Show last authors
1 **Contents:**
2
3 {{toc/}}
4
5
6 = 1. Introduction =
7
8 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
9
10 * No internet connection.
11 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
12
13 (((
14 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
15 )))
16
17 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
18 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
19 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
20
21 = 2. How it works =
22
23
24 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
25
26
27 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
28
29 (% class="box infomessage" %)
30 (((
31 AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
32 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
33 AT+DADDR=2602111D
34 )))
35
36 (((
37 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
38 )))
39
40 We need to input above keys in LG308 and enable ABP decryption.
41
42 [[image:image-20220527161119-1.png]]
43
44 Input the ABP keys in LG308
45
46
47 == 2.1 Upstream ==
48
49 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
50
51 (((
52 We can see the log of LG308 to know this packet arrive
53 )))
54
55 [[image:image-20220527161149-2.png]]
56
57 LG308 log by "logread -f" command
58
59
60 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
61
62 (% class="box" %)
63 (((
64 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
66 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
67 000001c
68 )))
69
70 * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
71 * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
72 * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
73
74 (% class="box" %)
75 (((
76 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
77 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
78 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
79 0000000 4646 4646 4646 3946 3030 3030 3030 3546
80 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
81 000001c
82 )))
83
84 (% class="box" %)
85 (((
86 (% style="color:#037691" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
87 )))
88
89
90 === 2.2.1 Decode Method ===
91
92 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
93
94 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
95
96 (% class="box" %)
97 (((
98 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
99 0000000 4646 4646 4646 4537 3030 3030 3030 3438
100 0000010 ccd1 7fff 7fff 017f ff7f ff00         
101 000001c
102 )))
103
104 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
105
106 (% class="box" %)
107 (((
108 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
109 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
110 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
111 )))
112
113 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
114
115 (% class="box" %)
116 (((
117 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
118 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
119 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
120 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
121 )))
122
123 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
124
125
126 === 2.2.2 How to Decode My End Node ===
127
128 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
129
130 2/ Don't choose MQTT service, use LoRaWAN.
131
132 3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
133
134 4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
135
136 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
137 }}}
138
139 5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
140
141 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
142 * If you rename the file, please make it executable.
143 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
144 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
145 * the last line return is what will be used for MQTT
146 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
147
148
149
150 == 2.2 Downstream ==
151
152 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
153
154 The file should use below format:
155
156 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
157
158 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
159
160 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
161
162 * dev_addr: Inptu the device address
163 * imme/time:
164 ** imme: send downstream immediately,For Class C end node.
165 ** time: send downstream after receive device's uplink. For Class A end node
166 * txt/hex:
167 ** txt: send payload in ASCII
168 ** hex: send payload in HEX
169 * payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
170 * txpw: Transmit Power. example: 20
171 * txbw: bandwidth:
172 ** 1: 500 kHz
173 ** 2: 250 kHz
174 ** 3: 125 kHz
175 ** 4: 62.5 kHz
176 * SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
177 * Frequency: Transmit Frequency: example: 923300000
178 * rxwindow: transmit on Rx1Window or Rx2Window.
179
180 Completely exmaple:
181
182 * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
183 * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
184
185
186 (% style="color:#037691" %)**Downstream Frequency**
187
188 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
189
190 * EU868: 869.525Mhz, DR0(SF12BW125)
191 * US915: 923.3Mhz, SF12 BW500
192 * CN470: 505.3Mhz, SF12 BW125
193 * AU915: 923.3Mhz, SF12 BW500
194 * AS923: 923.2Mhz, SF10 BW125
195 * KR920: 921.9Mhz, SF12 BW125
196 * IN865: 866.55Mhz, SF10 BW125
197 * RU864: 869.1Mhz, SF12 BW125
198
199
200 (% style="color:#037691" %)**Examples:**
201
202 (% class="box" %)
203 (((
204 we can use echo command to create files in LG308 for downstream.
205 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
206 )))
207
208 (% class="box" %)
209 (((
210 1) From logread -f of gateway, we can see it has been added as pedning.
211 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
212 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
213 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
214 )))
215
216 (% class="box" %)
217 (((
218 2) When there is an upstrea from end node, this downstream will be sent and shows:
219 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
220 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
221 )))
222
223 (% class="box" %)
224 (((
225 3) and the end node will got:
226 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
227 [5764827]TX on freq 905300000 Hz at DR 0
228 Update Interval: 60000 ms
229 [5765202]txDone
230 [5766193]RX on freq 927500000 Hz at DR 10
231 [5766225]rxTimeOut
232 [5767205]RX on freq 923300000 Hz at DR 8
233 [5767501]rxDone
234 Rssi= -41
235 Receive data
236 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
237 )))
238
239 (% class="box" %)
240 (((
241 4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
242 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
243 [5955879]TX on freq 904100000 Hz at DR 0
244 Update Interval: 60000 ms
245 [5956254]txDone
246 [5957246]RX on freq 923900000 Hz at DR 10
247 [5957278]rxTimeOut
248 [5958257]RX on freq 923300000 Hz at DR 8
249 [5958595]rxDone
250 Rssi= -37
251 Receive data
252 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
253 )))
254
255
256 = 3. Example 1: Communicate with LT-22222-L =
257
258 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
259
260 (% class="box" %)
261 (((
262 #!/bin/sh
263 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
264 #
265 # Hardware Prepare:
266 # 1. LT-22222-L x 2, both are configured to work in
267 #   a) Class C ;
268 # b) ABP Mode ;
269 # c) AT+Mod=1
270 # 2. LPS8,
271 #   a) Firmware version >
272 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
273 #   c) Lorawan server choose built-in
274 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
275 #
276 # How it works?
277 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
278 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
279 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
280 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
281 #   ( The purpose of this step is to show that the Device2 has already do the change there).
282 #
283 #  For example: If current status of Device1 and Device2 leds shows:
284 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
285 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
286 #
287 #  Step2  will cause below change:
288 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
289 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
290
291 #  Step3 will cause below change:
292 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
293 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
294 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
295 #  whether the Device 2 has been changed.
296 )))
297
298 ~1. Input keys
299
300 [[image:image-20220527162450-3.png]]
301
302 Input Keys in LPS8
303
304
305 2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
306
307 3. Choose Built-in server
308
309 [[image:image-20220527162518-4.png]]
310
311 Choose Built-in server
312
313
314 4. Run the script.
315
316 [[image:image-20220527162552-5.png]]
317
318 Run the script
319
320
321 5. Output:
322
323 [[image:image-20220527162619-6.png]]
324
325 Output from LPS8
326
327
328 = 4. Example 2: Communicate to TCP Server =
329
330 [[image:https://wiki.dragino.com/images/thumb/7/75/LPS8_TCP_0.png/600px-LPS8_TCP_0.png||height="370" width="600"]]
331
332 Network Structure
333
334
335 Full instruction video inlcude how to write scripts to fit server needed is here:
336
337
338 (% class="mark" %)**Video Instruction**: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
339
340 (% class="mark" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
341
342 Assume we already set up ABP keys in the gateway:
343
344 [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
345
346 Input Keys in LPS8
347
348 run socket tool in PC
349
350 [[image:https://wiki.dragino.com/images/thumb/4/4b/LPS8_TCP_2.png/600px-LPS8_TCP_2.png||height="212" width="600"]]
351
352 Socket tool
353
354
355 Input Server address and port
356
357 [[image:https://wiki.dragino.com/images/thumb/c/c6/LPS8_TCP_3.png/600px-LPS8_TCP_3.png||height="306" width="600"]]
358
359 Input Server address and port
360
361
362 See value receive in socket tool. :
363
364 [[image:https://wiki.dragino.com/images/thumb/2/20/LPS8_TCP_4.png/600px-LPS8_TCP_4.png||height="219" width="600"]]
365
366 value receive in socket tool
367
368 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0