Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24 = 2. How it works =
25
26
27 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
28
29
30 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
31
32 (% class="box infomessage" %)
33 (((
34 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
35 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
36 AT+DADDR=2602111D**
37 )))
38
39 (((
40 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
41
42
43 )))
44
45 We need to input above keys in LG308 and enable ABP decryption.
46
47
48 [[image:image-20220527161119-1.png]]
49
50
51 Input the ABP keys in LG308
52
53
54
55 == 2.1 Upstream ==
56
57
58 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
59
60 (((
61 We can see the log of LG308 to know this packet arrive.
62
63
64 )))
65
66 [[image:image-20220527161149-2.png]]
67
68
69 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
70
71
72
73 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
74
75 (% class="box" %)
76 (((
77 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
78 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
79 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
80 000001c
81 )))
82
83 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
84 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
85 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
86
87 (% class="box" %)
88 (((
89 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
90 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
91 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
92 0000000 4646 4646 4646 3946 3030 3030 3030 3546
93 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
94 000001c
95 )))
96
97
98 (% class="box" %)
99 (((
100 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
101 )))
102
103
104
105 === 2.2.1 Decode Method ===
106
107
108 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
109
110 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
111
112 (% class="box" %)
113 (((
114 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
115 0000000 4646 4646 4646 4537 3030 3030 3030 3438
116 0000010 ccd1 7fff 7fff 017f ff7f ff00         
117 000001c
118 )))
119
120
121 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
122
123 (% class="box" %)
124 (((
125 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
126 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
127 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
128 )))
129
130
131 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
132
133 (% class="box" %)
134 (((
135 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
136 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
137 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
138 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
139 )))
140
141 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
142
143
144
145 === 2.2.2 How to Decode My End Node ===
146
147
148 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
149
150 **2. **Don't choose MQTT service, use LoRaWAN.
151
152 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
153
154 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
155
156 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
157 }}}
158
159 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
160
161
162 (% style="color:red" %)
163 **Some notice:**
164
165 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
166 * If you rename the file, please make it executable.
167 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
168 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
169 * the last line return is what will be used for MQTT
170 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
171
172
173 == 2.2 Downstream ==
174
175
176 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
177
178 The file should use below format:
179
180 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
181
182
183 Since fimware > [[Dragino lgw~~-~~-build-v5.4.1668567157>>https://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LG308-LG301/Firmware/Release/]] . Support more option
184
185 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
186
187 * **dev_addr:** Inptu the device address
188 * **imme/time:**
189 ** imme: send downstream immediately,For Class C end node.
190 ** time: send downstream after receive device's uplink. For Class A end node
191 * **txt/hex:**
192 ** txt: send payload in ASCII
193 ** hex: send payload in HEX
194 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
195 * **txpw:** Transmit Power. example: 20
196 * **txbw:** bandwidth:
197 ** 1: 500 kHz
198 ** 2: 250 kHz
199 ** 3: 125 kHz
200 ** 4: 62.5 kHz
201 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
202 * **Frequency:** Transmit Frequency: example: 923300000
203 * **rxwindow:** transmit on Rx1Window or Rx2Window.
204 * **Fport: **Transmit port,example:8
205
206
207 (% style="color:blue" %)**Completely exmaple:**
208
209 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
210 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2,2 > /var/iot/push/test
211
212 (% style="color:#037691" %)**Downstream Frequency:**
213
214 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
215
216 * EU868: 869.525Mhz, DR0(SF12BW125)
217 * US915: 923.3Mhz, SF12 BW500
218 * CN470: 505.3Mhz, SF12 BW125
219 * AU915: 923.3Mhz, SF12 BW500
220 * AS923: 923.2Mhz, SF10 BW125
221 * KR920: 921.9Mhz, SF12 BW125
222 * IN865: 866.55Mhz, SF10 BW125
223 * RU864: 869.1Mhz, SF12 BW125
224
225 (% style="color:#037691" %)**Examples:**
226
227 (% class="box" %)
228 (((
229 we can use echo command to create files in LG308 for downstream.
230 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
231
232
233 **1)** From logread -f of gateway, we can see it has been added as pedning.
234 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
235 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
236 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
237
238
239 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
240 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
241 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
242
243
244 **3)** and the end node will got:
245 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
246 [5764827]TX on freq 905300000 Hz at DR 0
247 Update Interval: 60000 ms
248 [5765202]txDone
249 [5766193]RX on freq 927500000 Hz at DR 10
250 [5766225]rxTimeOut
251 [5767205]RX on freq 923300000 Hz at DR 8
252 [5767501]rxDone
253 Rssi= -41
254 Receive data
255 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
256
257
258 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
259 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
260 [5955879]TX on freq 904100000 Hz at DR 0
261 Update Interval: 60000 ms
262 [5956254]txDone
263 [5957246]RX on freq 923900000 Hz at DR 10
264 [5957278]rxTimeOut
265 [5958257]RX on freq 923300000 Hz at DR 8
266 [5958595]rxDone
267 Rssi= -37
268 Receive data
269 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
270 )))
271
272
273
274 = 3. Example 1: Communicate with LT-22222-L =
275
276
277 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
278
279 (% class="box" %)
280 (((
281 //#!/bin/sh
282 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
283 #
284 # Hardware Prepare:
285 # 1. LT-22222-L x 2, both are configured to work in
286 #   a) Class C ;
287 # b) ABP Mode ;
288 # c) AT+Mod=1
289 # 2. LPS8,
290 #   a) Firmware version >
291 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
292 #   c) Lorawan server choose built-in
293 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
294 #
295 # How it works?
296 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
297 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
298 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
299 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
300 #   ( The purpose of this step is to show that the Device2 has already do the change there).
301 #
302 #  For example: If current status of Device1 and Device2 leds shows:
303 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
304 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
305 #
306 #  Step2  will cause below change:
307 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
308 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
309
310 #  Step3 will cause below change:
311 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
312 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
313 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
314 #  whether the Device 2 has been changed.//
315 )))
316
317
318 (% style="color:blue" %)**1. Input keys**
319
320
321 [[image:image-20220527162450-3.png]]
322
323 Input Keys in LPS8
324
325
326
327 (% style="color:blue" %)**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
328
329
330 (% style="color:blue" %)**3. Choose Built-in server**
331
332
333 [[image:image-20220527162518-4.png]]
334
335 Choose Built-in server
336
337
338
339 (% style="color:blue" %)**4. Run the script.**
340
341
342 [[image:image-20220722115213-2.png]]
343
344 Run the script
345
346
347
348 (% style="color:blue" %)**5. Output:**
349
350
351 [[image:image-20220722115133-1.png]]
352
353 Output from LPS8
354
355
356
357 = 4. Example 2: Communicate to TCP Server =
358
359
360 [[image:image-20220527162648-7.png]]
361
362 Network Structure
363
364
365 Full instruction video inlcude how to write scripts to fit server needed is here:
366
367
368 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
369
370
371 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
372
373
374 Assume we already set up ABP keys in the gateway:
375
376 [[image:image-20220527162852-8.png]]
377
378 Input Keys in LPS8
379
380
381
382 (% style="color:blue" %)**run socket tool in PC**
383
384
385 [[image:image-20220527163028-9.png]]
386
387
388 Socket tool
389
390
391
392 (% style="color:blue" %)**Input Server address and port**
393
394
395 [[image:image-20220527163106-10.png]]
396
397 Input Server address and port
398
399
400
401 (% style="color:blue" %)**See value receive in socket tool:**
402
403
404 [[image:image-20220527163144-11.png]]
405
406 value receive in socket tool
407
408
409 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0