1353 * Resolution: 1μmol/m2•s
1354 * Accuracy: ±2%
1355 * Yearly Stability: ≤ ±2%
1356 * Working Temperature: -30℃ ~~ 75℃
1357 * Working Humidity: 10 ~~ 90%RH
1358 * Power Consumption: 3mA @ 12v
1359
1360
1361
1362 === 6.7.3 Dimension ===
1363
1364
1365 [[image:1656057538793-888.png]]
1366
1367
1368 === 6.7.4 Pin Mapping ===
1369
1370
1371 [[image:1656057548116-203.png]]
1372
1373
1374 === 6.7.5 Installation Notice ===
1375
1376
1377 Do not power on while connect the cables. Double check the wiring before power on.
1378
1379
1380 [[image:1656057557191-895.png]]
1381
1382
1383 [[image:1656057565783-251.png]]
1384
1385
1386 = 7. FAQ =
1387
1388 == 7.1 What else do I need to purchase to build Weather Station? ==
1389
1390
1391 Below is the installation photo and structure:
1392
1393
1394 [[image:1656057598349-319.png]]
1395
1396
1397 [[image:1656057608049-693.png]]
1398
1399
1400 == 7.2 How to upgrade firmware for WSC1-L? ==
1401
1402
1403 (((
1404 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1405 )))
1406
1407 (((
1408 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1409 )))
1410
1411
1412 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1413
1414
1415 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1416
1417
1418 == 7.4 Can I add my weather sensors? ==
1419
1420
1421 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1422
1423
1424 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1425
1426
1427 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1428
1429
1430 = 8. Trouble Shooting =
1431
1432 == 8.1 AT Command input doesn't work ==
1433
1434
1435 (((
1436 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1437 )))
1438
1439
1440 = 9. Order Info =
1441
1442 == 9.1 Main Process Unit ==
1443
1444
1445 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1446
1447 (% style="color:blue" %)**XX**(%%): The default frequency band
1448
1449 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1450 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1451 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1452 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1453 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1454 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1455 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1456 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1457
1458
1459
1460 == 9.2 Sensors ==
1461
1462
1463 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1464 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1465 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1466 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1467 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1468 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1469 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1470 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1471 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1472 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1473
1474
1475
1476 = 10. Support =
1477
1478
1479 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1480
1481 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1482
1483
1484
1485 = 11. Appendix I: Field Installation Photo =
1486
1487
1488 [[image:1656058346362-132.png||height="685" width="732"]]
1489
1490 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1491
1492
1493
1494 (% style="color:blue" %)**Wind Speed/Direction**
1495
1496 [[image:1656058373174-421.png||height="356" width="731"]]
1497
1498
1499
1500 (% style="color:blue" %)**Total Solar Radiation sensor**
1501
1502 [[image:1656058397364-282.png||height="453" width="732"]]
1503
1504
1505
1506 (% style="color:blue" %)**PAR Sensor**
1507
1508 [[image:1656058416171-615.png]]
1509
1510
1511
1512 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1513
1514 [[image:1656058441194-827.png||height="672" width="523"]]
1515
1516
1517
1518 (% style="color:blue" %)**Rain / Snow Detect**
1519
1520 [[image:1656058451456-166.png]]
1521
1522
1523
1524 (% style="color:blue" %)**Rain Gauge**
1525
1526 [[image:1656058463455-569.png||height="499" width="550"]]
1527
1528
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0