Show last authors
1 *
2 ** Table of** **Contents:
3
4 {{toc/}}
5
6
7
8 = 1. Introduction =
9
10
11 The Dragino LoRaWAN gateway can commuicate with LoRaWAN ABP End Node without the need of LoRaWAN server. It can be used in some cases such as:
12
13 * No internet connection.
14 * User wants to get data forward in gateway and forward to their server base on MQTT/HTTP, etc. (Combine ABP communication method and [[MQTT forward together>>MQTT Forward Instruction]]).
15
16 (((
17 The basic of this feature is the decoding of (% style="color:red" %)**LoRaWAN ABP End Node**(%%). Requirements:
18 )))
19
20 1. LoRaWAN End Node in ABP mode. Make sure your end node works in this mode. End node most are default set to OTAA mode
21 1. LoRaWAN Gateway model: [[LPS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/148-lps8.html]], [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], [[DLOS8>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/160-dlos8.html]] ,[[LIG16>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/171-lig16.html]]
22 1. Firmware version for below instruction:**[[(% style="color:purple" %)Since LG02_LG08~~-~~-build-v5.4.1593400722-20200629-1120>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/Release/]](%%)**
23
24 = 2. How it works =
25
26
27 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/ZBjXwmp7rwM>>url:https://youtu.be/ZBjXwmp7rwM]]**
28
29
30 Assume we have the LoRaWAN tracker LGT92 which works in ABP mode and US915 band. It has below keys:
31
32 (% class="box infomessage" %)
33 (((
34 **AT+NWKSKEY=72 32 63 95 dd 8f e2 b2 13 66 e4 35 93 8f 55 df
35 AT+APPSKEY=b3 17 f8 14 7a 43 27 8a 6a 31 c4 47 3d 55 5d 33
36 AT+DADDR=2602111D**
37 )))
38
39 (((
40 and we have the LG308 works and US915 band and support ABP decryption. User can input these keys in LG308 so the LG308 can communicate with LGT92.
41
42
43 )))
44
45 We need to input above keys in LG308 and enable ABP decryption.
46
47 [[image:image-20220527161119-1.png]]
48
49 Input the ABP keys in LG308
50
51
52 == 2.1 Upstream ==
53
54
55 Now when this End Node (Dev Addr=2602111D) send a uplink packet. When this packet arrive LG308, LG308 will decode it and put the decode data on the file /var/iot/channels/2602111D . So we have this data for further process with other applications in LG308.
56
57 (((
58 We can see the log of LG308 to know this packet arrive
59 )))
60
61 [[image:image-20220527161149-2.png]]
62
63 LG308 log by "(% style="color:red" %)**logread -f**" (%%)command
64
65
66 The data of End Node is stored in the file /var/iot/channels/2602111D. We can use hexdump command to check it.
67
68 (% class="box" %)
69 (((
70 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
71 0000000 (% style="color:#037691" %)**4646 4646 4646 3946 3030 3030 3030 3546**(%%)      ~-~-> Got RSSI and SNR    
72 0000010 (% style="color:#037691" %)**cc0c 0b63 0266 017f ff7f ff00 **(%%) ~-~-> Payload
73 000001c
74 )))
75
76 * **RSSI**: 4646 4646 4646 3946 = 0xFFFF FF9F : So RSSI = (0xFFFF FF9F - 0x100000000) = -97
77 * **SNR**: 3030 3030 3030 3546 = 0x0000 005F = 95, need to divide 10 so SNR is 9.5
78 * **Payload**: 0xcc0c 0b63 0266 017f ff7f ff00
79
80 (% class="box" %)
81 (((
82 (% style="color:red" %)**Notice 1**(%%): The data file stored in LG308 for the end node is bin file. If the end node sends ASCII string to gateway, the output will as below:
83 in LGT92, use (% style="color:#037691" %)**AT+SEND=12:hello world** (%%)to send ASCII string
84 root@dragino-1d25dc:~~# hexdump /var/iot/channels/2602111D
85 0000000 4646 4646 4646 3946 3030 3030 3030 3546
86 0000010 6865 6c6c 6f20 776f 726c 6400      ~-~-> Got ASCII code "hello world"    
87 000001c
88 )))
89
90 (% class="box" %)
91 (((
92 (% style="color:red" %)**Notice 2**(%%): The upstream payload length should match the LoRaWAN length requirement (max length depends on Frequency and DR), otherwise the gateway can't decode the payload.
93 )))
94
95
96 === 2.2.1 Decode Method ===
97
98
99 The decode methods: (% style="color:#037691" %)**ASCII String, Decode_LHT65**(%%) doesn't affect how the sensor data is stored, they are to define how should the sensor data to be sent.
100
101 For example we have a LHT65 , works in ABP mode and gateway successful get the data, which are:
102
103 (% class="box" %)
104 (((
105 root@dragino-1baf44:~~# hexdump /var/iot/channels/01826108
106 0000000 4646 4646 4646 4537 3030 3030 3030 3438
107 0000010 ccd1 7fff 7fff 017f ff7f ff00         
108 000001c
109 )))
110
111
112 If we choose ASCII decoder, the MQTT process will send out with mqtt-data:
113
114 (% class="box" %)
115 (((
116 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
117 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:decoder: ASCII
118 Sun Sep 27 04:33:16 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]: (% style="color:#037691" %)**ffffffe700000048ccd17fff7fff017fff7fff00**
119 )))
120
121
122 If we choose Decode_LHT65, the MQTT process will send out with mqtt-data
123
124 (% class="box" %)
125 (((
126 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:pub_topic[-t]: dragino-1baf44/01826108/data
127 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:decoder: Dragino_LHT65
128 Sun Sep 27 04:36:45 2020 user.notice root: [IoT.MQTT]:mqtt_data[-m]:** (% style="color:#037691" %){"Hum_SHT":32.7,"BatV":3.281,"TempC_DS":32.9,
129 "EXT":"Temperature Sensor","RSSI":-24,"TempC_SHT":85.0,"SNR":8.2,"ext_sensor":0}(%%)**
130 )))
131
132 Above scripts are store in /etc/lora/decoder/. User can put their scripts here and select it in the UI.
133
134
135 === 2.2.2 How to Decode My End Node ===
136
137
138 1/ Configure the ABP keys for your end node in the gateway. enable ABP decode in Web UI
139
140 2/ Don't choose MQTT service, use LoRaWAN.
141
142 3/ When your end node send a message to the gateway, there will be a file store in /var/iot/channels. full path should be /var/iot/channels/END_NODE_DEV_ADDR
143
144 4/ Use the /etc/lora/decoder/Dragino_LHT65 as template to decode your payload. This script is written in Lua language. User can manually call this script when you see the data file in /var/iot/channels by running:
145
146 {{{/etc/lora/decoder/Dragino_LHT65 END_NODE_DEV_ADDR
147 }}}
148
149 5/ What you see as output is the MQTT data device will upload, user's end node has different payload compare with LHT65, most properly this file will report with error. User need to modify to match the actual payload. Some notice:
150
151 * RSSI and SNR are added when gateway receive the packet, so there is always this field.
152 * If you rename the file, please make it executable.
153 * See this link for lua.bit module: [[http:~~/~~/luaforge.net/projects/bit/>>url:http://luaforge.net/projects/bit/]]
154 * Lua json module: [[http:~~/~~/json.luaforge.net/>>url:http://json.luaforge.net/]]
155 * the last line return is what will be used for MQTT
156 * User can use other language ,not limited to Lua, just make sure the return is what you want to send.
157
158
159
160 == 2.2 Downstream ==
161
162
163 In LG308, we can create a file in the directory /var/iot/push for downstream purpose. We recommend using each command to generate this file. This file will be used for transmission and auto-deleted after used
164
165 The file should use below format:
166
167 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload**
168
169 Since fimware > Dragino-v2 lgw-5.4.1608518541 . Support more option
170
171 (% style="color:#037691" %)**dev_addr,imme/time,txt/hex,payload,txpw,txbw,SF,frequency,rxwindow**
172
173 * **dev_addr:** Inptu the device address
174 * **imme/time:**
175 ** imme: send downstream immediately,For Class C end node.
176 ** time: send downstream after receive device's uplink. For Class A end node
177 * **txt/hex:**
178 ** txt: send payload in ASCII
179 ** hex: send payload in HEX
180 * **payload: **payload to be sent, payload lenght should match the LoRaWAN protocol requirement.
181 * **txpw:** Transmit Power. example: 20
182 * **txbw:** bandwidth:
183 ** 1: 500 kHz
184 ** 2: 250 kHz
185 ** 3: 125 kHz
186 ** 4: 62.5 kHz
187 * **SF:** Spreading Factor : SF7/SF8/SF9/SF10/SF11/SF12
188 * **Frequency:** Transmit Frequency: example: 923300000
189 * **rxwindow:** transmit on Rx1Window or Rx2Window.
190
191
192 (% style="color:blue" %)**Completely exmaple:**
193
194 * **Old version:** echo 018193F4,imme,hex,0101 > /var/iot/push/test
195 * **New version:** echo 018193F4,imme,hex,0101,20,1,SF12,923300000,2 > /var/iot/push/test
196
197
198
199 (% style="color:#037691" %)**Downstream Frequency**
200
201 The LG308 will use the RX2 window info to send the downstream payload, use the default LoRaWAN settings, as below:
202
203 * EU868: 869.525Mhz, DR0(SF12BW125)
204 * US915: 923.3Mhz, SF12 BW500
205 * CN470: 505.3Mhz, SF12 BW125
206 * AU915: 923.3Mhz, SF12 BW500
207 * AS923: 923.2Mhz, SF10 BW125
208 * KR920: 921.9Mhz, SF12 BW125
209 * IN865: 866.55Mhz, SF10 BW125
210 * RU864: 869.1Mhz, SF12 BW125
211
212
213
214 (% style="color:#037691" %)**Examples:**
215
216 (% class="box" %)
217 (((
218 we can use echo command to create files in LG308 for downstream.
219 root@dragino-1d25dc:~~# echo 2602111D,time,hex,12345678 > /var/iot/push/test
220 )))
221
222 (% class="box" %)
223 (((
224 **1)** From logread -f of gateway, we can see it has been added as pedning.
225 lora_pkt_fwd[4286]: INFO~~ [DNLK]Looking file : test
226 lora_pkt_fwd[4286]: INFO~~ [DNLK]devaddr:2602111D, txmode:time, pdfm:hex, size:4, payload1:4Vx,payload_hex:77C1BB90
227 lora_pkt_fwd[4286]: INFO~~ [DNLK] DNLINK PENDING!(1 elems).
228 )))
229
230 (% class="box" %)
231 (((
232 **2)** When there is an upstrea from end node, this downstream will be sent and shows:
233 lora_pkt_fwd[4286]: INFO: tx_start_delay=1497 (1497.000000) - (1497, bw_delay=0.000000, notch_delay=0.000000)
234 lora_pkt_fwd[4286]: [LGWSEND]lgw_send done: count_us=3537314420, freq=923300000, size=17
235 )))
236
237 (% class="box" %)
238 (((
239 **3)** and the end node will got:
240 [5764825]~*~*~*~** UpLinkCounter= 98 ~*~*~*~**
241 [5764827]TX on freq 905300000 Hz at DR 0
242 Update Interval: 60000 ms
243 [5765202]txDone
244 [5766193]RX on freq 927500000 Hz at DR 10
245 [5766225]rxTimeOut
246 [5767205]RX on freq 923300000 Hz at DR 8
247 [5767501]rxDone
248 Rssi= -41
249 Receive data
250 (% style="color:#037691" %)**2:12345678**  (%%) ~-~-> Hex
251 )))
252
253 (% class="box" %)
254 (((
255 **4) **If we use the command "echo 2602111D,time,txt,12345678 > /var/iot/push/test" for downstream, the end node will got:
256 [5955877]~*~*~*~** UpLinkCounter= 102 ~*~*~*~**
257 [5955879]TX on freq 904100000 Hz at DR 0
258 Update Interval: 60000 ms
259 [5956254]txDone
260 [5957246]RX on freq 923900000 Hz at DR 10
261 [5957278]rxTimeOut
262 [5958257]RX on freq 923300000 Hz at DR 8
263 [5958595]rxDone
264 Rssi= -37
265 Receive data
266 (% style="color:#037691" %)**2:3132333435363738**(%%) ~-~-> ASCII string "12345678"
267 )))
268
269
270 = 3. Example 1: Communicate with LT-22222-L =
271
272
273 Script can be download from: [[Example Script 1>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/Firmware/customized_script/&file=talk_to_lt-22222-l_v0.1.sh]]
274
275 (% class="box" %)
276 (((
277 //#!/bin/sh
278 # This scripts shows how to use LPS8/LG308/DLOS8 to communicate with two LoRaWAN End Nodes, without the use of internet or LoRaWAN server
279 #
280 # Hardware Prepare:
281 # 1. LT-22222-L x 2, both are configured to work in
282 #   a) Class C ;
283 # b) ABP Mode ;
284 # c) AT+Mod=1
285 # 2. LPS8,
286 #   a) Firmware version >
287 #   b) Input the LT-22222-L keys in LPS so LPS8 can talk with them.
288 #   c) Lorawan server choose built-in
289 #   d) in Custom page, select custom script to point to this script. (put this script in /etc/iot/scripts directory)
290 #
291 # How it works?
292 #   a) Devices 1 sends a uplink payload to LPS8. LPS8 will get the DI1 and DI2 info from the payload
293 #   b) LPS8 will send a message to Device 2 to set the Device2 DO1 = Device1 DI1, and Device DO2 = Device DI2.
294 #   c) Device2 will change DO1 and DO2 to according to the message from LPS8, and send back a message to LPS8 with the its DO1
295 #   and DO2 value. LPS8 will ask Device1 to change its DO1 to same as Device 2, and change the DO2 to the same as Device 2.
296 #   ( The purpose of this step is to show that the Device2 has already do the change there).
297 #
298 #  For example: If current status of Device1 and Device2 leds shows:
299 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
300 #  Device2: DI1: OFF, DI2: OFF , DO1: OFF,  DO2: OFF
301 #
302 #  Step2  will cause below change:
303 #  Device1: DI1: ON, DI2: ON , DO1: OFF,  DO2: OFF
304 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
305
306 #  Step3 will cause below change:
307 #  Device1: DI1: ON, DI2: ON , DO1: ON,  DO2: ON
308 #  Device2: DI1: OFF, DI2: OFF , DO1: ON,  DO2: ON
309 #  So if a person is in the Device 1 location, he can check if the DO LED match DI LEDs on Device 1 to confirm
310 #  whether the Device 2 has been changed.//
311 )))
312
313 **~1. Input keys**
314
315 [[image:image-20220527162450-3.png]]
316
317 Input Keys in LPS8
318
319
320 **2. Make sure the LPS8 and LT use the same frequency bands, choose EU868 in this test.**
321
322 **3. Choose Built-in server**
323
324 [[image:image-20220527162518-4.png]]
325
326 Choose Built-in server
327
328
329 **4. Run the script.**
330
331 [[image:image-20220527162552-5.png]]
332
333 Run the script
334
335
336 **5. Output:**
337
338 [[image:image-20220527162619-6.png]]
339
340 Output from LPS8
341
342
343 = 4. Example 2: Communicate to TCP Server =
344
345
346 [[image:image-20220527162648-7.png]]
347
348 Network Structure
349
350
351 Full instruction video inlcude how to write scripts to fit server needed is here:
352
353
354 (% style="color:#037691" %)**Video Instruction**(%%): **[[https:~~/~~/youtu.be/-nevW6U2TsE>>url:https://youtu.be/-nevW6U2TsE]]**
355
356
357 (% style="color:red" %)**Note: Firmware version must be higher than lgw-5.4.1607519907**
358
359
360 Assume we already set up ABP keys in the gateway:
361
362 [[image:image-20220527162852-8.png]]
363
364 Input Keys in LPS8
365
366
367
368 **run socket tool in PC**
369
370 [[image:image-20220527163028-9.png]]
371
372
373 Socket tool
374
375
376
377 **Input Server address and port**
378
379 [[image:image-20220527163106-10.png]]
380
381 Input Server address and port
382
383
384
385 **See value receive in socket tool:**
386
387 [[image:image-20220527163144-11.png]]
388
389 value receive in socket tool
390
391
392 If user want to modify the TCP connection method. He can refer: [[https:~~/~~/github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh>>url:https://github.com/dragino/dragino-packages/blob/lg02/haserl-ui/root/usr/bin/tcp_process.sh]]. Same script is on /usr/bin of gateway.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0