Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20230426084533-1.png||height="231" width="497"]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129
130 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
131
132 **Add APP EUI in the application.**
133
134 [[image:1656042662694-311.png]]
135
136 [[image:1656042673910-429.png]]
137
138
139
140
141 **Choose Manually to add WSC1-L**
142
143 [[image:1656042695755-103.png]]
144
145
146
147 **Add APP KEY and DEV EUI**
148
149 [[image:1656042723199-746.png]]
150
151
152
153 (((
154 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
155 )))
156
157
158 [[image:1656042745346-283.png]]
159
160 == 2.4 Uplink Payload ==
161
162
163 Uplink payloads include two types: Valid Sensor Value and other status / control command.
164
165 * Valid Sensor Value: Use FPORT=2
166 * Other control command: Use FPORT other than 2.
167
168
169
170 === 2.4.1 Uplink FPORT~=5, Device Status ===
171
172
173 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
174
175
176 (((
177 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
178 )))
179
180 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
181 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
182 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
183
184 [[image:1656043061044-343.png]]
185
186
187 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
188
189
190 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
191
192 For WSC1-L, this value is 0x0D.
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
201
202 *0x01: EU868
203
204 *0x02: US915
205
206 *0x03: IN865
207
208 *0x04: AU915
209
210 *0x05: KZ865
211
212 *0x06: RU864
213
214 *0x07: AS923
215
216 *0x08: AS923-1
217
218 *0x09: AS923-2
219
220 *0x0a: AS923-3
221
222
223 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
224
225 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 (((
231 shows the battery voltage for WSC1-L MCU.
232 )))
233
234 (((
235 Ex1: 0x0BD6/1000 = 3.03 V
236 )))
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
242 |Byte3|Byte2|Byte1
243
244 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
245
246 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
247 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
248 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
249 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
250 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
251 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
252 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
253
254 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
255
256 External sensors detected by WSC1-L include :
257
258 custom sensor A1,
259
260 PAR sensor (WSS-07),
261
262 Total Solar Radiation sensor (WSS-06),
263
264 CO2/PM2.5/PM10 (WSS-03),
265
266 Wind Speed/Direction (WSS-02)
267
268
269 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
270
271 (% style="color:#037691" %)**Downlink:0x26 01**
272
273 [[image:1656049673488-415.png]]
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278
279 (((
280 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
281 )))
282
283 (((
284 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
285 )))
286
287
288 (((
289 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
290 )))
291
292
293 (% style="color:#4472c4" %)** Uplink Payload**:
294
295 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
296 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
297
298
299 (% style="color:#4472c4" %)** Sensor Segment Define**:
300
301 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
302 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
303
304
305 (% style="color:#4472c4" %)**Sensor Type Table:**
306
307 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
308 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**Example**
309 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
310 (((
311 Speed: 0~60m/s
312 )))
313
314 (((
315 Level: 0~17
316 )))
317 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
318 (((
319 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
320 )))
321
322 (((
323 0x02=2 (0x14: No Sensor, 0x15: Value Error)
324 )))
325 )))
326 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
327 (((
328 Angel: 0~360°
329 )))
330
331 (((
332 Direction: 16 positions
333 )))
334 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
335 (((
336 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
337 )))
338
339 (((
340 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
341 )))
342 )))
343 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
344 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
345 )))
346 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
347 (((
348 0x00 (00) No Rain or snow detected
349 )))
350
351 (((
352 (0x02: No Sensor,0x03: Value Error)
353 )))
354 )))
355 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
356 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
357 )))
358 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
359 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
360 )))
361 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
363 )))
364 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
365 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
366 )))
367 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
368 0mm~100mm(Rainfall in the last 24 hours)
369 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
370 (((
371 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
372 )))
373
374 (((
375 (0x03FE: No Sensor,0x03FF: Value Error)
376 )))
377 )))
378 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
380 )))
381 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
382 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
383 )))
384 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
385 0~2500μmol/m^^2^^•s
386 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
387 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
388 )))
389 |(% style="width:103px" %)(((
390 Total Solar
391
392 Radiation
393 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
394 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
395 )))
396
397 (((
398 Below is an example payload:  [[image:image-20220624140615-3.png]]
399 )))
400
401 (((
402
403 )))
404
405 (((
406 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
407 )))
408
409 * (((
410 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
411 )))
412
413 (((
414 Uplink 1:  [[image:image-20220624140735-4.png]]
415 )))
416
417
418 (((
419 Uplink 2:  [[image:image-20220624140842-5.png]]
420
421 )))
422
423 * (((
424 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
425 )))
426
427 (((
428 Uplink 1:  [[image:image-20220624141025-6.png]]
429 )))
430
431
432 Uplink 2:  [[image:image-20220624141100-7.png]]
433
434
435 === 2.4.3 Decoder in TTN V3 ===
436
437
438 (((
439 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
440 )))
441
442 (((
443 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
444 )))
445
446
447 (((
448 and put as below:
449 )))
450
451 [[image:1656051152438-578.png]]
452
453
454 == 2.5 Show data on Application Server ==
455
456
457 (((
458 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
459 )))
460
461 (((
462 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
463 )))
464
465 (((
466 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
467 )))
468
469 [[image:1656051197172-131.png]]
470
471
472
473 **Add TagoIO:**
474
475 [[image:1656051223585-631.png]]
476
477
478
479 **Authorization:**
480
481 [[image:1656051248318-368.png]]
482
483
484
485 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
486
487
488 [[image:1656051277767-168.png]]
489
490
491 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
492
493
494 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
495
496 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
497 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
498
499 There are two kinds of commands to configure WSC1-L, they are:
500
501 * (% style="color:#4472c4" %)**General Commands**.
502
503 These commands are to configure:
504
505 * General system settings like: uplink interval.
506 * LoRaWAN protocol & radio related command.
507
508 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
509
510 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
511
512
513 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
514
515 These commands only valid for WSC1-L, as below:
516
517
518 == 3.1 Set Transmit Interval Time ==
519
520
521 Feature: Change LoRaWAN End Node Transmit Interval.
522
523 (% style="color:#037691" %)**AT Command: AT+TDC**
524
525 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
526 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
527 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
528 30000
529 OK
530 the interval is 30000ms = 30s
531 )))
532 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
533 OK
534 Set transmit interval to 60000ms = 60 seconds
535 )))
536
537 (% style="color:#037691" %)**Downlink Command: 0x01**
538
539 Format: Command Code (0x01) followed by 3 bytes time value.
540
541 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
542
543 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
544 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
545
546
547
548 == 3.2 Set Emergency Mode ==
549
550
551 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
552
553 (% style="color:#037691" %)**AT Command:**
554
555 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:465.818px" %)
556 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:224px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:84px" %)**Response**
557 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
558 OK
559
560 )))
561 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
562 OK
563 )))
564
565 (% style="color:#037691" %)**Downlink Command:**
566
567 * 0xE101     Same as: AT+ALARMMOD=1
568 * 0xE100     Same as: AT+ALARMMOD=0
569
570
571
572 == 3.3 Add or Delete RS485 Sensor ==
573
574
575 (((
576 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
577 )))
578
579 (((
580 (% style="color:#037691" %)**AT Command: **
581 )))
582
583 (((
584 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
585 )))
586
587 * (((
588 Type_Code range:  A1 ~~ A4
589 )))
590 * (((
591 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
592 )))
593 * (((
594 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
595 )))
596 * (((
597 Read_Length:  RS485 response frame length supposed to receive. Max can receive
598 )))
599 * (((
600 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
601 )))
602 * (((
603 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
604 )))
605 * (((
606 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
607 )))
608
609 (((
610 **Example:**
611 )))
612
613 (((
614 User need to change external sensor use the type code as address code.
615 )))
616
617 (((
618 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
619 )))
620
621 [[image:image-20220624143553-10.png]]
622
623
624 The response frame of the sensor is as follows:
625
626 [[image:image-20220624143618-11.png]]
627
628
629 **Then the following parameters should be:**
630
631 * Address_Code range: A1
632 * Query_Length: 8
633 * Query_Command: A103000000019CAA
634 * Read_Length: 8
635 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
636 * has_CRC: 1
637 * timeout: 1500 (Fill in the test according to the actual situation)
638
639 **So the input command is:**
640
641 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
642
643
644 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
645
646 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
647 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
648 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
649
650 **Related commands:**
651
652 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
653
654 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
655
656
657 (% style="color:#037691" %)**Downlink Command:  **
658
659 **delete custom sensor A1:**
660
661 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
662
663 **Remove all custom sensors**
664
665 * 0xE5FF  
666
667
668
669 == 3.4 RS485 Test Command ==
670
671
672 (% style="color:#037691" %)**AT Command:**
673
674 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:474px" %)
675 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 228px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
676 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
677 (((
678 Send command to 485 sensor
679 )))
680
681 (((
682 Range : no more than 10 bytes
683 )))
684 )))|(% style="width:85px" %)OK
685
686 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
687
688 AT+RSWRITE=0103000001840A
689
690
691 (% style="color:#037691" %)**Downlink Command:**
692
693 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
694
695
696
697 == 3.5 RS485 response timeout ==
698
699
700 Feature: Set or get extended time to receive 485 sensor data.
701
702 (% style="color:#037691" %)**AT Command:**
703
704 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
705 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
706 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
707 (((
708 (((
709 Set response timeout to:
710 )))
711 )))
712
713 (((
714 (((
715 Range : 0~~10000
716 )))
717 )))
718 )))|(% style="width:85px" %)OK
719
720 (% style="color:#037691" %)**Downlink Command:**
721
722 Format: Command Code (0xE0) followed by 3 bytes time value.
723
724 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
725
726 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
727 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
728
729
730
731 == 3.6 Set Sensor Type ==
732
733
734 (((
735 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
736 )))
737
738 (((
739 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
740
741 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
742 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
743 | |A4|A3|A2|A1| | |
744 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
745 | | |Solar Radiation|PAR|PM10|PM2.5|(((
746 Rain
747 Gauge
748 )))|(((
749 Air
750 Pressure
751 )))
752 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
753 |Humidity|Temperature|CO2|(((
754 Rain/Snow
755 Detect
756 )))|illuminance|(((
757 Wind
758 Direction
759 )))|Wind Speed|BAT
760 )))
761
762
763 (% style="color:#037691" %)**AT Command:**
764
765 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
766 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
767 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
768
769
770 Eg: The setting command **AT+STYPE=80221** means:
771
772 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
773 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
774 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
775 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
776 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
777 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
778 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
779
780 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
781
782
783 (% style="color:#037691" %)**Downlink Command:**
784
785 * 0xE400080221  Same as: AT+STYPE=80221
786
787 (% style="color:red" %)**Note:**
788
789 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
790
791
792 = 4. Power consumption and battery =
793
794 == 4.1 Total Power Consumption ==
795
796
797 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
798
799
800 == 4.2 Reduce power consumption ==
801
802
803 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
804
805
806 == 4.3 Battery ==
807
808
809 (((
810 All sensors are only power by external power source. If external power source is off. All sensor won't work.
811 )))
812
813 (((
814 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
815 )))
816
817
818 = 5. Main Process Unit WSC1-L =
819
820 == 5.1 Features ==
821
822
823 * Wall Attachable.
824 * LoRaWAN v1.0.3 Class A protocol.
825 * RS485 / Modbus protocol
826 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
827 * AT Commands to change parameters
828 * Remote configure parameters via LoRaWAN Downlink
829 * Firmware upgradable via program port
830 * Powered by external 12v battery
831 * Back up rechargeable 1000mAh battery
832 * IP Rating: IP65
833 * Support default sensors or 3rd party RS485 sensors
834
835
836
837 == 5.2 Power Consumption ==
838
839
840 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
841
842
843 == 5.3 Storage & Operation Temperature ==
844
845
846 -20°C to +60°C
847
848
849 == 5.4 Pin Mapping ==
850
851
852 [[image:1656054149793-239.png]]
853
854
855 == 5.5 Mechanical ==
856
857
858 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
859
860
861 == 5.6 Connect to RS485 Sensors ==
862
863
864 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
865
866
867 [[image:1656054389031-379.png]]
868
869
870 Hardware Design for the Converter Board please see:
871
872 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
873
874
875 = 6. Weather Sensors =
876
877 == 6.1 Rain Gauge ~-~- WSS-01 ==
878
879
880 (((
881 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
882 )))
883
884 (((
885 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
886 )))
887
888 (((
889 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
890 )))
891
892 (((
893 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
894 )))
895
896 (((
897 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
898 )))
899
900
901 === 6.1.1 Feature ===
902
903
904 * RS485 Rain Gauge
905 * Small dimension, easy to install
906 * Vents under funnel, avoid leaf or other things to avoid rain flow.
907 * ABS enclosure.
908 * Horizontal adjustable.
909
910
911
912 === 6.1.2 Specification ===
913
914
915 * Resolution: 0.2mm
916 * Accuracy: ±3%
917 * Range: 0 ~~ 100mm
918 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
919 * Input Power: DC 5~~24v
920 * Interface: RS485
921 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
922 * Working Humidity: <100% (no dewing)
923 * Power Consumption: 4mA @ 12v.
924
925
926
927 === 6.1.3 Dimension ===
928
929
930 [[image:1656054957406-980.png]]
931
932
933 === 6.1.4 Pin Mapping ===
934
935
936 [[image:1656054972828-692.png]]
937
938
939 === 6.1.5 Installation Notice ===
940
941
942 (((
943 Do not power on while connect the cables. Double check the wiring before power on.
944 )))
945
946 (((
947 Installation Photo as reference:
948 )))
949
950
951 (((
952 (% style="color:#4472c4" %)** Install on Ground:**
953 )))
954
955 (((
956 WSS-01 Rain Gauge include screws so can install in ground directly .
957 )))
958
959
960 (((
961 (% style="color:#4472c4" %)** Install on pole:**
962 )))
963
964 (((
965 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
966 )))
967
968 [[image:image-20220624152218-1.png||height="526" width="276"]]
969
970 WS-K2: Bracket Kit for Pole installation
971
972
973 WSSC-K2 dimension document, please see:
974
975 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
976
977
978 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
979
980
981 [[image:1656055444035-179.png]]
982
983
984 (((
985 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
986 )))
987
988 (((
989 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
990 )))
991
992 (((
993 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
994 )))
995
996
997 === 6.2.1 Feature ===
998
999
1000 * RS485 wind speed / direction sensor
1001 * PC enclosure, resist corrosion
1002
1003
1004
1005 === 6.2.2 Specification ===
1006
1007
1008 * Wind speed range: 0 ~~ 60m/s
1009 * Wind direction range: 0 ~~ 360°
1010 * Start wind speed: ≤0.3m/s
1011 * Accuracy: ±(0.3+0.03V)m/s , ±1°
1012 * Input Power: DC 5~~24v
1013 * Interface: RS485
1014 * Working Temperature: -30℃~70℃
1015 * Working Humidity: <100% (no dewing)
1016 * Power Consumption: 13mA ~~ 12v.
1017 * Cable Length: 2 meters
1018
1019
1020
1021 === 6.2.3 Dimension ===
1022
1023
1024 [[image:image-20220624152813-2.png]]
1025
1026
1027 === 6.2.4 Pin Mapping ===
1028
1029
1030 [[image:1656056281231-994.png]]
1031
1032
1033 === 6.2.5  Angle Mapping ===
1034
1035
1036 [[image:1656056303845-585.png]]
1037
1038
1039 === 6.2.6  Installation Notice ===
1040
1041
1042 (((
1043 Do not power on while connect the cables. Double check the wiring before power on.
1044 )))
1045
1046 (((
1047 The sensor must be installed with below direction, towards North.
1048
1049
1050 )))
1051
1052 [[image:image-20220624153901-3.png]]
1053
1054
1055 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1056
1057
1058 (((
1059 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1060 )))
1061
1062 (((
1063 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1064 )))
1065
1066 (((
1067 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1068 )))
1069
1070
1071 === 6.3.1 Feature ===
1072
1073
1074 * RS485 CO2, PM2.5, PM10 sensor
1075 * NDIR to measure CO2 with Internal Temperature Compensation
1076 * Laser Beam Scattering to PM2.5 and PM10
1077
1078
1079
1080 === 6.3.2 Specification ===
1081
1082
1083 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1084 * CO2 resolution: 1ppm
1085 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1086 * PM2.5/PM10 resolution: 1μg/m3
1087 * Input Power: DC 7 ~~ 24v
1088 * Preheat time: 3min
1089 * Interface: RS485
1090 * Working Temperature:
1091 ** CO2: 0℃~50℃;
1092 ** PM2.5/PM10: -30 ~~ 50℃
1093 * Working Humidity:
1094 ** PM2.5/PM10: 15~80%RH (no dewing)
1095 ** CO2: 0~95%RH
1096 * Power Consumption: 50mA@ 12v.
1097
1098
1099
1100 === 6.3.3 Dimension ===
1101
1102
1103 [[image:1656056708366-230.png]]
1104
1105
1106 === 6.3.4 Pin Mapping ===
1107
1108
1109 [[image:1656056722648-743.png]]
1110
1111
1112 === 6.3.5 Installation Notice ===
1113
1114
1115 Do not power on while connect the cables. Double check the wiring before power on.
1116
1117
1118 [[image:1656056751153-304.png]]
1119
1120
1121 [[image:1656056766224-773.png]]
1122
1123
1124 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1125
1126
1127 (((
1128 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1129 )))
1130
1131 (((
1132 WSS-04 has auto heating feature, this ensures measurement more reliable.
1133 )))
1134
1135 (((
1136 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1137 )))
1138
1139
1140 === 6.4.1 Feature ===
1141
1142
1143 * RS485 Rain/Snow detect sensor
1144 * Surface heating to dry
1145 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1146
1147
1148
1149 === 6.4.2 Specification ===
1150
1151
1152 * Detect if there is rain or snow
1153 * Input Power: DC 12 ~~ 24v
1154 * Interface: RS485
1155 * Working Temperature: -30℃~70℃
1156 * Working Humidity: 10~90%RH
1157 * Power Consumption:
1158 ** No heating: 12mA @ 12v,
1159 ** heating: 94ma @ 12v.
1160
1161
1162
1163 === 6.4.3 Dimension ===
1164
1165
1166 [[image:1656056844782-155.png]]
1167
1168
1169 === 6.4.4 Pin Mapping ===
1170
1171
1172 [[image:1656056855590-754.png]]
1173
1174
1175 === 6.4.5 Installation Notice ===
1176
1177
1178 Do not power on while connect the cables. Double check the wiring before power on.
1179
1180 (((
1181 Install with 15°degree.
1182 )))
1183
1184 [[image:1656056873783-780.png]]
1185
1186
1187 [[image:1656056883736-804.png]]
1188
1189
1190 === 6.4.6 Heating ===
1191
1192
1193 (((
1194 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1195 )))
1196
1197
1198 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1199
1200
1201 (((
1202 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1203 )))
1204
1205 (((
1206 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1207 )))
1208
1209
1210 === 6.5.1 Feature ===
1211
1212
1213 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1214
1215
1216
1217 === 6.5.2 Specification ===
1218
1219
1220 * Input Power: DC 12 ~~ 24v
1221 * Interface: RS485
1222 * Temperature Sensor Spec:
1223 ** Range: -30 ~~ 70℃
1224 ** resolution 0.1℃
1225 ** Accuracy: ±0.5℃
1226 * Humidity Sensor Spec:
1227 ** Range: 0 ~~ 100% RH
1228 ** resolution 0.1 %RH
1229 ** Accuracy: 3% RH
1230 * Pressure Sensor Spec:
1231 ** Range: 10~1100hPa
1232 ** Resolution: 0.1hPa
1233 ** Accuracy: ±0.1hPa
1234 * Illuminate sensor:
1235 ** Range: 0~2/20/200kLux
1236 ** Resolution: 10 Lux
1237 ** Accuracy: ±3%FS
1238 * Working Temperature: -30℃~70℃
1239 * Working Humidity: 10~90%RH
1240 * Power Consumption: 4mA @ 12v
1241
1242
1243
1244 === 6.5.3 Dimension ===
1245
1246
1247 [[image:1656057170639-522.png]]
1248
1249
1250 === 6.5.4 Pin Mapping ===
1251
1252
1253 [[image:1656057181899-910.png]]
1254
1255
1256 === 6.5.5 Installation Notice ===
1257
1258
1259 Do not power on while connect the cables. Double check the wiring before power on.
1260
1261 [[image:1656057199955-514.png]]
1262
1263
1264 [[image:1656057212438-475.png]]
1265
1266
1267 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1268
1269
1270 (((
1271 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1272 )))
1273
1274 (((
1275 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1276 )))
1277
1278 (((
1279 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1280 )))
1281
1282
1283 === 6.6.1 Feature ===
1284
1285
1286 * RS485 Total Solar Radiation sensor
1287 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1288 * Measure Reflected Radiation if sense area towards ground.
1289
1290
1291
1292 === 6.6.2 Specification ===
1293
1294
1295 * Input Power: DC 5 ~~ 24v
1296 * Interface: RS485
1297 * Detect spectrum: 0.3~3μm(300~3000nm)
1298 * Measure strength range: 0~2000W/m2
1299 * Resolution: 0.1W/m2
1300 * Accuracy: ±3%
1301 * Yearly Stability: ≤±2%
1302 * Cosine response: ≤7% (@ Sun angle 10°)
1303 * Temperature Effect: ±2%(-10℃~40℃)
1304 * Working Temperature: -40℃~70℃
1305 * Working Humidity: 10~90%RH
1306 * Power Consumption: 4mA @ 12v
1307
1308
1309
1310 === 6.6.3 Dimension ===
1311
1312
1313 [[image:1656057348695-898.png]]
1314
1315
1316 === 6.6.4 Pin Mapping ===
1317
1318
1319 [[image:1656057359343-744.png]]
1320
1321
1322 === 6.6.5 Installation Notice ===
1323
1324
1325 Do not power on while connect the cables. Double check the wiring before power on.
1326
1327
1328 [[image:1656057369259-804.png]]
1329
1330
1331 [[image:1656057377943-564.png]]
1332
1333
1334 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1335
1336
1337 (((
1338 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1339 )))
1340
1341 (((
1342 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1343 )))
1344
1345 (((
1346 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1347 )))
1348
1349
1350 === 6.7.1 Feature ===
1351
1352
1353 (((
1354 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1355 )))
1356
1357 (((
1358 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1359 )))
1360
1361
1362 === 6.7.2 Specification ===
1363
1364
1365 * Input Power: DC 5 ~~ 24v
1366 * Interface: RS485
1367 * Response Spectrum: 400~700nm
1368 * Measure range: 0~2500μmol/m2•s
1369 * Resolution: 1μmol/m2•s
1370 * Accuracy: ±2%
1371 * Yearly Stability: ≤±2%
1372 * Working Temperature: -30℃~75℃
1373 * Working Humidity: 10~90%RH
1374 * Power Consumption: 3mA @ 12v
1375
1376
1377
1378 === 6.7.3 Dimension ===
1379
1380
1381 [[image:1656057538793-888.png]]
1382
1383
1384 === 6.7.4 Pin Mapping ===
1385
1386
1387 [[image:1656057548116-203.png]]
1388
1389
1390 === 6.7.5 Installation Notice ===
1391
1392
1393 Do not power on while connect the cables. Double check the wiring before power on.
1394
1395
1396 [[image:1656057557191-895.png]]
1397
1398
1399 [[image:1656057565783-251.png]]
1400
1401
1402 = 7. FAQ =
1403
1404 == 7.1 What else do I need to purchase to build Weather Station? ==
1405
1406
1407 Below is the installation photo and structure:
1408
1409
1410 [[image:1656057598349-319.png]]
1411
1412
1413 [[image:1656057608049-693.png]]
1414
1415
1416 == 7.2 How to upgrade firmware for WSC1-L? ==
1417
1418
1419 (((
1420 Firmware Location & Change log:
1421
1422 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1423 )))
1424
1425
1426 (((
1427 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1428 )))
1429
1430
1431 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1432
1433
1434 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1435
1436
1437 == 7.4 Can I add my weather sensors? ==
1438
1439
1440 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1441
1442
1443 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1444
1445
1446 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1447
1448
1449 = 8. Trouble Shooting =
1450
1451 == 8.1 AT Command input doesn't work ==
1452
1453
1454 (((
1455 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1456 )))
1457
1458
1459 = 9. Order Info =
1460
1461 == 9.1 Main Process Unit ==
1462
1463
1464 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1465
1466 (% style="color:blue" %)**XX**(%%): The default frequency band
1467
1468 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1469 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1470 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1471 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1472 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1473 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1474 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1475 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1476
1477
1478
1479 == 9.2 Sensors ==
1480
1481
1482 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1483 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1484 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1485 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1486 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1487 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1488 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1489 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1490 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1491 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1492
1493
1494
1495 = 10. Support =
1496
1497
1498 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1499
1500 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1501
1502
1503
1504 = 11. Appendix I: Field Installation Photo =
1505
1506
1507 [[image:1656058346362-132.png||height="685" width="732"]]
1508
1509 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1510
1511
1512
1513 (% style="color:blue" %)**Wind Speed/Direction**
1514
1515 [[image:1656058373174-421.png||height="356" width="731"]]
1516
1517
1518
1519 (% style="color:blue" %)**Total Solar Radiation sensor**
1520
1521 [[image:1656058397364-282.png||height="453" width="732"]]
1522
1523
1524
1525 (% style="color:blue" %)**PAR Sensor**
1526
1527 [[image:1656058416171-615.png]]
1528
1529
1530
1531 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1532
1533 [[image:1656058441194-827.png||height="672" width="523"]]
1534
1535
1536
1537 (% style="color:blue" %)**Rain / Snow Detect**
1538
1539 [[image:1656058451456-166.png]]
1540
1541
1542
1543 (% style="color:blue" %)**Rain Gauge**
1544
1545 [[image:1656058463455-569.png||height="499" width="550"]]
1546
1547
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0