Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:1656035424980-692.png||height="533" width="386"]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 Overview ==
26
27
28 (((
29 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
30 )))
31
32 (((
33 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
34 )))
35
36 (((
37 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
38 )))
39
40 (((
41 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
42 )))
43
44
45 = 2. How to use =
46
47 == 2.1 Installation ==
48
49
50 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
51
52
53 [[image:1656041948552-849.png]]
54
55
56 (% style="color:blue" %)** Wiring:**
57
58 ~1. WSC1-L and sensors all powered by solar power via MPPT
59
60 2. WSC1-L and sensors connect to each other via RS485/Modbus.
61
62 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
63
64
65 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
66
67 [[image:1656042136605-251.png]]
68
69
70 (% style="color:red" %)**Notice 1:**
71
72 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
73 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
74 * Weather sensors won't work if solar panel and storage battery fails.
75
76 (% style="color:red" %)**Notice 2:**
77
78 Due to shipment and importation limitation, user is better to purchase below parts locally:
79
80 * Solar Panel
81 * Storage Battery
82 * MPPT Solar Recharger
83 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
84 * Cabinet.
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110 [[image:1656042612899-422.png]]
111
112
113 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
114
115
116 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
117
118 Each WSC1-L is shipped with a sticker with the default device EUI as below:
119
120 [[image:image-20230426084533-1.png||height="231" width="497"]]
121
122
123 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
124
125 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
126
127 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
128
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142 **Add APP KEY and DEV EUI**
143
144 [[image:1656042723199-746.png]]
145
146
147 (((
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149 )))
150
151 [[image:1656042745346-283.png]]
152
153
154 == 2.4 Uplink Payload ==
155
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162 === 2.4.1 Uplink FPORT~=5, Device Status ===
163
164
165 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
166
167
168 (((
169 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
170 )))
171
172 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
173 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
174 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
183
184 For WSC1-L, this value is 0x0D.
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
193
194 0x01: EU868
195
196 0x02: US915
197
198 0x03: IN865
199
200 0x04: AU915
201
202 0x05: KZ865
203
204 0x06: RU864
205
206 0x07: AS923
207
208 0x08: AS923-1
209
210 0x09: AS923-2
211
212 0x0a: AS923-3
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220 ==== (% style="color:#037691" %)**BAT:**(%%) ====
221
222 (((
223 shows the battery voltage for WSC1-L MCU.
224 )))
225
226 (((
227 Ex1: 0x0BD6/1000 = 3.03 V
228 )))
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
239 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
240 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
241 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
244 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279 (((
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281 )))
282
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
287 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
288
289 (% style="color:#4472c4" %)** Sensor Segment Define**:
290
291 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
292 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
293
294 (% style="color:#4472c4" %)**Sensor Type Table:**
295
296 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
297 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
298 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
299 Speed: 0 ~~ 60m/s
300 Level: 0 ~~ 17
301 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
302 (((
303 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
304 )))
305
306 (((
307 0x02=2 (0x14: No Sensor, 0x15: Value Error)
308 )))
309 )))
310 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
311 Angel: 0 ~~ 360°
312 Direction: 16 positions
313 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
314 (((
315 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
316 )))
317
318 (((
319 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
320 )))
321 )))
322 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
323 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
324 )))
325 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
326 (((
327 0x00 (00) No Rain or snow detected
328 )))
329
330 (((
331 (0x02: No Sensor,0x03: Value Error)
332 )))
333 )))
334 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
335 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
336 )))
337 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
338 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
339 )))
340 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
341 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
342 )))
343 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
344 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
345 )))
346 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
347 0mm~100mm(Rainfall in the last 24 hours)
348 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
349 (((
350 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
351 )))
352
353 (((
354 (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 )))
357 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
359 )))
360 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
361 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
362 )))
363 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
364 0~2500μmol/m^^2^^•s
365 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
366 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
367 )))
368 |(% style="width:103px" %)(((
369 Total Solar Radiation
370 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
372 )))
373
374 (((
375 Below is an example payload:  [[image:image-20220624140615-3.png]]
376 )))
377
378
379 (((
380 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
381 )))
382
383 * (((
384 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
385 )))
386
387 (((
388 Uplink 1:  [[image:image-20220624140735-4.png]]
389 )))
390
391
392 (((
393 Uplink 2:  [[image:image-20220624140842-5.png]]
394
395 )))
396
397 * (((
398 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
399 )))
400
401 (((
402 Uplink 1:  [[image:image-20220624141025-6.png]]
403 )))
404
405
406 Uplink 2:  [[image:image-20220624141100-7.png]]
407
408
409 === 2.4.3 Decoder in TTN V3 ===
410
411
412 (((
413 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
414 )))
415
416 (((
417 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
418 )))
419
420 (((
421 and put as below:
422 )))
423
424 [[image:1656051152438-578.png]]
425
426
427 == 2.5 Show data on Application Server ==
428
429
430 (((
431 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
432 )))
433
434 (((
435 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
436 )))
437
438 (((
439 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
440 )))
441
442 [[image:1656051197172-131.png]]
443
444
445 **Add TagoIO:**
446
447 [[image:1656051223585-631.png]]
448
449
450 **Authorization:**
451
452 [[image:1656051248318-368.png]]
453
454
455 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
456
457 [[image:1656051277767-168.png]]
458
459
460 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
461
462
463 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
464
465 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
466 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
467
468 There are two kinds of commands to configure WSC1-L, they are:
469
470 * (% style="color:blue" %)**General Commands**.
471
472 These commands are to configure:
473
474 * General system settings like: uplink interval.
475 * LoRaWAN protocol & radio related command.
476
477 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
478
479 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
480
481
482 * (% style="color:blue" %)**Commands special design for WSC1-L**
483
484 These commands only valid for WSC1-L, as below:
485
486
487 == 3.1 Set Transmit Interval Time ==
488
489
490 Feature: Change LoRaWAN End Node Transmit Interval.
491
492 (% style="color:#037691" %)**AT Command: AT+TDC**
493
494 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
495 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
496 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
497 30000
498 OK
499 the interval is 30000ms = 30s
500 )))
501 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
502 OK
503 Set transmit interval to 60000ms = 60 seconds
504 )))
505
506 (% style="color:#037691" %)**Downlink Command: 0x01**
507
508 Format: Command Code (0x01) followed by 3 bytes time value.
509
510 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
511
512 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
513 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
514
515 == 3.2 Set Emergency Mode ==
516
517
518 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
519
520 (% style="color:#037691" %)**AT Command:**
521
522 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
523 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
524 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
525 OK
526
527 )))
528 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
529 OK
530 )))
531
532 (% style="color:#037691" %)**Downlink Command:**
533
534 * 0xE101     Same as: AT+ALARMMOD=1
535 * 0xE100     Same as: AT+ALARMMOD=0
536
537 == 3.3 Add or Delete RS485 Sensor ==
538
539
540 (((
541 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
542 )))
543
544 (((
545 (% style="color:#037691" %)**AT Command: **
546 )))
547
548 (((
549 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
550 )))
551
552 * (((
553 Type_Code range:  A1 ~~ A4
554 )))
555 * (((
556 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
557 )))
558 * (((
559 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
560 )))
561 * (((
562 Read_Length:  RS485 response frame length supposed to receive. Max can receive
563 )))
564 * (((
565 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
566 )))
567 * (((
568 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
569 )))
570 * (((
571 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
572 )))
573
574 (((
575 **Example:**
576 )))
577
578 (((
579 User need to change external sensor use the type code as address code.
580 )))
581
582 (((
583 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
584 )))
585
586 [[image:image-20220624143553-10.png]]
587
588
589 The response frame of the sensor is as follows:
590
591 [[image:image-20220624143618-11.png]]
592
593
594 **Then the following parameters should be:**
595
596 * Address_Code range: A1
597 * Query_Length: 8
598 * Query_Command: A103000000019CAA
599 * Read_Length: 8
600 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
601 * has_CRC: 1
602 * timeout: 1500 (Fill in the test according to the actual situation)
603
604 **So the input command is:**
605
606 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
607
608
609 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
610
611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
612 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
613 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
614
615 **Related commands:**
616
617 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
618
619 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
620
621
622 (% style="color:#037691" %)**Downlink Command:  **
623
624 **delete custom sensor A1:**
625
626 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
627
628 **Remove all custom sensors**
629
630 * 0xE5FF  
631
632 == 3.4 RS485 Test Command ==
633
634
635 (% style="color:#037691" %)**AT Command:**
636
637 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
638 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
639 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
640 Send command to 485 sensor. Range : no more than 10 bytes
641 )))|(% style="width:85px" %)OK
642
643 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
644
645 AT+RSWRITE=0103000001840A
646
647
648 (% style="color:#037691" %)**Downlink Command:**
649
650 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
651
652 == 3.5 RS485 response timeout ==
653
654
655 Feature: Set or get extended time to receive 485 sensor data.
656
657 (% style="color:#037691" %)**AT Command:**
658
659 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
660 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
661 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
662 Set response timeout to: Range : 0~~10000
663 )))|(% style="width:85px" %)OK
664
665 (% style="color:#037691" %)**Downlink Command:**
666
667 Format: Command Code (0xE0) followed by 3 bytes time value.
668
669 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
670
671 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
672 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
673
674 == 3.6 Set Sensor Type ==
675
676
677 (((
678 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
679 )))
680
681 (((
682 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
683
684 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
685 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
686 | |A4|A3|A2|A1| | |
687 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
688 | | |Solar Radiation|PAR|PM10|PM2.5|(((
689 Rain
690 Gauge
691 )))|(((
692 Air
693 Pressure
694 )))
695 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
696 |Humidity|Temperature|CO2|(((
697 Rain/Snow
698 Detect
699 )))|illuminance|(((
700 Wind
701 Direction
702 )))|Wind Speed|BAT
703 )))
704
705
706 (% style="color:#037691" %)**AT Command:**
707
708 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
709 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
710 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
711
712 Eg: The setting command **AT+STYPE=80221** means:
713
714 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
715 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
716 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
717 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
718 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
719 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
720 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
721
722 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
723
724
725 (% style="color:#037691" %)**Downlink Command:**
726
727 * 0xE400080221  Same as: AT+STYPE=80221
728
729 (% style="color:red" %)**Note:**
730
731 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
732
733
734 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
735
736
737 (% style="color:#037691" %)**AT Command:**
738
739 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:611px" %)
740 |=(% style="width: 272px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 114px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 264px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
741 |(% style="width:272px" %)(((
742 AT+RAINFALLSWITCH=10(Value: 3,4,5,6,8,10)
743 )))|(% style="width:114px" %)(((
744 Set the registers read by the rain gauge
745 )))|(% style="width:264px" %)OK
746
747 (% style="color:#037691" %)**Downlink Command:**
748
749 * 0x1703  Same as: AT+RAINFALLSWITCH=3
750
751 Value Definition:
752
753 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
754 * **4**: Hourly rainfall: 0.2mm
755 * **5**: Rainfall in last hour: 0.2mm
756 * **6**: 24-hour maximum rainfall 10.0mm
757 * **8**: 24-hour minimum rainfall:0.0mm
758 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
759
760
761 = 4. Power consumption and battery =
762
763 == 4.1 Total Power Consumption ==
764
765
766 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
767
768
769 == 4.2 Reduce power consumption ==
770
771
772 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
773
774
775 == 4.3 Battery ==
776
777
778 (((
779 All sensors are only power by external power source. If external power source is off. All sensor won't work.
780 )))
781
782 (((
783 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
784 )))
785
786
787 = 5. Main Process Unit WSC1-L =
788
789 == 5.1 Features ==
790
791
792 * Wall Attachable.
793 * LoRaWAN v1.0.3 Class A protocol.
794 * RS485 / Modbus protocol
795 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
796 * AT Commands to change parameters
797 * Remote configure parameters via LoRaWAN Downlink
798 * Firmware upgradable via program port
799 * Powered by external 12v battery
800 * Back up rechargeable 1000mAh battery
801 * IP Rating: IP65
802 * Support default sensors or 3rd party RS485 sensors
803
804 == 5.2 Power Consumption ==
805
806
807 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
808
809
810 == 5.3 Storage & Operation Temperature ==
811
812
813 -20°C to +60°C
814
815
816 == 5.4 Pin Mapping ==
817
818
819 [[image:1656054149793-239.png]]
820
821
822 == 5.5 Mechanical ==
823
824
825 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
826
827
828 == 5.6 Connect to RS485 Sensors ==
829
830
831 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
832
833
834 [[image:1656054389031-379.png]]
835
836
837 Hardware Design for the Converter Board please see:
838
839 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
840
841
842 = 6. Weather Sensors =
843
844 == 6.1 Rain Gauge ~-~- WSS-01 ==
845
846
847 (((
848 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
849 )))
850
851 (((
852 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
853 )))
854
855 (((
856 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
857 )))
858
859 (((
860 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
861 )))
862
863 (((
864 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
865 )))
866
867
868 === 6.1.1 Feature ===
869
870
871 * RS485 Rain Gauge
872 * Small dimension, easy to install
873 * Vents under funnel, avoid leaf or other things to avoid rain flow.
874 * ABS enclosure.
875 * Horizontal adjustable.
876
877 === 6.1.2 Specification ===
878
879
880 * Resolution: 0.2mm
881 * Accuracy: ±3%
882 * Range: 0 ~~ 100mm
883 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
884 * Input Power: DC 5 ~~ 24v
885 * Interface: RS485
886 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
887 * Working Humidity: <100% (no dewing)
888 * Power Consumption: 4mA @ 12v.
889
890 === 6.1.3 Dimension ===
891
892
893 [[image:1656054957406-980.png]]
894
895
896 === 6.1.4 Pin Mapping ===
897
898
899 [[image:1656054972828-692.png]]
900
901
902 === 6.1.5 Installation Notice ===
903
904
905 (((
906 Do not power on while connect the cables. Double check the wiring before power on.
907 )))
908
909 (((
910 Installation Photo as reference:
911 )))
912
913
914 (((
915 (% style="color:#4472c4" %)** Install on Ground:**
916 )))
917
918 (((
919 WSS-01 Rain Gauge include screws so can install in ground directly .
920 )))
921
922
923 (((
924 (% style="color:#4472c4" %)** Install on pole:**
925 )))
926
927 (((
928 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
929 )))
930
931 [[image:image-20220624152218-1.png||height="526" width="276"]]
932
933 WS-K2: Bracket Kit for Pole installation
934
935
936 WSSC-K2 dimension document, please see:
937
938 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
939
940
941 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
942
943
944 [[image:1656055444035-179.png]]
945
946
947 (((
948 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
949 )))
950
951 (((
952 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
953 )))
954
955 (((
956 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
957 )))
958
959
960 === 6.2.1 Feature ===
961
962
963 * RS485 wind speed / direction sensor
964 * PC enclosure, resist corrosion
965
966 === 6.2.2 Specification ===
967
968
969 * Wind speed range: 0 ~~ 60m/s
970 * Wind direction range: 0 ~~ 360°
971 * Start wind speed: ≤0.3 m/s
972 * Accuracy: ±(0.3+0.03V) m/s , ±1°
973 * Input Power: DC 5 ~~ 24v
974 * Interface: RS485
975 * Working Temperature: -30℃ ~~ 70℃
976 * Working Humidity: <100% (no dewing)
977 * Power Consumption: 13mA ~~ 12v.
978 * Cable Length: 2 meters
979
980 === 6.2.3 Dimension ===
981
982
983 [[image:image-20220624152813-2.png]]
984
985
986 === 6.2.4 Pin Mapping ===
987
988
989 [[image:1656056281231-994.png]]
990
991
992 === 6.2.5  Angle Mapping ===
993
994
995 [[image:1656056303845-585.png]]
996
997
998 === 6.2.6  Installation Notice ===
999
1000
1001 (((
1002 Do not power on while connect the cables. Double check the wiring before power on.
1003 )))
1004
1005 (((
1006 The sensor must be installed with below direction, towards North.
1007
1008
1009 )))
1010
1011 [[image:image-20220624153901-3.png]]
1012
1013
1014 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1015
1016
1017 (((
1018 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1019 )))
1020
1021 (((
1022 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1023 )))
1024
1025 (((
1026 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1027 )))
1028
1029
1030 === 6.3.1 Feature ===
1031
1032
1033 * RS485 CO2, PM2.5, PM10 sensor
1034 * NDIR to measure CO2 with Internal Temperature Compensation
1035 * Laser Beam Scattering to PM2.5 and PM10
1036
1037 === 6.3.2 Specification ===
1038
1039
1040 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1041 * CO2 resolution: 1ppm
1042 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1043 * PM2.5/PM10 resolution: 1μg/m3
1044 * Input Power: DC 7 ~~ 24v
1045 * Preheat time: 3min
1046 * Interface: RS485
1047 * Working Temperature:
1048 ** CO2: 0℃ ~~ 50℃;
1049 ** PM2.5/PM10: -30 ~~ 50℃
1050 * Working Humidity:
1051 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1052 ** CO2: 0 ~~ 95%RH
1053 * Power Consumption: 50mA@ 12v.
1054
1055 === 6.3.3 Dimension ===
1056
1057
1058 [[image:1656056708366-230.png]]
1059
1060
1061 === 6.3.4 Pin Mapping ===
1062
1063
1064 [[image:1656056722648-743.png]]
1065
1066
1067 === 6.3.5 Installation Notice ===
1068
1069
1070 Do not power on while connect the cables. Double check the wiring before power on.
1071
1072
1073 [[image:1656056751153-304.png]]
1074
1075
1076 [[image:1656056766224-773.png]]
1077
1078
1079 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1080
1081
1082 (((
1083 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1084 )))
1085
1086 (((
1087 WSS-04 has auto heating feature, this ensures measurement more reliable.
1088 )))
1089
1090 (((
1091 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1092 )))
1093
1094
1095 === 6.4.1 Feature ===
1096
1097
1098 * RS485 Rain/Snow detect sensor
1099 * Surface heating to dry
1100 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1101
1102 === 6.4.2 Specification ===
1103
1104
1105 * Detect if there is rain or snow
1106 * Input Power: DC 12 ~~ 24v
1107 * Interface: RS485
1108 * Working Temperature: -30℃ ~~ 70℃
1109 * Working Humidity: 10 ~~ 90%RH
1110 * Power Consumption:
1111 ** No heating: 12mA @ 12v,
1112 ** heating: 94ma @ 12v.
1113
1114 === 6.4.3 Dimension ===
1115
1116
1117 [[image:1656056844782-155.png]]
1118
1119
1120 === 6.4.4 Pin Mapping ===
1121
1122
1123 [[image:1656056855590-754.png]]
1124
1125
1126 === 6.4.5 Installation Notice ===
1127
1128
1129 Do not power on while connect the cables. Double check the wiring before power on.
1130
1131 (((
1132 Install with 15°degree.
1133 )))
1134
1135 [[image:1656056873783-780.png]]
1136
1137
1138 [[image:1656056883736-804.png]]
1139
1140
1141 === 6.4.6 Heating ===
1142
1143
1144 (((
1145 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1146 )))
1147
1148
1149 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1150
1151
1152 (((
1153 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1154 )))
1155
1156 (((
1157 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1158 )))
1159
1160
1161 === 6.5.1 Feature ===
1162
1163
1164 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1165
1166 === 6.5.2 Specification ===
1167
1168
1169 * Input Power: DC 12 ~~ 24v
1170 * Interface: RS485
1171 * Temperature Sensor Spec:
1172 ** Range: -30 ~~ 70℃
1173 ** resolution 0.1℃
1174 ** Accuracy: ±0.5℃
1175 * Humidity Sensor Spec:
1176 ** Range: 0 ~~ 100% RH
1177 ** resolution 0.1 %RH
1178 ** Accuracy: 3% RH
1179 * Pressure Sensor Spec:
1180 ** Range: 10 ~~ 1100hPa
1181 ** Resolution: 0.1hPa
1182 ** Accuracy: ±0.1hPa
1183 * Illuminate sensor:
1184 ** Range: 0~~2/20/200kLux
1185 ** Resolution: 10 Lux
1186 ** Accuracy: ±3%FS
1187 * Working Temperature: -30℃ ~~ 70℃
1188 * Working Humidity: 10 ~~ 90%RH
1189 * Power Consumption: 4mA @ 12v
1190
1191 === 6.5.3 Dimension ===
1192
1193
1194 [[image:1656057170639-522.png]]
1195
1196
1197 === 6.5.4 Pin Mapping ===
1198
1199
1200 [[image:1656057181899-910.png]]
1201
1202
1203 === 6.5.5 Installation Notice ===
1204
1205
1206 Do not power on while connect the cables. Double check the wiring before power on.
1207
1208 [[image:1656057199955-514.png]]
1209
1210
1211 [[image:1656057212438-475.png]]
1212
1213
1214 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1215
1216
1217 (((
1218 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1219 )))
1220
1221 (((
1222 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1223 )))
1224
1225 (((
1226 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1227 )))
1228
1229
1230 === 6.6.1 Feature ===
1231
1232
1233 * RS485 Total Solar Radiation sensor
1234 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1235 * Measure Reflected Radiation if sense area towards ground.
1236
1237 === 6.6.2 Specification ===
1238
1239
1240 * Input Power: DC 5 ~~ 24v
1241 * Interface: RS485
1242 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1243 * Measure strength range: 0 ~~ 2000W/m2
1244 * Resolution: 0.1W/m2
1245 * Accuracy: ±3%
1246 * Yearly Stability: ≤±2%
1247 * Cosine response: ≤7% (@ Sun angle 10°)
1248 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1249 * Working Temperature: -40℃ ~~ 70℃
1250 * Working Humidity: 10 ~~ 90%RH
1251 * Power Consumption: 4mA @ 12v
1252
1253 === 6.6.3 Dimension ===
1254
1255
1256 [[image:1656057348695-898.png]]
1257
1258
1259 === 6.6.4 Pin Mapping ===
1260
1261
1262 [[image:1656057359343-744.png]]
1263
1264
1265 === 6.6.5 Installation Notice ===
1266
1267
1268 Do not power on while connect the cables. Double check the wiring before power on.
1269
1270
1271 [[image:1656057369259-804.png]]
1272
1273
1274 [[image:1656057377943-564.png]]
1275
1276
1277 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1278
1279
1280 (((
1281 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1282 )))
1283
1284 (((
1285 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1286 )))
1287
1288 (((
1289 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1290 )))
1291
1292
1293 === 6.7.1 Feature ===
1294
1295
1296 (((
1297 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1298 )))
1299
1300 (((
1301 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1302 )))
1303
1304
1305 === 6.7.2 Specification ===
1306
1307
1308 * Input Power: DC 5 ~~ 24v
1309 * Interface: RS485
1310 * Response Spectrum: 400~~700nm
1311 * Measure range: 0 ~~ 2500μmol/m2•s
1312 * Resolution: 1μmol/m2•s
1313 * Accuracy: ±2%
1314 * Yearly Stability: ≤ ±2%
1315 * Working Temperature: -30℃ ~~ 75℃
1316 * Working Humidity: 10 ~~ 90%RH
1317 * Power Consumption: 3mA @ 12v
1318
1319 === 6.7.3 Dimension ===
1320
1321
1322 [[image:1656057538793-888.png]]
1323
1324
1325 === 6.7.4 Pin Mapping ===
1326
1327
1328 [[image:1656057548116-203.png]]
1329
1330
1331 === 6.7.5 Installation Notice ===
1332
1333
1334 Do not power on while connect the cables. Double check the wiring before power on.
1335
1336
1337 [[image:1656057557191-895.png]]
1338
1339
1340 [[image:1656057565783-251.png]]
1341
1342
1343 = 7. FAQ =
1344
1345 == 7.1 What else do I need to purchase to build Weather Station? ==
1346
1347
1348 Below is the installation photo and structure:
1349
1350
1351 [[image:1656057598349-319.png]]
1352
1353
1354 [[image:1656057608049-693.png]]
1355
1356
1357 == 7.2 How to upgrade firmware for WSC1-L? ==
1358
1359
1360 (((
1361 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1362 )))
1363
1364 (((
1365 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1366 )))
1367
1368
1369 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1370
1371
1372 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1373
1374
1375 == 7.4 Can I add my weather sensors? ==
1376
1377
1378 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1379
1380
1381 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1382
1383
1384 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1385
1386
1387 == 7.6  How to change the data read by the rain gauge? ==
1388
1389
1390 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1391
1392 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1393
1394 **Rainfall query value:**
1395
1396 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1397
1398 4:Current Hourly rainfall: etc 0.2mm
1399
1400 5:Rainfall in last hour:etc 0.2mm
1401
1402 6:24-hour maximum rainfall etc  10.0mm
1403
1404 8:24-hour minimum rainfall:etc  0.0mm
1405
1406 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1407
1408 = 8. Trouble Shooting =
1409
1410 == 8.1 AT Command input doesn't work ==
1411
1412
1413 (((
1414 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1415 )))
1416
1417
1418 == 8.2  Possible reasons why the device is unresponsive: ==
1419
1420 ~1. Check whether the battery voltage is lower than 2.8V
1421 2. Check whether the jumper of the device is correctly connected
1422
1423 [[image:image-20240330173709-1.png]]
1424 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1425
1426
1427 [[image:image-20240330173724-2.png]]
1428
1429 = 9. Order Info =
1430
1431 == 9.1 Main Process Unit ==
1432
1433
1434 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1435
1436 (% style="color:blue" %)**XX**(%%): The default frequency band
1437
1438 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1439 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1440 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1441 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1442 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1443 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1444 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1445 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1446
1447 == 9.2 Sensors ==
1448
1449
1450 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1451 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1452 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1453 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1454 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1455 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1456 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1457 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1458 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1459 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1460
1461 = 10. Support =
1462
1463
1464 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1465
1466 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1467
1468 = 11. Appendix I: Field Installation Photo =
1469
1470
1471 [[image:1656058346362-132.png||height="685" width="732"]]
1472
1473 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1474
1475
1476
1477 (% style="color:blue" %)**Wind Speed/Direction**
1478
1479 [[image:1656058373174-421.png||height="356" width="731"]]
1480
1481
1482
1483 (% style="color:blue" %)**Total Solar Radiation sensor**
1484
1485 [[image:1656058397364-282.png||height="453" width="732"]]
1486
1487
1488
1489 (% style="color:blue" %)**PAR Sensor**
1490
1491 [[image:1656058416171-615.png]]
1492
1493
1494
1495 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1496
1497 [[image:1656058441194-827.png||height="672" width="523"]]
1498
1499
1500
1501 (% style="color:blue" %)**Rain / Snow Detect**
1502
1503 [[image:1656058451456-166.png]]
1504
1505
1506
1507 (% style="color:blue" %)**Rain Gauge**
1508
1509 [[image:1656058463455-569.png||height="499" width="550"]]
1510
1511
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0