Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15
16
17 (((
18 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
19 )))
20
21 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
22 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
23 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
24
25
26
27
28 = 2. How it works =
29
30
31 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
32
33
34 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
35
36 (% class="box infomessage" %)
37 (((
38 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
39 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
40 AT+DADDR=2602111D**
41 )))
42
43 (((
44 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
45
46
47 )))
48
49 We need to input above keys in LG308 and enable ABP decryption.
50
51
52 [[image:image-20220527161119-1.png]]
53
54
55 Input the ABP keys in LG308
56
57
58
59 == 2.1 Upstream ==
60
61
62 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
63
64 (((
65 We can see the log of LG308 to know this packet arrive.
66
67
68 )))
69
70 [[image:image-20220527161149-2.png]]
71
72
73 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
74
75
76
77 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
78
79 (% class="box" %)
80 (((
81 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
82 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
83 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
84 000001c
85 )))
86
87 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
88 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
89 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
90
91
92
93 (% class="box" %)
94 (((
95 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
96 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
97 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
98 0000000 4646 4646 4646 3946 3030 3030 3030 3546
99 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
100 000001c
101 )))
102
103
104 (% class="box" %)
105 (((
106 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
107 )))
108
109
110
111 === 2.2.1 Decode Method ===
112
113
114 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
115
116 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
117
118 (% class="box" %)
119 (((
120 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
121 0000000 4646 4646 4646 4537 3030 3030 3030 3438
122 0000010 ccd1 7fff 7fff 017f ff7f ff00         
123 000001c
124 )))
125
126
127 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
128
129 (% class="box" %)
130 (((
131 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
132 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
133 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
134 )))
135
136
137 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
138
139 (% class="box" %)
140 (((
141 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
142 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
143 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
144 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
145 )))
146
147 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
148
149
150
151 === 2.2.2 How to Decode My End Node ===
152
153
154 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
155
156 **2. **Don't choose MQTT service, use LoRaWAN.
157
158 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
159
160 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
161
162 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
163 }}}
164
165 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
166
167
168 (% style="color:red" %)
169 **Some notice:**
170
171 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
172 * If you rename the file, please make it executable.
173 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
174 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
175 * the last line return is what will be used for MQTT
176 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
177
178
179
180
181 == 2.2 Downstream ==
182
183
184 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
185
186 The file should use below format:
187
188 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
189
190
191 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
192
193 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
194
195 * **dev_addr:** Inptu the device address
196 * **imme/time:**
197 ** imme: send downstream immediately,For Class C end node.
198 ** time: send downstream after receive device's uplink. For Class A end node
199 * **txt/hex:**
200 ** txt: send payload in ASCII
201 ** hex: send payload in HEX
202 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
203 * **txpw:** Transmit Power. example: 20
204 * **txbw:** bandwidth:
205 ** 1: 500 kHz
206 ** 2: 250 kHz
207 ** 3: 125 kHz
208 ** 4: 62.5 kHz
209 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
210 * **Frequency:** Transmit Frequency: example: 923300000
211 * **rxwindow:** transmit on Rx1Window or Rx2Window.
212
213
214
215 (% style="color:blue" %)**Completely exmaple:**
216
217 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
218 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
219
220
221
222 (% style="color:#037691" %)**Downstream Frequency:**
223
224 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
225
226 * EU868: 869.525Mhz, DR0(SF12BW125)
227 * US915: 923.3Mhz, SF12 BW500
228 * CN470: 505.3Mhz, SF12 BW125
229 * AU915: 923.3Mhz, SF12 BW500
230 * AS923: 923.2Mhz, SF10 BW125
231 * KR920: 921.9Mhz, SF12 BW125
232 * IN865: 866.55Mhz, SF10 BW125
233 * RU864: 869.1Mhz, SF12 BW125
234
235
236
237 (% style="color:#037691" %)**Examples:**
238
239 (% class="box" %)
240 (((
241 we can use echo command to create files in LG308 for downstream.
242 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
243
244
245 **1)** From logread -f of gateway, we can see it has been added as pedning.
246 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
247 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
248 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
249
250
251 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
252 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
253 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
254
255
256 **3)** and the end node will got:
257 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
258 [5764827]TX on freq 905300000 Hz at DR 0
259 Update Interval: 60000 ms
260 [5765202]txDone
261 [5766193]RX on freq 927500000 Hz at DR 10
262 [5766225]rxTimeOut
263 [5767205]RX on freq 923300000 Hz at DR 8
264 [5767501]rxDone
265 Rssi= -41
266 Receive data
267 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
268
269
270 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
271 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
272 [5955879]TX on freq 904100000 Hz at DR 0
273 Update Interval: 60000 ms
274 [5956254]txDone
275 [5957246]RX on freq 923900000 Hz at DR 10
276 [5957278]rxTimeOut
277 [5958257]RX on freq 923300000 Hz at DR 8
278 [5958595]rxDone
279 Rssi= -37
280 Receive data
281 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
282 )))
283
284
285
286 = 3. Example 1: Communicate with LT-22222-L =
287
288
289 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
290
291 (% class="box" %)
292 (((
293 //#!/bin/sh
294 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
295 #
296 # Hardware Prepare:
297 # 1. LT-22222-L x 2, both are configured to work in
298 #   a) Class C ;
299 # b) ABP Mode ;
300 # c) AT+Mod=1
301 # 2. LPS8,
302 #   a) Firmware version >
303 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
304 #   c) Lorawan server choose built-in
305 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
306 #
307 # How it works?
308 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
309 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
310 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
311 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
312 #   ( The purpose of this step is to show that the Device2 has already do the change there).
313 #
314 #  For example: If current status of Device1 and Device2 leds shows:
315 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
316 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
317 #
318 #  Step2  will cause below change:
319 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
320 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
321
322 #  Step3 will cause below change:
323 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
324 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
325 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
326 #  whether the Device 2 has been changed.//
327 )))
328
329
330 (% style="color:blue" %)**1. Input keys**
331
332
333 [[image:image-20220527162450-3.png]]
334
335 Input Keys in LPS8
336
337
338
339 (% style="color:blue" %)**2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
340
341
342 (% style="color:blue" %)**3. Choose Built-in server**
343
344
345 [[image:image-20220527162518-4.png]]
346
347 Choose Built-in server
348
349
350
351 (% style="color:blue" %)**4. Run the script.**
352
353
354 [[image:image-20220722115213-2.png]]
355
356 Run the script
357
358
359
360 (% style="color:blue" %)**5. Output:**
361
362
363 [[image:image-20220722115133-1.png]]
364
365 Output from LPS8
366
367
368
369 = 4. Example 2: Communicate to TCP Server =
370
371
372 [[image:image-20220527162648-7.png]]
373
374 Network Structure
375
376
377 Full instruction video inlcude how to write scripts to fit server needed is here:
378
379
380 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
381
382
383 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
384
385
386 Assume we already set up ABP keys in the gateway:
387
388 [[image:image-20220527162852-8.png]]
389
390 Input Keys in LPS8
391
392
393
394 (% style="color:blue" %)**run socket tool in PC**
395
396
397 [[image:image-20220527163028-9.png]]
398
399
400 Socket tool
401
402
403
404 (% style="color:blue" %)**Input Server address and port**
405
406
407 [[image:image-20220527163106-10.png]]
408
409 Input Server address and port
410
411
412
413 (% style="color:blue" %)**See value receive in socket tool:**
414
415
416 [[image:image-20220527163144-11.png]]
417
418 value receive in socket tool
419
420
421 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0