Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24
25
26 = 2. How it works =
27
28
29 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
30
31
32 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
33
34 (% class="box infomessage" %)
35 (((
36 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
37 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
38 AT+DADDR=2602111D**
39 )))
40
41 (((
42 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
43
44
45 )))
46
47 We need to input above keys in LG308 and enable ABP decryption.
48
49 [[image:image-20220527161119-1.png]]
50
51 Input the ABP keys in LG308
52
53
54
55 == 2.1 Upstream ==
56
57
58 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
59
60 (((
61 We can see the log of LG308 to know this packet arrive
62 )))
63
64 [[image:image-20220527161149-2.png]]
65
66 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
67
68
69 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
70
71 (% class="box" %)
72 (((
73 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
74 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
75 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
76 000001c
77 )))
78
79 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
80 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
81 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
82
83
84
85 (% class="box" %)
86 (((
87 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
88 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
89 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
90 0000000 4646 4646 4646 3946 3030 3030 3030 3546
91 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
92 000001c
93 )))
94
95
96 (% class="box" %)
97 (((
98 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
99 )))
100
101
102
103 === 2.2.1 Decode Method ===
104
105
106 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
107
108 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
109
110 (% class="box" %)
111 (((
112 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
113 0000000 4646 4646 4646 4537 3030 3030 3030 3438
114 0000010 ccd1 7fff 7fff 017f ff7f ff00         
115 000001c
116 )))
117
118
119 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
120
121 (% class="box" %)
122 (((
123 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
124 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
125 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
126 )))
127
128
129 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
130
131 (% class="box" %)
132 (((
133 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
134 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
135 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
136 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
137 )))
138
139 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
140
141
142
143 === 2.2.2 How to Decode My End Node ===
144
145
146 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
147
148 **2. **Don't choose MQTT service, use LoRaWAN.
149
150 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
151
152 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
153
154 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
155 }}}
156
157 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
158
159
160 (% style="color:red" %)
161 **Some notice:**
162
163 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
164 * If you rename the file, please make it executable.
165 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
166 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
167 * the last line return is what will be used for MQTT
168 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
169
170
171
172
173 == 2.2 Downstream ==
174
175
176 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
177
178 The file should use below format:
179
180 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
181
182 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
183
184 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
185
186 * **dev_addr:** Inptu the device address
187 * **imme/time:**
188 ** imme: send downstream immediately,For Class C end node.
189 ** time: send downstream after receive device's uplink. For Class A end node
190 * **txt/hex:**
191 ** txt: send payload in ASCII
192 ** hex: send payload in HEX
193 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
194 * **txpw:** Transmit Power. example: 20
195 * **txbw:** bandwidth:
196 ** 1: 500 kHz
197 ** 2: 250 kHz
198 ** 3: 125 kHz
199 ** 4: 62.5 kHz
200 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
201 * **Frequency:** Transmit Frequency: example: 923300000
202 * **rxwindow:** transmit on Rx1Window or Rx2Window.
203
204 (% style="color:blue" %)**Completely exmaple:**
205
206 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
207 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
208
209 (% style="color:#037691" %)**Downstream Frequency**
210
211 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
212
213 * EU868: 869.525Mhz, DR0(SF12BW125)
214 * US915: 923.3Mhz, SF12 BW500
215 * CN470: 505.3Mhz, SF12 BW125
216 * AU915: 923.3Mhz, SF12 BW500
217 * AS923: 923.2Mhz, SF10 BW125
218 * KR920: 921.9Mhz, SF12 BW125
219 * IN865: 866.55Mhz, SF10 BW125
220 * RU864: 869.1Mhz, SF12 BW125
221
222 (% style="color:#037691" %)**Examples:**
223
224 (% class="box" %)
225 (((
226 we can use echo command to create files in LG308 for downstream.
227 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
228
229
230 **1)** From logread -f of gateway, we can see it has been added as pedning.
231 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
232 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
233 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
234
235
236 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
237 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
238 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
239
240
241 **3)** and the end node will got:
242 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
243 [5764827]TX on freq 905300000 Hz at DR 0
244 Update Interval: 60000 ms
245 [5765202]txDone
246 [5766193]RX on freq 927500000 Hz at DR 10
247 [5766225]rxTimeOut
248 [5767205]RX on freq 923300000 Hz at DR 8
249 [5767501]rxDone
250 Rssi= -41
251 Receive data
252 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
253
254
255 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
256 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
257 [5955879]TX on freq 904100000 Hz at DR 0
258 Update Interval: 60000 ms
259 [5956254]txDone
260 [5957246]RX on freq 923900000 Hz at DR 10
261 [5957278]rxTimeOut
262 [5958257]RX on freq 923300000 Hz at DR 8
263 [5958595]rxDone
264 Rssi= -37
265 Receive data
266 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
267 )))
268
269
270
271 = 3. Example 1: Communicate with LT-22222-L =
272
273
274 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
275
276 (% class="box" %)
277 (((
278 //#!/bin/sh
279 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
280 #
281 # Hardware Prepare:
282 # 1. LT-22222-L x 2, both are configured to work in
283 #   a) Class C ;
284 # b) ABP Mode ;
285 # c) AT+Mod=1
286 # 2. LPS8,
287 #   a) Firmware version >
288 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
289 #   c) Lorawan server choose built-in
290 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
291 #
292 # How it works?
293 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
294 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
295 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
296 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
297 #   ( The purpose of this step is to show that the Device2 has already do the change there).
298 #
299 #  For example: If current status of Device1 and Device2 leds shows:
300 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
301 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
302 #
303 #  Step2  will cause below change:
304 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
305 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
306
307 #  Step3 will cause below change:
308 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
309 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
310 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
311 #  whether the Device 2 has been changed.//
312 )))
313
314
315 **~1. Input keys**
316
317 [[image:image-20220527162450-3.png]]
318
319 Input Keys in LPS8
320
321
322 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
323
324
325 **3. Choose Built-in server**
326
327 [[image:image-20220527162518-4.png]]
328
329 Choose Built-in server
330
331
332 **4. Run the script.**
333
334 [[image:image-20220722115213-2.png]]
335
336 Run the script
337
338
339 **5. Output:**
340
341 [[image:image-20220722115133-1.png]]
342
343 Output from LPS8
344
345
346
347 = 4. Example 2: Communicate to TCP Server =
348
349
350 [[image:image-20220527162648-7.png]]
351
352 Network Structure
353
354
355 Full instruction video inlcude how to write scripts to fit server needed is here:
356
357
358 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
359
360
361 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
362
363
364 Assume we already set up ABP keys in the gateway:
365
366 [[image:image-20220527162852-8.png]]
367
368 Input Keys in LPS8
369
370
371
372 **run socket tool in PC**
373
374 [[image:image-20220527163028-9.png]]
375
376
377 Socket tool
378
379
380
381 **Input Server address and port**
382
383 [[image:image-20220527163106-10.png]]
384
385 Input Server address and port
386
387
388
389 **See value receive in socket tool:**
390
391 [[image:image-20220527163144-11.png]]
392
393 value receive in socket tool
394
395
396 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0