Show last authors
1 **Contents:**
2
3 {{toc/}}
4
5
6 = 1. Introduction =
7
8 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
9
10 * No internet connection.
11 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>url:https://wiki.dragino.com/index.php/MQTT_Forward_Instruction]]).
12
13 (((
14 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
15 )))
16
17 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
18 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
19 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
20
21 = 2. How it works =
22
23
24 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
25
26
27 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
28
29 (% class="box infomessage" %)
30 (((
31 AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
32 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
33 AT+DADDR=2602111D
34 )))
35
36 (((
37 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
38 )))
39
40 We need to input above keys in LG308 and enable ABP decryption.
41
42 [[image:https://wiki.dragino.com/images/thumb/5/55/LG308_MQTT_1.png/600px-LG308_MQTT_1.png||height="329" width="600"]]
43
44 Input the ABP keys in LG308
45
46
47 == 2.1 Upstream ==
48
49 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
50
51 (((
52 We can see the log of LG308 to know this packet arrive
53 )))
54
55 [[image:https://wiki.dragino.com/images/thumb/1/16/ABP_DECODE_2.png/600px-ABP_DECODE_2.png||height="205" width="600"]]
56
57 LG308 log by "logread -f" command
58
59
60 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
61
62 (% class="box" %)
63 (((
64 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
65 0000000 (% class="mark" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
66 0000010 (% class="mark" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
67 000001c
68 )))
69
70 * RSSI: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
71 * SNR: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
72 * Payload: 0xcc0c 0b63 0266 017f ff7f ff00
73
74 (% class="box" %)
75 (((
76 (% class="mark" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
77 in LGT92, use **AT+SEND=12**:hello world to send ASCII string
78 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
79 0000000 4646 4646 4646 3946 3030 3030 3030 3546
80 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
81 000001c
82 )))
83
84 (% class="box" %)
85 (((
86 (% class="mark" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
87 )))
88
89 === 2.2.1 Decode Method ===
90
91 The decode methods: **ASCII String, Decode_LHT65** doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
92
93 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
94
95 (% class="box" %)
96 (((
97 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
98 0000000 4646 4646 4646 4537 3030 3030 3030 3438
99 0000010 ccd1 7fff 7fff 017f ff7f ff00         
100 000001c
101 )))
102
103 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
104
105 (% class="box" %)
106 (((
107 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
108 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
109 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: ffffffe700000048ccd17fff7fff017fff7fff00
110 )))
111
112 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
113
114 (% class="box" %)
115 (((
116 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
117 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
118 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: {"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
119 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}
120 )))
121
122 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
123
124
125 === 2.2.2 How to Decode My End Node ===
126
127 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
128
129 2/ Don't choose MQTT service, use LoRaWAN.
130
131 3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
132
133 4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
134
135 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
136 }}}
137
138 5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
139
140 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
141 * If you rename the file, please make it executable.
142 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
143 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
144 * the last line return is what will be used for MQTT
145 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
146
147 == 2.2 Downstream ==
148
149 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
150
151 The file should use below format:
152
153 (% class="mark" %)**dev_addr,imme/time,txt/hex,payload**
154
155 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
156
157 (% class="mark" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
158
159 * dev_addr: Inptu the device address
160 * imme/time:
161 ** imme: send downstream immediately,For Class C end node.
162 ** time: send downstream after receive device's uplink. For Class A end node
163 * txt/hex:
164 ** txt: send payload in ASCII
165 ** hex: send payload in HEX
166 * payload: payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
167 * txpw: Transmit Power. example: 20
168 * txbw: bandwidth:
169 ** 1: 500 kHz
170 ** 2: 250 kHz
171 ** 3: 125 kHz
172 ** 4: 62.5 kHz
173 * SF: Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
174 * Frequency: Transmit Frequency: example: 923300000
175 * rxwindow: transmit on Rx1Window or Rx2Window.
176
177 Completely exmaple:
178
179 * Old version: echo 018193F4,imme,hex,0101 > /var/iot/push/test
180 * New version: echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
181
182 (% class="mark" %)**Downstream Frequency**
183
184 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
185
186 * EU868: 869.525Mhz, DR0(SF12BW125)
187 * US915: 923.3Mhz, SF12 BW500
188 * CN470: 505.3Mhz, SF12 BW125
189 * AU915: 923.3Mhz, SF12 BW500
190 * AS923: 923.2Mhz, SF10 BW125
191 * KR920: 921.9Mhz, SF12 BW125
192 * IN865: 866.55Mhz, SF10 BW125
193 * RU864: 869.1Mhz, SF12 BW125
194
195 (% class="mark" %)**Examples:**
196
197 (% class="box" %)
198 (((
199 we can use echo command to create files in LG308 for downstream.
200 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
201 )))
202
203 (% class="box" %)
204 (((
205 1) From logread -f of gateway, we can see it has been added as pedning.
206 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
207 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
208 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
209 )))
210
211 (% class="box" %)
212 (((
213 2) When there is an upstrea from end node, this downstream will be sent and shows:
214 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
215 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
216 )))
217
218 (% class="box" %)
219 (((
220 3) and the end node will got:
221 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
222 [5764827]TX on freq 905300000 Hz at DR 0
223 Update Interval: 60000 ms
224 [5765202]txDone
225 [5766193]RX on freq 927500000 Hz at DR 10
226 [5766225]rxTimeOut
227 [5767205]RX on freq 923300000 Hz at DR 8
228 [5767501]rxDone
229 Rssi= -41
230 Receive data
231 2:12345678    ~-~-> Hex
232 )))
233
234 (% class="box" %)
235 (((
236 4) If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
237 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
238 [5955879]TX on freq 904100000 Hz at DR 0
239 Update Interval: 60000 ms
240 [5956254]txDone
241 [5957246]RX on freq 923900000 Hz at DR 10
242 [5957278]rxTimeOut
243 [5958257]RX on freq 923300000 Hz at DR 8
244 [5958595]rxDone
245 Rssi= -37
246 Receive data
247 2:3132333435363738 ~-~-> ASCII string "12345678"
248 )))
249
250 = 3. Example 1: Communicate with LT-22222-L =
251
252 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
253
254 (% class="box" %)
255 (((
256 #!/bin/sh
257 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
258 #
259 # Hardware Prepare:
260 # 1. LT-22222-L x 2, both are configured to work in
261 #   a) Class C ;
262 # b) ABP Mode ;
263 # c) AT+Mod=1
264 # 2. LPS8,
265 #   a) Firmware version >
266 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
267 #   c) Lorawan server choose built-in
268 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
269 #
270 # How it works?
271 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
272 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
273 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
274 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
275 #   ( The purpose of this step is to show that the Device2 has already do the change there).
276 #
277 #  For example: If current status of Device1 and Device2 leds shows:
278 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
279 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
280 #
281 #  Step2  will cause below change:
282 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
283 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
284
285 #  Step3 will cause below change:
286 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
287 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
288 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
289 #  whether the Device 2 has been changed.
290 )))
291
292 ~1. Input keys
293
294 [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
295
296 Input Keys in LPS8
297
298 2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.
299
300 3. Choose Built-in server
301
302 [[image:https://wiki.dragino.com/images/thumb/d/d7/LPS8_LT-22222_2.png/600px-LPS8_LT-22222_2.png||height="264" width="600"]]
303
304 Choose Built-in server
305
306 4. Run the script.
307
308 [[image:https://wiki.dragino.com/images/thumb/3/39/LPS8_LT-22222_3.png/600px-LPS8_LT-22222_3.png||height="389" width="600"]]
309
310 Run the script
311
312 5. Output:
313
314 [[image:https://wiki.dragino.com/images/thumb/f/fe/LPS8_LT-22222_4.png/600px-LPS8_LT-22222_4.png||height="433" width="600"]]
315
316 Output from LPS8
317
318
319 = 4. Example 2: Communicate to TCP Server =
320
321 [[image:https://wiki.dragino.com/images/thumb/7/75/LPS8_TCP_0.png/600px-LPS8_TCP_0.png||height="370" width="600"]]
322
323 Network Structure
324
325
326 Full instruction video inlcude how to write scripts to fit server needed is here:
327
328
329 (% class="mark" %)**Video Instruction**: [[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]
330
331 (% class="mark" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
332
333 Assume we already set up ABP keys in the gateway:
334
335 [[image:https://wiki.dragino.com/images/thumb/b/bf/LPS8_LT-22222_1.png/600px-LPS8_LT-22222_1.png||height="335" width="600"]]
336
337 Input Keys in LPS8
338
339 run socket tool in PC
340
341 [[image:https://wiki.dragino.com/images/thumb/4/4b/LPS8_TCP_2.png/600px-LPS8_TCP_2.png||height="212" width="600"]]
342
343 Socket tool
344
345
346 Input Server address and port
347
348 [[image:https://wiki.dragino.com/images/thumb/c/c6/LPS8_TCP_3.png/600px-LPS8_TCP_3.png||height="306" width="600"]]
349
350 Input Server address and port
351
352
353 See value receive in socket tool. :
354
355 [[image:https://wiki.dragino.com/images/thumb/2/20/LPS8_TCP_4.png/600px-LPS8_TCP_4.png||height="219" width="600"]]
356
357 value receive in socket tool
358
359 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0