Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7 = 1. Introduction =
8
9
10 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
11
12 * No internet connection.
13 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
14
15 (((
16 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
17 )))
18
19 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
20 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
21 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
22
23
24
25
26 = 2. How it works =
27
28
29 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
30
31
32 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
33
34 (% class="box infomessage" %)
35 (((
36 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
37 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
38 AT+DADDR=2602111D**
39 )))
40
41 (((
42 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
43
44
45 )))
46
47 We need to input above keys in LG308 and enable ABP decryption.
48
49 [[image:image-20220527161119-1.png]]
50
51 Input the ABP keys in LG308
52
53
54 == 2.1 Upstream ==
55
56
57 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
58
59 (((
60 We can see the log of LG308 to know this packet arrive
61 )))
62
63 [[image:image-20220527161149-2.png]]
64
65 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
66
67
68 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
69
70 (% class="box" %)
71 (((
72 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
73 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
74 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
75 000001c
76 )))
77
78 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
79 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
80 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
81
82 (% class="box" %)
83 (((
84 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
85 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
86 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
87 0000000 4646 4646 4646 3946 3030 3030 3030 3546
88 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
89 000001c
90 )))
91
92 (% class="box" %)
93 (((
94 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
95 )))
96
97
98 === 2.2.1 Decode Method ===
99
100
101 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
102
103 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
104
105 (% class="box" %)
106 (((
107 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
108 0000000 4646 4646 4646 4537 3030 3030 3030 3438
109 0000010 ccd1 7fff 7fff 017f ff7f ff00         
110 000001c
111 )))
112
113
114 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
115
116 (% class="box" %)
117 (((
118 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
119 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
120 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
121 )))
122
123
124 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
125
126 (% class="box" %)
127 (((
128 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
129 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
130 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
131 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
132 )))
133
134 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
135
136
137
138 === 2.2.2 How to Decode My End Node ===
139
140
141 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
142
143 2/ Don't choose MQTT service, use LoRaWAN.
144
145 3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
146
147 4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
148
149 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
150 }}}
151
152 5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
153
154 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
155 * If you rename the file, please make it executable.
156 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
157 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
158 * the last line return is what will be used for MQTT
159 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
160
161
162
163 == 2.2 Downstream ==
164
165
166 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
167
168 The file should use below format:
169
170 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
171
172 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
173
174 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
175
176 * **dev_addr:** Inptu the device address
177 * **imme/time:**
178 ** imme: send downstream immediately,For Class C end node.
179 ** time: send downstream after receive device's uplink. For Class A end node
180 * **txt/hex:**
181 ** txt: send payload in ASCII
182 ** hex: send payload in HEX
183 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
184 * **txpw:** Transmit Power. example: 20
185 * **txbw:** bandwidth:
186 ** 1: 500 kHz
187 ** 2: 250 kHz
188 ** 3: 125 kHz
189 ** 4: 62.5 kHz
190 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
191 * **Frequency:** Transmit Frequency: example: 923300000
192 * **rxwindow:** transmit on Rx1Window or Rx2Window.
193
194
195
196 (% style="color:blue" %)**Completely exmaple:**
197
198 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
199 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
200
201
202 (% style="color:#037691" %)**Downstream Frequency**
203
204 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
205
206 * EU868: 869.525Mhz, DR0(SF12BW125)
207 * US915: 923.3Mhz, SF12 BW500
208 * CN470: 505.3Mhz, SF12 BW125
209 * AU915: 923.3Mhz, SF12 BW500
210 * AS923: 923.2Mhz, SF10 BW125
211 * KR920: 921.9Mhz, SF12 BW125
212 * IN865: 866.55Mhz, SF10 BW125
213 * RU864: 869.1Mhz, SF12 BW125
214
215
216 (% style="color:#037691" %)**Examples:**
217
218 (% class="box" %)
219 (((
220 we can use echo command to create files in LG308 for downstream.
221 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
222 )))
223
224 (% class="box" %)
225 (((
226 **1)** From logread -f of gateway, we can see it has been added as pedning.
227 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
228 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
229 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
230 )))
231
232 (% class="box" %)
233 (((
234 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
235 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
236 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
237 )))
238
239 (% class="box" %)
240 (((
241 **3)** and the end node will got:
242 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
243 [5764827]TX on freq 905300000 Hz at DR 0
244 Update Interval: 60000 ms
245 [5765202]txDone
246 [5766193]RX on freq 927500000 Hz at DR 10
247 [5766225]rxTimeOut
248 [5767205]RX on freq 923300000 Hz at DR 8
249 [5767501]rxDone
250 Rssi= -41
251 Receive data
252 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
253 )))
254
255 (% class="box" %)
256 (((
257 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
258 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
259 [5955879]TX on freq 904100000 Hz at DR 0
260 Update Interval: 60000 ms
261 [5956254]txDone
262 [5957246]RX on freq 923900000 Hz at DR 10
263 [5957278]rxTimeOut
264 [5958257]RX on freq 923300000 Hz at DR 8
265 [5958595]rxDone
266 Rssi= -37
267 Receive data
268 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
269 )))
270
271
272 = 3. Example 1: Communicate with LT-22222-L =
273
274
275 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
276
277 (% class="box" %)
278 (((
279 //#!/bin/sh
280 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
281 #
282 # Hardware Prepare:
283 # 1. LT-22222-L x 2, both are configured to work in
284 #   a) Class C ;
285 # b) ABP Mode ;
286 # c) AT+Mod=1
287 # 2. LPS8,
288 #   a) Firmware version >
289 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
290 #   c) Lorawan server choose built-in
291 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
292 #
293 # How it works?
294 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
295 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
296 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
297 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
298 #   ( The purpose of this step is to show that the Device2 has already do the change there).
299 #
300 #  For example: If current status of Device1 and Device2 leds shows:
301 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
302 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
303 #
304 #  Step2  will cause below change:
305 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
306 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
307
308 #  Step3 will cause below change:
309 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
310 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
311 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
312 #  whether the Device 2 has been changed.//
313 )))
314
315 **~1. Input keys**
316
317 [[image:image-20220527162450-3.png]]
318
319 Input Keys in LPS8
320
321
322 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
323
324 **3. Choose Built-in server**
325
326 [[image:image-20220527162518-4.png]]
327
328 Choose Built-in server
329
330
331 **4. Run the script.**
332
333 [[image:image-20220527162552-5.png]]
334
335 Run the script
336
337
338 **5. Output:**
339
340 [[image:image-20220527162619-6.png]]
341
342 Output from LPS8
343
344
345 = 4. Example 2: Communicate to TCP Server =
346
347
348 [[image:image-20220527162648-7.png]]
349
350 Network Structure
351
352
353 Full instruction video inlcude how to write scripts to fit server needed is here:
354
355
356 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
357
358
359 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
360
361
362 Assume we already set up ABP keys in the gateway:
363
364 [[image:image-20220527162852-8.png]]
365
366 Input Keys in LPS8
367
368
369
370 **run socket tool in PC**
371
372 [[image:image-20220527163028-9.png]]
373
374
375 Socket tool
376
377
378
379 **Input Server address and port**
380
381 [[image:image-20220527163106-10.png]]
382
383 Input Server address and port
384
385
386
387 **See value receive in socket tool:**
388
389 [[image:image-20220527163144-11.png]]
390
391 value receive in socket tool
392
393
394 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0