Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13
14 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
15
16 (((
17 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
18 )))
19
20 * LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
21
22 * LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
23
24 * Firmware version for below instruction:  **[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
25
26
27
28 = 2. How it works =
29
30
31 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
32
33
34 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
35
36 (% class="box infomessage" %)
37 (((
38 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
39 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
40 AT+DADDR=2602111D**
41 )))
42
43 (((
44 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
45
46
47 )))
48
49 We need to input above keys in LG308 and enable ABP decryption.
50
51
52 [[image:image-20220527161119-1.png]]
53
54
55 Input the ABP keys in LG308
56
57
58 == 2.1 Upstream ==
59
60
61 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
62
63 (((
64 We can see the log of LG308 to know this packet arrive.
65
66
67 )))
68
69 [[image:image-20220527161149-2.png]]
70
71
72 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
73
74
75
76 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
77
78 (% class="box" %)
79 (((
80 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
81 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
82 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
83 000001c
84 )))
85
86 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
87
88 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
89
90 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
91
92 (% class="box" %)
93 (((
94 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
95 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
96 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
97 0000000 4646 4646 4646 3946 3030 3030 3030 3546
98 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
99 000001c
100 )))
101
102
103 (% class="box" %)
104 (((
105 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
106 )))
107
108
109 === 2.2.1 Decode Method ===
110
111
112 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
113
114 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
115
116 (% class="box" %)
117 (((
118 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
119 0000000 4646 4646 4646 4537 3030 3030 3030 3438
120 0000010 ccd1 7fff 7fff 017f ff7f ff00         
121 000001c
122 )))
123
124
125 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
126
127 (% class="box" %)
128 (((
129 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
130 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
131 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
132 )))
133
134
135 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
136
137 (% class="box" %)
138 (((
139 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
140 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
141 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
142 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
143 )))
144
145 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
146
147
148 === 2.2.2 How to Decode My End Node ===
149
150
151 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
152
153 **2. **Don't choose MQTT service, use LoRaWAN.
154
155 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
156
157 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
158
159 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
160 }}}
161
162 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
163
164
165 (% style="color:red" %)
166 **Some notice:**
167
168 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
169
170 * If you rename the file, please make it executable.
171
172 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
173
174 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
175
176 * the last line return is what will be used for MQTT
177
178 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
179
180
181
182 == 2.2 Downstream ==
183
184
185 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
186
187 The file should use below format:
188
189 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
190
191
192 Since fimware > [[Dragino lgw~~-~~-build-v5.4.1668567157>>https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LG308-LG301/Firmware/Release/]] . Support more option
193
194 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow,Fport**
195
196 * **dev_addr:** Inptu the device address
197
198 * **imme/time:**
199 ** imme: send downstream immediately,For Class C end node.
200 ** time: send downstream after receive device's uplink. For Class A end node
201
202 * **txt/hex:**
203 ** txt: send payload in ASCII
204 ** hex: send payload in HEX
205
206 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
207
208 * **txpw:** Transmit Power. example: 20
209
210 * **txbw:** bandwidth:
211 ** 1: 500 kHz
212 ** 2: 250 kHz
213 ** 3: 125 kHz
214 ** 4: 62.5 kHz
215 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
216
217 * **Frequency:** Transmit Frequency: example: 923300000
218
219 * **rxwindow:** transmit on Rx1Window or Rx2Window.
220
221 * **Fport: **Transmit port,example:8
222
223
224 (% style="color:blue" %)**Completely exmaple:**
225
226 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
227
228 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2,8 > /var/iot/push/test
229
230
231 Downstream(% style="color:#037691" %)** Frequency:**
232
233 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
234
235 * EU868: 869.525Mhz, DR0(SF12BW125)
236
237 * US915: 923.3Mhz, SF12 BW500
238
239 * CN470: 505.3Mhz, SF12 BW125
240
241 * AU915: 923.3Mhz, SF12 BW500
242
243 * AS923: 923.2Mhz, SF10 BW125
244
245 * KR920: 921.9Mhz, SF12 BW125
246
247 * IN865: 866.55Mhz, SF10 BW125
248
249 * RU864: 869.1Mhz, SF12 BW125
250
251
252
253 (% style="color:#037691" %)**Examples:**
254
255 (% class="box" %)
256 (((
257 we can use echo command to create files in LG308 for downstream.
258 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
259
260
261 **1)** From logread -f of gateway, we can see it has been added as pedning.
262 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
263 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
264 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
265
266
267 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
268 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
269 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
270
271
272 **3)** and the end node will got:
273 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
274 [5764827]TX on freq 905300000 Hz at DR 0
275 Update Interval: 60000 ms
276 [5765202]txDone
277 [5766193]RX on freq 927500000 Hz at DR 10
278 [5766225]rxTimeOut
279 [5767205]RX on freq 923300000 Hz at DR 8
280 [5767501]rxDone
281 Rssi= -41
282 Receive data
283 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
284
285
286 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
287 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
288 [5955879]TX on freq 904100000 Hz at DR 0
289 Update Interval: 60000 ms
290 [5956254]txDone
291 [5957246]RX on freq 923900000 Hz at DR 10
292 [5957278]rxTimeOut
293 [5958257]RX on freq 923300000 Hz at DR 8
294 [5958595]rxDone
295 Rssi= -37
296 Receive data
297 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
298 )))
299
300
301 = 3. Example 1: Communicate with LT-22222-L =
302
303
304 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
305
306 (% class="box" %)
307 (((
308 //#!/bin/sh
309 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
310 #
311 # Hardware Prepare:
312 # 1. LT-22222-L x 2, both are configured to work in
313 #   a) Class C ;
314 # b) ABP Mode ;
315 # c) AT+Mod=1
316 # 2. LPS8,
317 #   a) Firmware version >
318 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
319 #   c) Lorawan server choose built-in
320 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
321 #
322 # How it works?
323 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
324 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
325 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
326 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
327 #   ( The purpose of this step is to show that the Device2 has already do the change there).
328 #
329 #  For example: If current status of Device1 and Device2 leds shows:
330 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
331 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
332 #
333 #  Step2  will cause below change:
334 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
335 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
336
337 #  Step3 will cause below change:
338 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
339 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
340 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
341 #  whether the Device 2 has been changed.//
342 )))
343
344
345 (% style="color:blue" %)**1. Input keys**
346
347
348 [[image:image-20220527162450-3.png]]
349
350 Input Keys in LPS8
351
352
353
354 (% style="color:blue" %)**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
355
356
357 (% style="color:blue" %)**3. Choose Built-in server**
358
359
360 [[image:image-20220527162518-4.png]]
361
362 Choose Built-in server
363
364
365
366 (% style="color:blue" %)**4. Run the script.**
367
368
369 [[image:image-20220722115213-2.png]]
370
371 Run the script
372
373
374
375 (% style="color:blue" %)**5. Output:**
376
377
378 [[image:image-20220722115133-1.png]]
379
380 Output from LPS8
381
382
383 = 4. Example 2: Communicate to TCP Server =
384
385
386 [[image:image-20220527162648-7.png]]
387
388 Network Structure
389
390
391 Full instruction video inlcude how to write scripts to fit server needed is here:
392
393 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
394
395 (% style="display:none" %) (%%)
396
397 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
398
399
400 Assume we already set up ABP keys in the gateway:
401
402 [[image:image-20220527162852-8.png]]
403
404 Input Keys in LPS8
405
406
407
408 (% style="color:blue" %)**run socket tool in PC**
409
410
411 [[image:image-20220527163028-9.png]]
412
413
414 Socket tool
415
416
417
418 (% style="color:blue" %)**Input Server address and port**
419
420
421 [[image:image-20220527163106-10.png]]
422
423 Input Server address and port
424
425
426
427 (% style="color:blue" %)**See value receive in socket tool:**
428
429
430 [[image:image-20220527163144-11.png||height="502" width="1371"]]
431
432 value receive in socket tool
433
434
435 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0