Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24
25 = 2. How it works =
26
27
28 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
29
30
31 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
32
33 (% class="box infomessage" %)
34 (((
35 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
36 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
37 AT+DADDR=2602111D**
38 )))
39
40 (((
41 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
42
43
44 )))
45
46 We need to input above keys in LG308 and enable ABP decryption.
47
48 [[image:image-20220527161119-1.png]]
49
50 Input the ABP keys in LG308
51
52
53 == 2.1 Upstream ==
54
55
56 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
57
58 (((
59 We can see the log of LG308 to know this packet arrive
60 )))
61
62 [[image:image-20220527161149-2.png]]
63
64 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
65
66
67 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
68
69 (% class="box" %)
70 (((
71 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
72 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
73 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
74 000001c
75 )))
76
77 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
78 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
79 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
80
81
82
83 (% class="box" %)
84 (((
85 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
86 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
87 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
88 0000000 4646 4646 4646 3946 3030 3030 3030 3546
89 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
90 000001c
91 )))
92
93 (% class="box" %)
94 (((
95 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
96 )))
97
98
99 === 2.2.1 Decode Method ===
100
101
102 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
103
104 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
105
106 (% class="box" %)
107 (((
108 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
109 0000000 4646 4646 4646 4537 3030 3030 3030 3438
110 0000010 ccd1 7fff 7fff 017f ff7f ff00         
111 000001c
112 )))
113
114
115 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
116
117 (% class="box" %)
118 (((
119 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
120 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
121 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
122 )))
123
124
125 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
126
127 (% class="box" %)
128 (((
129 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
130 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
131 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
132 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
133 )))
134
135 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
136
137
138
139 === 2.2.2 How to Decode My End Node ===
140
141
142 **1.** Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
143
144 **2. **Don't choose MQTT service, use LoRaWAN.
145
146 **3.** When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
147
148 **4.** Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
149
150 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
151 }}}
152
153 **5.** What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload.
154
155
156 (% style="color:red" %)
157 **Some notice:**
158
159 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
160 * If you rename the file, please make it executable.
161 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
162 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
163 * the last line return is what will be used for MQTT
164 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
165
166
167
168
169 == 2.2 Downstream ==
170
171
172 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
173
174 The file should use below format:
175
176 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
177
178 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
179
180 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
181
182 * **dev_addr:** Inptu the device address
183 * **imme/time:**
184 ** imme: send downstream immediately,For Class C end node.
185 ** time: send downstream after receive device's uplink. For Class A end node
186 * **txt/hex:**
187 ** txt: send payload in ASCII
188 ** hex: send payload in HEX
189 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
190 * **txpw:** Transmit Power. example: 20
191 * **txbw:** bandwidth:
192 ** 1: 500 kHz
193 ** 2: 250 kHz
194 ** 3: 125 kHz
195 ** 4: 62.5 kHz
196 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
197 * **Frequency:** Transmit Frequency: example: 923300000
198 * **rxwindow:** transmit on Rx1Window or Rx2Window.
199
200
201
202
203 (% style="color:blue" %)**Completely exmaple:**
204
205 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
206 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
207
208
209
210
211 (% style="color:#037691" %)**Downstream Frequency**
212
213 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
214
215 * EU868: 869.525Mhz, DR0(SF12BW125)
216 * US915: 923.3Mhz, SF12 BW500
217 * CN470: 505.3Mhz, SF12 BW125
218 * AU915: 923.3Mhz, SF12 BW500
219 * AS923: 923.2Mhz, SF10 BW125
220 * KR920: 921.9Mhz, SF12 BW125
221 * IN865: 866.55Mhz, SF10 BW125
222 * RU864: 869.1Mhz, SF12 BW125
223
224
225
226
227 (% style="color:#037691" %)**Examples:**
228
229 (% class="box" %)
230 (((
231 we can use echo command to create files in LG308 for downstream.
232 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
233
234
235 **1)** From logread -f of gateway, we can see it has been added as pedning.
236 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
237 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
238 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
239
240
241 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
242 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
243 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
244
245
246 **3)** and the end node will got:
247 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
248 [5764827]TX on freq 905300000 Hz at DR 0
249 Update Interval: 60000 ms
250 [5765202]txDone
251 [5766193]RX on freq 927500000 Hz at DR 10
252 [5766225]rxTimeOut
253 [5767205]RX on freq 923300000 Hz at DR 8
254 [5767501]rxDone
255 Rssi= -41
256 Receive data
257 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
258
259
260 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
261 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
262 [5955879]TX on freq 904100000 Hz at DR 0
263 Update Interval: 60000 ms
264 [5956254]txDone
265 [5957246]RX on freq 923900000 Hz at DR 10
266 [5957278]rxTimeOut
267 [5958257]RX on freq 923300000 Hz at DR 8
268 [5958595]rxDone
269 Rssi= -37
270 Receive data
271 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
272 )))
273
274
275 = 3. Example 1: Communicate with LT-22222-L =
276
277
278 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
279
280 (% class="box" %)
281 (((
282 //#!/bin/sh
283 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
284 #
285 # Hardware Prepare:
286 # 1. LT-22222-L x 2, both are configured to work in
287 #   a) Class C ;
288 # b) ABP Mode ;
289 # c) AT+Mod=1
290 # 2. LPS8,
291 #   a) Firmware version >
292 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
293 #   c) Lorawan server choose built-in
294 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
295 #
296 # How it works?
297 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
298 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
299 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
300 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
301 #   ( The purpose of this step is to show that the Device2 has already do the change there).
302 #
303 #  For example: If current status of Device1 and Device2 leds shows:
304 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
305 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
306 #
307 #  Step2  will cause below change:
308 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
309 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
310
311 #  Step3 will cause below change:
312 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
313 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
314 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
315 #  whether the Device 2 has been changed.//
316 )))
317
318
319 **~1. Input keys**
320
321 [[image:image-20220527162450-3.png]]
322
323 Input Keys in LPS8
324
325
326 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
327
328
329 **3. Choose Built-in server**
330
331 [[image:image-20220527162518-4.png]]
332
333 Choose Built-in server
334
335
336 **4. Run the script.**
337
338 [[image:image-20220527162552-5.png]]
339
340 Run the script
341
342
343 **5. Output:**
344
345 [[image:image-20220527162619-6.png]]
346
347 Output from LPS8
348
349
350 = 4. Example 2: Communicate to TCP Server =
351
352
353 [[image:image-20220527162648-7.png]]
354
355 Network Structure
356
357
358 Full instruction video inlcude how to write scripts to fit server needed is here:
359
360
361 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
362
363
364 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
365
366
367 Assume we already set up ABP keys in the gateway:
368
369 [[image:image-20220527162852-8.png]]
370
371 Input Keys in LPS8
372
373
374
375 **run socket tool in PC**
376
377 [[image:image-20220527163028-9.png]]
378
379
380 Socket tool
381
382
383
384 **Input Server address and port**
385
386 [[image:image-20220527163106-10.png]]
387
388 Input Server address and port
389
390
391
392 **See value receive in socket tool:**
393
394 [[image:image-20220527163144-11.png]]
395
396 value receive in socket tool
397
398
399 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0