Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248
249
250 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
251
252 External sensors detected by WSC1-L include :
253
254 custom sensor A1,
255
256 PAR sensor (WSS-07),
257
258 Total Solar Radiation sensor (WSS-06),
259
260 CO2/PM2.5/PM10 (WSS-03),
261
262 Wind Speed/Direction (WSS-02)
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:1656049673488-415.png]]
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274
275 (((
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
277 )))
278
279 (((
280 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
281 )))
282
283
284 (((
285 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
286 )))
287
288
289 (% style="color:#4472c4" %)** Uplink Payload**:
290
291 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:464px" %)
292 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
297 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
298
299 (% style="color:#4472c4" %)**Sensor Type Table:**
300
301 [[image:image-20220706154434-1.png]]
302
303
304 (((
305 Below is an example payload:  [[image:image-20220624140615-3.png]]
306 )))
307
308 (((
309
310 )))
311
312 (((
313 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
314 )))
315
316 * (((
317 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
318 )))
319
320 (((
321 Uplink 1:  [[image:image-20220624140735-4.png]]
322 )))
323
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327
328 )))
329
330 * (((
331 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
332 )))
333
334 (((
335 Uplink 1:  [[image:image-20220624141025-6.png]]
336 )))
337
338
339 Uplink 2:  [[image:image-20220624141100-7.png]]
340
341
342 === 2.4.3 Decoder in TTN V3 ===
343
344
345 (((
346 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
347 )))
348
349 (((
350 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
351 )))
352
353
354 (((
355 and put as below:
356 )))
357
358 [[image:1656051152438-578.png]]
359
360
361 == 2.5 Show data on Application Server ==
362
363
364 (((
365 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
366 )))
367
368 (((
369 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
370 )))
371
372 (((
373 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
374 )))
375
376 [[image:1656051197172-131.png]]
377
378
379
380 **Add TagoIO:**
381
382 [[image:1656051223585-631.png]]
383
384
385
386 **Authorization:**
387
388 [[image:1656051248318-368.png]]
389
390
391
392 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
393
394
395 [[image:1656051277767-168.png]]
396
397
398 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
399
400
401 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
402
403 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
404 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
405
406 There are two kinds of commands to configure WSC1-L, they are:
407
408 * (% style="color:#4472c4" %)**General Commands**.
409
410 These commands are to configure:
411
412 * General system settings like: uplink interval.
413 * LoRaWAN protocol & radio related command.
414
415 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
416
417 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
418
419
420 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
421
422 These commands only valid for WSC1-L, as below:
423
424
425 == 3.1 Set Transmit Interval Time ==
426
427
428 Feature: Change LoRaWAN End Node Transmit Interval.
429
430 (% style="color:#037691" %)**AT Command: AT+TDC**
431
432 [[image:image-20220624142619-8.png]]
433
434
435 (% style="color:#037691" %)**Downlink Command: 0x01**
436
437 Format: Command Code (0x01) followed by 3 bytes time value.
438
439 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
440
441 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
442 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
443
444 == 3.2 Set Emergency Mode ==
445
446
447 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
448
449 (% style="color:#037691" %)**AT Command:**
450
451 [[image:image-20220624142956-9.png]]
452
453
454 (% style="color:#037691" %)**Downlink Command:**
455
456 * 0xE101     Same as: AT+ALARMMOD=1
457 * 0xE100     Same as: AT+ALARMMOD=0
458
459 == 3.3 Add or Delete RS485 Sensor ==
460
461
462 (((
463 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
464 )))
465
466 (((
467 (% style="color:#037691" %)**AT Command: **
468 )))
469
470 (((
471 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
472 )))
473
474 * (((
475 Type_Code range:  A1 ~~ A4
476 )))
477 * (((
478 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
479 )))
480 * (((
481 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
482 )))
483 * (((
484 Read_Length:  RS485 response frame length supposed to receive. Max can receive
485 )))
486 * (((
487 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
488 )))
489 * (((
490 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
491 )))
492 * (((
493 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
494 )))
495
496 (((
497 **Example:**
498 )))
499
500 (((
501 User need to change external sensor use the type code as address code.
502 )))
503
504 (((
505 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
506 )))
507
508 [[image:image-20220624143553-10.png]]
509
510
511 The response frame of the sensor is as follows:
512
513 [[image:image-20220624143618-11.png]]
514
515
516 **Then the following parameters should be:**
517
518 * Address_Code range: A1
519 * Query_Length: 8
520 * Query_Command: A103000000019CAA
521 * Read_Length: 8
522 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
523 * has_CRC: 1
524 * timeout: 1500 (Fill in the test according to the actual situation)
525
526 **So the input command is:**
527
528 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
529
530
531 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
532
533 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
534 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
535 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
536
537 **Related commands:**
538
539 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
540
541 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
542
543
544 (% style="color:#037691" %)**Downlink Command:  **
545
546 **delete custom sensor A1:**
547
548 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
549
550 **Remove all custom sensors**
551
552 * 0xE5FF  
553
554 == 3.4 RS485 Test Command ==
555
556
557 (% style="color:#037691" %)**AT Command:**
558
559 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
560 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
561 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
562 (((
563 Send command to 485 sensor
564 )))
565
566 (((
567 Range : no more than 10 bytes
568 )))
569 )))|(% style="width:85px" %)OK
570
571 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
572
573 AT+RSWRITE=0103000001840A
574
575
576 (% style="color:#037691" %)**Downlink Command:**
577
578 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
579
580 == 3.5 RS485 response timeout ==
581
582
583 Feature: Set or get extended time to receive 485 sensor data.
584
585 (% style="color:#037691" %)**AT Command:**
586
587 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
588 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
589 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
590 (((
591 Set response timeout to:
592 )))
593
594 (((
595 Range : 0~~10000
596 )))
597 )))|(% style="width:85px" %)OK
598
599 (% style="color:#037691" %)**Downlink Command:**
600
601 Format: Command Code (0xE0) followed by 3 bytes time value.
602
603 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
604
605 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
606 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
607
608 == 3.6 Set Sensor Type ==
609
610
611 (((
612 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
613 )))
614
615 (((
616 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
617 )))
618
619 [[image:image-20220624144904-12.png]]
620
621
622 (% style="color:#037691" %)**AT Command:**
623
624 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
625 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
626 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
627
628 Eg: The setting command **AT+STYPE=80221** means:
629
630 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
631 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
632 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
633 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
634 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
635 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
636 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
637
638 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
639
640
641 (% style="color:#037691" %)**Downlink Command:**
642
643 * 0xE400080221  Same as: AT+STYPE=80221
644
645 (% style="color:red" %)**Note:**
646
647 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
648
649
650 = 4. Power consumption and battery =
651
652 == 4.1 Total Power Consumption ==
653
654
655 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
656
657
658 == 4.2 Reduce power consumption ==
659
660
661 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
662
663
664 == 4.3 Battery ==
665
666
667 (((
668 All sensors are only power by external power source. If external power source is off. All sensor won't work.
669 )))
670
671 (((
672 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
673 )))
674
675
676 = 5. Main Process Unit WSC1-L =
677
678 == 5.1 Features ==
679
680
681 * Wall Attachable.
682 * LoRaWAN v1.0.3 Class A protocol.
683 * RS485 / Modbus protocol
684 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
685 * AT Commands to change parameters
686 * Remote configure parameters via LoRaWAN Downlink
687 * Firmware upgradable via program port
688 * Powered by external 12v battery
689 * Back up rechargeable 1000mAh battery
690 * IP Rating: IP65
691 * Support default sensors or 3rd party RS485 sensors
692
693 == 5.2 Power Consumption ==
694
695
696 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
697
698
699 == 5.3 Storage & Operation Temperature ==
700
701
702 -20°C to +60°C
703
704
705 == 5.4 Pin Mapping ==
706
707
708 [[image:1656054149793-239.png]]
709
710
711 == 5.5 Mechanical ==
712
713
714 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
715
716
717 == 5.6 Connect to RS485 Sensors ==
718
719
720 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
721
722
723 [[image:1656054389031-379.png]]
724
725
726 Hardware Design for the Converter Board please see:
727
728 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
729
730
731 = 6. Weather Sensors =
732
733 == 6.1 Rain Gauge ~-~- WSS-01 ==
734
735
736 (((
737 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
738 )))
739
740 (((
741 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
742 )))
743
744 (((
745 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
746 )))
747
748 (((
749 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
750 )))
751
752 (((
753 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
754 )))
755
756
757 === 6.1.1 Feature ===
758
759
760 * RS485 Rain Gauge
761 * Small dimension, easy to install
762 * Vents under funnel, avoid leaf or other things to avoid rain flow.
763 * ABS enclosure.
764 * Horizontal adjustable.
765
766 === 6.1.2 Specification ===
767
768
769 * Resolution: 0.2mm
770 * Accuracy: ±3%
771 * Range: 0 ~~ 100mm
772 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
773 * Input Power: DC 5~~24v
774 * Interface: RS485
775 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
776 * Working Humidity: <100% (no dewing)
777 * Power Consumption: 4mA @ 12v.
778
779 === 6.1.3 Dimension ===
780
781
782 [[image:1656054957406-980.png]]
783
784
785 === 6.1.4 Pin Mapping ===
786
787
788 [[image:1656054972828-692.png]]
789
790
791 === 6.1.5 Installation Notice ===
792
793
794 (((
795 Do not power on while connect the cables. Double check the wiring before power on.
796 )))
797
798 (((
799 Installation Photo as reference:
800 )))
801
802
803 (((
804 (% style="color:#4472c4" %)** Install on Ground:**
805 )))
806
807 (((
808 WSS-01 Rain Gauge include screws so can install in ground directly .
809 )))
810
811
812 (((
813 (% style="color:#4472c4" %)** Install on pole:**
814 )))
815
816 (((
817 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
818 )))
819
820 [[image:image-20220624152218-1.png||height="526" width="276"]]
821
822 WS-K2: Bracket Kit for Pole installation
823
824
825 WSSC-K2 dimension document, please see:
826
827 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
828
829
830 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
831
832
833 [[image:1656055444035-179.png]]
834
835
836 (((
837 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
838 )))
839
840 (((
841 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
842 )))
843
844 (((
845 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
846 )))
847
848
849
850 === 6.2.1 Feature ===
851
852
853 * RS485 wind speed / direction sensor
854 * PC enclosure, resist corrosion
855
856 === 6.2.2 Specification ===
857
858
859 * Wind speed range: 0 ~~ 60m/s
860 * Wind direction range: 0 ~~ 360°
861 * Start wind speed: ≤0.3m/s
862 * Accuracy: ±(0.3+0.03V)m/s , ±1°
863 * Input Power: DC 5~~24v
864 * Interface: RS485
865 * Working Temperature: -30℃~70℃
866 * Working Humidity: <100% (no dewing)
867 * Power Consumption: 13mA ~~ 12v.
868 * Cable Length: 2 meters
869
870 === 6.2.3 Dimension ===
871
872
873 [[image:image-20220624152813-2.png]]
874
875
876 === 6.2.4 Pin Mapping ===
877
878
879 [[image:1656056281231-994.png]]
880
881
882 === 6.2.5  Angle Mapping ===
883
884
885 [[image:1656056303845-585.png]]
886
887
888 === 6.2.6  Installation Notice ===
889
890
891 (((
892 Do not power on while connect the cables. Double check the wiring before power on.
893 )))
894
895 (((
896 The sensor must be installed with below direction, towards North.
897
898
899 )))
900
901 [[image:image-20220624153901-3.png]]
902
903
904 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
905
906
907 (((
908 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
909 )))
910
911 (((
912 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
913 )))
914
915 (((
916 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
917 )))
918
919
920 === 6.3.1 Feature ===
921
922
923 * RS485 CO2, PM2.5, PM10 sensor
924 * NDIR to measure CO2 with Internal Temperature Compensation
925 * Laser Beam Scattering to PM2.5 and PM10
926
927 === 6.3.2 Specification ===
928
929
930 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
931 * CO2 resolution: 1ppm
932 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
933 * PM2.5/PM10 resolution: 1μg/m3
934 * Input Power: DC 7 ~~ 24v
935 * Preheat time: 3min
936 * Interface: RS485
937 * Working Temperature:
938 ** CO2: 0℃~50℃;
939 ** PM2.5/PM10: -30 ~~ 50℃
940 * Working Humidity:
941 ** PM2.5/PM10: 15~80%RH (no dewing)
942 ** CO2: 0~95%RH
943 * Power Consumption: 50mA@ 12v.
944
945 === 6.3.3 Dimension ===
946
947
948 [[image:1656056708366-230.png]]
949
950
951 === 6.3.4 Pin Mapping ===
952
953
954 [[image:1656056722648-743.png]]
955
956
957 === 6.3.5 Installation Notice ===
958
959
960 Do not power on while connect the cables. Double check the wiring before power on.
961
962
963 [[image:1656056751153-304.png]]
964
965
966 [[image:1656056766224-773.png]]
967
968
969 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
970
971
972 (((
973 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
974 )))
975
976 (((
977 WSS-04 has auto heating feature, this ensures measurement more reliable.
978 )))
979
980 (((
981 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
982 )))
983
984
985 === 6.4.1 Feature ===
986
987
988 * RS485 Rain/Snow detect sensor
989 * Surface heating to dry
990 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
991
992 === 6.4.2 Specification ===
993
994
995 * Detect if there is rain or snow
996 * Input Power: DC 12 ~~ 24v
997 * Interface: RS485
998 * Working Temperature: -30℃~70℃
999 * Working Humidity: 10~90%RH
1000 * Power Consumption:
1001 ** No heating: 12mA @ 12v,
1002 ** heating: 94ma @ 12v.
1003
1004 === 6.4.3 Dimension ===
1005
1006
1007 [[image:1656056844782-155.png]]
1008
1009
1010 === 6.4.4 Pin Mapping ===
1011
1012
1013 [[image:1656056855590-754.png]]
1014
1015
1016 === 6.4.5 Installation Notice ===
1017
1018
1019 Do not power on while connect the cables. Double check the wiring before power on.
1020
1021
1022 (((
1023 Install with 15°degree.
1024 )))
1025
1026 [[image:1656056873783-780.png]]
1027
1028
1029 [[image:1656056883736-804.png]]
1030
1031
1032 === 6.4.6 Heating ===
1033
1034
1035 (((
1036 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1037 )))
1038
1039
1040 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1041
1042
1043 (((
1044 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1045 )))
1046
1047 (((
1048 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1049 )))
1050
1051
1052 === 6.5.1 Feature ===
1053
1054
1055 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1056
1057 === 6.5.2 Specification ===
1058
1059
1060 * Input Power: DC 12 ~~ 24v
1061 * Interface: RS485
1062 * Temperature Sensor Spec:
1063 ** Range: -30 ~~ 70℃
1064 ** resolution 0.1℃
1065 ** Accuracy: ±0.5℃
1066 * Humidity Sensor Spec:
1067 ** Range: 0 ~~ 100% RH
1068 ** resolution 0.1 %RH
1069 ** Accuracy: 3% RH
1070 * Pressure Sensor Spec:
1071 ** Range: 10~1100hPa
1072 ** Resolution: 0.1hPa
1073 ** Accuracy: ±0.1hPa
1074 * Illuminate sensor:
1075 ** Range: 0~2/20/200kLux
1076 ** Resolution: 10 Lux
1077 ** Accuracy: ±3%FS
1078 * Working Temperature: -30℃~70℃
1079 * Working Humidity: 10~90%RH
1080 * Power Consumption: 4mA @ 12v
1081
1082 === 6.5.3 Dimension ===
1083
1084
1085 [[image:1656057170639-522.png]]
1086
1087
1088 === 6.5.4 Pin Mapping ===
1089
1090
1091 [[image:1656057181899-910.png]]
1092
1093
1094 === 6.5.5 Installation Notice ===
1095
1096
1097 Do not power on while connect the cables. Double check the wiring before power on.
1098
1099 [[image:1656057199955-514.png]]
1100
1101
1102 [[image:1656057212438-475.png]]
1103
1104
1105 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1106
1107
1108 (((
1109 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1110 )))
1111
1112 (((
1113 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1114 )))
1115
1116 (((
1117 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1118 )))
1119
1120
1121 === 6.6.1 Feature ===
1122
1123
1124 * RS485 Total Solar Radiation sensor
1125 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1126 * Measure Reflected Radiation if sense area towards ground.
1127
1128 === 6.6.2 Specification ===
1129
1130
1131 * Input Power: DC 5 ~~ 24v
1132 * Interface: RS485
1133 * Detect spectrum: 0.3~3μm(300~3000nm)
1134 * Measure strength range: 0~2000W/m2
1135 * Resolution: 0.1W/m2
1136 * Accuracy: ±3%
1137 * Yearly Stability: ≤±2%
1138 * Cosine response: ≤7% (@ Sun angle 10°)
1139 * Temperature Effect: ±2%(-10℃~40℃)
1140 * Working Temperature: -40℃~70℃
1141 * Working Humidity: 10~90%RH
1142 * Power Consumption: 4mA @ 12v
1143
1144 === 6.6.3 Dimension ===
1145
1146
1147 [[image:1656057348695-898.png]]
1148
1149
1150 === 6.6.4 Pin Mapping ===
1151
1152
1153 [[image:1656057359343-744.png]]
1154
1155
1156 === 6.6.5 Installation Notice ===
1157
1158
1159 Do not power on while connect the cables. Double check the wiring before power on.
1160
1161
1162 [[image:1656057369259-804.png]]
1163
1164
1165 [[image:1656057377943-564.png]]
1166
1167
1168 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1169
1170
1171 (((
1172 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1173 )))
1174
1175 (((
1176 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1177 )))
1178
1179 (((
1180 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1181 )))
1182
1183
1184 === 6.7.1 Feature ===
1185
1186
1187 (((
1188 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1189 )))
1190
1191 (((
1192 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1193 )))
1194
1195
1196 === 6.7.2 Specification ===
1197
1198
1199 * Input Power: DC 5 ~~ 24v
1200 * Interface: RS485
1201 * Response Spectrum: 400~700nm
1202 * Measure range: 0~2500μmol/m2•s
1203 * Resolution: 1μmol/m2•s
1204 * Accuracy: ±2%
1205 * Yearly Stability: ≤±2%
1206 * Working Temperature: -30℃~75℃
1207 * Working Humidity: 10~90%RH
1208 * Power Consumption: 3mA @ 12v
1209
1210 === 6.7.3 Dimension ===
1211
1212
1213 [[image:1656057538793-888.png]]
1214
1215
1216 === 6.7.4 Pin Mapping ===
1217
1218
1219 [[image:1656057548116-203.png]]
1220
1221
1222 === 6.7.5 Installation Notice ===
1223
1224
1225 Do not power on while connect the cables. Double check the wiring before power on.
1226
1227
1228 [[image:1656057557191-895.png]]
1229
1230
1231 [[image:1656057565783-251.png]]
1232
1233
1234 = 7. FAQ =
1235
1236 == 7.1 What else do I need to purchase to build Weather Station? ==
1237
1238
1239 Below is the installation photo and structure:
1240
1241
1242 [[image:1656057598349-319.png]]
1243
1244
1245 [[image:1656057608049-693.png]]
1246
1247
1248 == 7.2 How to upgrade firmware for WSC1-L? ==
1249
1250
1251 (((
1252 Firmware Location & Change log:
1253
1254 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1255 )))
1256
1257
1258 (((
1259 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1260 )))
1261
1262
1263 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1264
1265
1266 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1267
1268
1269 == 7.4 Can I add my weather sensors? ==
1270
1271
1272 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1273
1274
1275 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1276
1277 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1278
1279
1280 = 8. Trouble Shooting =
1281
1282 == 8.1 AT Command input doesn't work ==
1283
1284
1285 (((
1286 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1287 )))
1288
1289
1290 = 9. Order Info =
1291
1292 == 9.1 Main Process Unit ==
1293
1294
1295 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1296
1297 (% style="color:blue" %)**XX**(%%): The default frequency band
1298
1299 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1300 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1301 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1302 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1303 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1304 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1305 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1306 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1307
1308 == 9.2 Sensors ==
1309
1310
1311 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1312 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1313 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1314 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1315 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1316 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1317 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1318 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1319 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1320 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1321
1322 = 10. Support =
1323
1324
1325 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1326
1327 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1328
1329 = 11. Appendix I: Field Installation Photo =
1330
1331
1332 [[image:1656058346362-132.png||height="685" width="732"]]
1333
1334 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1335
1336
1337
1338 (% style="color:blue" %)**Wind Speed/Direction**
1339
1340 [[image:1656058373174-421.png||height="356" width="731"]]
1341
1342
1343
1344 (% style="color:blue" %)**Total Solar Radiation sensor**
1345
1346 [[image:1656058397364-282.png||height="453" width="732"]]
1347
1348
1349
1350 (% style="color:blue" %)**PAR Sensor**
1351
1352 [[image:1656058416171-615.png]]
1353
1354
1355
1356 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1357
1358 [[image:1656058441194-827.png||height="672" width="523"]]
1359
1360
1361
1362 (% style="color:blue" %)**Rain / Snow Detect**
1363
1364 [[image:1656058451456-166.png]]
1365
1366
1367
1368 (% style="color:blue" %)**Rain Gauge**
1369
1370 [[image:1656058463455-569.png||height="499" width="550"]]
1371
1372
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0