Wiki source code of Water Quality Sensors

Version 72.4 by Karry Zhuang on 2025/07/16 09:26

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8 = 1. DR-EC Water EC Probe =
9
10 == 1.1 Specification: ==
11
12
13 * **Power Input**: DC7~~30
14
15 * **Power Consumption** : < 0.5W
16
17 * **Interface**: RS485. 9600 Baud Rate
18
19 * **EC Range & Resolution:**
20 ** **ECK1.0 :** 0 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
21 ** **ECK10.0 : **10 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
22 ** **EC200 : **1 ~~ 200,000 μS/cm  Resolution: 1 μS/cm
23 * **EC Accuracy**: ±1% FS
24 * **Salinity measurement range**
25 ** **EC200 :**0~~70PSU Resolution: 0.1PSU
26 * **Temperature measurement range**
27 ** **ECK1/ECK10:**-20~~+60℃; Resolution: 0.1℃
28 ** **EC200 :**-5~~+80℃; Resolution: 0.1℃
29 * **Temperature Accuracy: **±0.5 °C
30 * **Temperature compensation range**
31 ** **ECK1/ECK10:**0~~+60℃ (default compensation temperature 25℃)
32 ** **EC200:**-5~~+80℃ (default compensation temperature 25℃)
33 * **Temperature compensation coefficient:**Default 0.2
34 * **Working environment:**
35 ** Ambient Temperature: 0–60°C
36 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
37 ** ECK200 Continuous monitoring of cross-section water quality, aquaculture, sewage treatment, environmental protection, pharmaceuticals, food, tap water, seawater and other high conductivity environments
38 * **IP Rated**: IP68
39 * **Max Pressure**: 0.6MPa
40
41 == 1.2 Application for Different Range ==
42
43
44 [[image:image-20240714173018-1.png]]
45
46
47 == 1.3 Wiring ==
48
49
50 [[image:image-20241129142314-1.png||height="352" width="1108"]]
51
52
53 == 1.4 Mechinical Drawing ==
54
55 ECK1 and ECK10  EC200
56
57
58 [[image:image-20240714174241-2.png]] [[image:1752564223905-283.png||height="399" width="160"]]
59
60
61 == 1.5 Installation ==
62
63
64 **Electrode installation form:**
65
66 A: Side wall installation
67
68 B: Top flange installation
69
70 C: Pipeline bend installation
71
72 D: Pipeline bend installation
73
74 E: Flow-through installation
75
76 F: Submerged installation
77
78 [[image:image-20240718190121-1.png||height="350" width="520"]]
79
80 **Several common installation methods of electrodes**
81
82 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
83
84 A. Several common incorrect installation methods
85
86 [[image:image-20240718190204-2.png||height="262" width="487"]]
87
88 **Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
89
90 [[image:image-20240718190221-3.png||height="292" width="500"]]
91
92 **Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
93
94 B. Correct installation method
95
96 [[image:image-20240718190249-4.png||height="287" width="515"]]
97
98
99 == 1.6 Maintenance ==
100
101
102 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
103
104 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
105
106 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
107
108 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
109
110 == 1.7 RS485 Commands ==
111
112
113 RS485 signal (K1 default address 0x12; K10 default address 0x11):
114 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
115
116
117 === 1.7.1 Query address ===
118
119
120 **send:**
121
122 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
123 |=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
124 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
125
126 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
127
128
129 **response:**
130
131 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
132 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
133 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
134
135
136
137 === 1.7.2 Change address ===
138
139
140 For example: Change the address of the sensor with address 1 to 2, master → slave
141
142 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
143 |=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
144 |(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
145
146 If the sensor receives correctly, the data is returned along the original path.
147
148 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
149
150
151 === 1.7.3 Modify intercept ===
152
153
154 **send:**
155
156 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
157 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
158 |(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
159 0X07
160 )))
161
162 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
163
164 **response:**
165
166 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
167 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
168 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
169 0X02
170 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
171 0X8F
172 )))
173
174 === 1.7.4 Query data ===
175
176
177 Query the data (EC,temperature) of the sensor (address 11), host → slave
178
179 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
180 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
181 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
182
183 If the sensor receives correctly, the following data will be returned, slave → host
184
185 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
186 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
187 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
188
189 The address of the EC K10 sensor is 11
190
191 The query data command is 11 03 00 00 00 02 C6 9B
192
193 **For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
194
195
196 Query the data (EC,temperature) of the sensor (address 11), host → slave
197
198 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
199 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
200 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
201
202 If the sensor receives correctly, the following data will be returned, slave → host
203
204 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
205 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
206 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
207
208 The address of the EC K1 sensor is 12
209
210 The query data command is 12 03 00 00 00 02 C6 A8
211
212 **For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
213
214
215 EC200
216
217 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
218 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
219 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X04|(% style="width:72px" %)(((
220 0XC5
221 )))|(% style="width:77px" %)0XC8
222
223 **response:**
224
225 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
226 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Number of valid bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
227 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X04|(% style="width:72px" %)(((
228 0XC5
229 )))|(% style="width:77px" %)0XC8
230
231
232
233
234
235 === 1.7.5 Calibration Method ===
236
237 ECK1 and ECK10.0
238
239 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
240
241 (% style="color:blue" %)**The calibration steps are as follows:**
242
243 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
244
245 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
246 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
247 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
248 0X00
249 0X00
250 0X37
251 0X32
252 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
253
254 1413*10 gives 0X00003732
255
256 **response:**
257
258 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
259 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
260 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
261
262 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
263
264 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
265 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
266 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
267 0X00
268 0X01
269 0XF7
270 0X20
271 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
272
273 12880*10 gives 0X01F720
274
275 **response:**
276
277 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
278 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
279 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
280
281
282
283 EC200
284
285 For the device with address 01, use 1413uS/cm standard solution to calibrate the first point. Send frame: 1413. Convert hexadecimal to 585. Write 0001, 00 00, 0585 to 0x0120, 0x0121, 0x0122 respectively.
286
287 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
288 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
289 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
290 0X00
291 0X01
292 0X00
293 0X00
294 0X05
295 0X85
296 )))|(% style="width:1px" %)0X1c|(% style="width:1px" %)(((
297 (((
298 0X25
299 )))
300 )))
301
302 **response:**
303
304 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
305 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
306 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
307 0X80
308 )))|(% style="width:60px" %)0X3e(((
309
310 )))
311
312 Use 111310uS/cm standard solution to calibrate the second point and send the frame: 111310 is converted into hexadecimal 1b2ce, and 0002, 0001,b2 ce are written to 0x0120, 0x0121, and 0x0122 respectively.
313
314 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
315 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
316 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
317 0X00
318 0X02
319 0X00
320 0X01
321 0Xb2
322 0Xce
323 )))|(% style="width:1px" %)0X3e|(% style="width:1px" %)(((
324 (((
325 0X22
326 )))
327 )))
328
329 **response:**
330
331 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
332 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
333 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
334 0X80
335 )))|(% style="width:60px" %)0X3e
336
337 = 2. DR-PH01 Water PH Sensor =
338
339 == 2.1 Specification ==
340
341
342 * **Power Input**: DC7~~30
343
344 * **Power Consumption** : < 0.5W
345
346 * **Interface**: RS485. 9600 Baud Rate
347
348 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
349
350 * **pH measurement error**: ±0.15pH
351
352 * **Repeatability error**: ±0.02pH
353
354 * **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
355
356 * **Temperature measurement error**: ±0.5°C
357
358 * **Working environment:**
359 ** Ambient Temperature: 0–60°C
360 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
361
362 * **Temperature Accuracy: **±0.5 °C
363
364 * **IP Rated**: IP68
365
366 * **Max Pressure**: 0.6MPa
367
368 == 2.2 Wiring ==
369
370
371 [[image:image-20240720172548-2.png||height="348" width="571"]]
372
373
374 == 2.3 Mechinical Drawing ==
375
376
377 [[image:image-20240714174241-2.png]]
378
379
380 == 2.4 Installation Notice ==
381
382
383 Do not power on while connect the cables. Double check the wiring before power on.
384
385 Installation Photo as reference:
386
387 (% style="color:blue" %)**Submerged installation:**
388
389 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
390
391 [[image:image-20240718191348-6.png]]
392
393 (% style="color:blue" %)**Pipeline installation:**
394
395 Connect the equipment to the pipeline through the 3/4 thread.
396
397 [[image:image-20240718191336-5.png||height="239" width="326"]]
398
399 (% style="color:blue" %)**Sampling:**
400
401 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
402
403 (% style="color:blue" %)**Measure the pH of the water sample:**
404
405 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
406
407
408 == 2.5 Maintenance ==
409
410
411 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
412
413 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
414
415 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
416
417 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
418
419 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
420
421 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
422
423 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
424
425 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
426
427 * The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
428
429 == 2.6 RS485 Commands ==
430
431
432 RS485 signaldefault address 0x10
433 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
434
435
436 === 2.6.1 Query address ===
437
438
439 **send:**
440
441 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
442 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
443 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
444
445 **response:**
446
447 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
448 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
449 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
450
451 === 2.6.2 Change address ===
452
453
454 For example: Change the address of the sensor with address 1 to 2, master → slave
455
456 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
457 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
458 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
459
460 If the sensor receives correctly, the data is returned along the original path.
461
462 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
463
464
465 === 2.6.3 Modify intercept ===
466
467
468 **send:**
469
470 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
471 |=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
472 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
473 0XA5
474 )))
475
476 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
477
478 **response:**
479
480 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
481 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
482 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
483 0X00
484 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
485 0XA5
486 )))
487
488 === 2.6.4 Query data ===
489
490
491 Query the data (PH) of the sensor (address 10), host → slave
492
493 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
494 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
495 |(% style="width:99px" %)0X10|(% style="width:74px" %)0X03|(% style="width:75px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
496
497 If the sensor receives correctly, the following data will be returned, slave → host
498
499 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
500 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
501 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
502
503 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
504
505 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
506
507 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
508
509
510 === 2.6.5 Calibration Method ===
511
512
513 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
514
515 (% style="color:blue" %)**The calibration steps are as follows:**
516
517 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
518
519 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
520 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
521 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
522 0X00
523 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
524 0XF1
525 )))
526
527 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
528
529 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
530 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
531 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
532 0X00
533 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
534 0X31
535 )))
536
537 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
538
539 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
540 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
541 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
542 0X00
543 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
544 0X31
545 )))
546
547 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
548
549
550 = 3. DR-ORP1 Water ORP Sensor =
551
552 == 3.1 Specification ==
553
554
555 * **Power Input**: DC7~~30
556
557 * **Measuring range**:** **-1999~~1999mV
558
559 * **Resolution**: 1mV
560
561 * **Interface**: RS485. 9600 Baud Rate
562
563 * **Measurement error**: ±3mV
564
565 * **Stability**: ≤2mv/24 hours
566
567 * **Working environment:**
568 ** Ambient Temperature: 0–60°C
569 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
570
571 * **IP Rated**: IP68
572
573 * **Max Pressure**: 0.6MPa
574
575 == 3.2 Wiring ==
576
577
578 [[image:image-20240720172620-3.png||height="378" width="620"]]
579
580
581 == 3.3 Mechinical Drawing ==
582
583
584 [[image:image-20240714174241-2.png]]
585
586
587 == 3.4 Installation Notice ==
588
589
590 Do not power on while connect the cables. Double check the wiring before power on.
591
592 **Installation Photo as reference:**
593
594 (% style="color:blue" %)** Submerged installation:**
595
596 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
597
598 [[image:image-20240718191348-6.png]]
599
600 (% style="color:blue" %)** Pipeline installation:**
601
602 Connect the equipment to the pipeline through the 3/4 thread.
603
604 [[image:image-20240718191336-5.png||height="239" width="326"]]
605
606
607 == 3.5 Maintenance ==
608
609
610 (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
611
612 (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
613
614 (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
615
616 (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
617
618 (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
619
620 (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
621
622 (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
623
624 (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
625
626 (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
627
628
629 == 3.6 RS485 Commands ==
630
631
632 RS485 signaldefault address 0x13
633 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
634
635
636 === 3.6.1 Query address ===
637
638
639 **send:**
640
641 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
642 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
643 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
644
645 **response:**
646
647 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
648 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
649 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
650
651 === 3.6.2 Change address ===
652
653
654 For example: Change the address of the sensor with address 1 to 2, master → slave
655
656 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
657 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
658 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
659
660 If the sensor receives correctly, the data is returned along the original path.
661
662 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
663
664
665 === 3.6.3 Modify intercept ===
666
667
668 **send:**
669
670 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
671 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
672 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
673 0X96
674 )))
675
676 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
677
678 **response:**
679
680 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
681 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
682 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
683 0X00
684 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
685 0X96
686 )))
687
688 === 3.6.4 Query data ===
689
690
691 Query the data (ORP) of the sensor (address 13), host → slave
692
693 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
694 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
695 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
696
697 If the sensor receives correctly, the following data will be returned, slave → host
698
699 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
700 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
701 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
702
703 The query data command is 13 03 00 00 00 01 87 78
704
705 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
706
707 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
708
709
710 === 3.6.5 Calibration Method ===
711
712
713 This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
714 (1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
715 enter the following calibration command, and the 86mV point calibration is completed;
716
717 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
718 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
719 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
720 0X00
721 )))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
722 0X03
723 )))
724
725 Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
726
727 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
728 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
729 |(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
730 0X00
731 )))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
732 0XC3
733 )))
734
735 = 4. DR-DO1 Dissolved Oxygen Sensor =
736
737 == 4.1 Specification ==
738
739
740 * **Measuring range**: 0-20mg/L, 0–50℃
741
742 * **Accuracy**: 3%, ±0.5℃
743
744 * **Resolution**: 0.01 mg/L, 0.01℃
745
746 * **Maximum operating pressure**: 6 bar
747
748 * **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
749
750 * **Power supply voltage**: 5-24V DC
751
752 * **Working environment:**
753 ** Ambient Temperature: 0–60°C
754 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
755
756 * **Power consumption**: ≤0.5W
757
758 == 4.2 wiring ==
759
760
761 [[image:image-20240720172632-4.png||height="390" width="640"]]
762
763
764 == 4.3 Impedance requirements for current signals ==
765
766
767 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
768 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
769 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
770
771 == 4.4 Mechinical Drawing ==
772
773
774 [[image:image-20240719155308-1.png||height="226" width="527"]]
775
776
777 == 4.5 Instructions for use and maintenance ==
778
779
780 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
781
782 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
783
784 == 4.6 RS485 Commands ==
785
786
787 RS485 signaldefault address 0x14
788 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
789
790
791 === 4.6.1 Query address ===
792
793
794 **send:**
795
796 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
797 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
798 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
799
800 If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
801
802
803 **response:**
804
805 Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
806 Register 1 data high and register 1 data low indicate the sensor version
807
808 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
809 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
810 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
811
812 === 4.6.2 Change address ===
813
814
815 For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
816
817 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
818 |=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
819 |(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
820
821 **response:**
822
823 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
824 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
825 |(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
826
827 === 4.6.3 Query data ===
828
829
830 Query the data (dissolved oxygen) of the sensor (address 14), host → slave
831
832 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
833 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
834 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
835
836 If the sensor receives correctly, the following data will be returned, slave → host
837
838 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
839 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
840 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
841
842 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
843
844 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
845
846
847 Query the data (temperature) of the sensor (address 14), host → slave
848
849 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
850 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
851 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
852
853 If the sensor receives correctly, the following data will be returned, slave → host
854
855 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
856 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
857 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
858
859 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
860
861 Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
862
863
864 = 5. DR-TS1 Water Turbidity Sensor =
865
866 == 5.1 Specification ==
867
868
869 * **Measuring range**: 0.1~~1000.0NTU
870
871 * **Accuracy**: ±5%
872
873 * **Resolution**: 0.1NTU
874
875 * **Stability**: ≤3mV/24 hours
876
877 * **Output signal**: RS485 (standard Modbus-RTU protocol, device default address: 01)
878
879 * **Power supply voltage**: 5~~24V DC (when output signal is RS485), 12~~24V DC (when output signal is 4~~20mA)
880
881 * **Working environment:**
882 ** Ambient Temperature: 0–60°C
883 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
884
885 * **Power consumption**: ≤ 0.5W
886
887 == 5.2 wiring ==
888
889
890 [[image:image-20240720172640-5.png||height="387" width="635"]]
891
892
893 == 5.3 Impedance requirements for current signals ==
894
895
896 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
897 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
898 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
899
900 == 5.4 Mechinical Drawing ==
901
902
903 [[image:image-20240718195058-7.png||height="305" width="593"]]
904
905
906 == 5.5 Instructions for use and maintenance ==
907
908
909 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
910
911 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
912
913 == 5.6 RS485 Commands ==
914
915
916 RS485 signaldefault address 0x15
917 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
918
919
920 === 5.6.1 Query address ===
921
922
923 **send:**
924
925 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
926 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
927 |(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
928
929 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
930
931
932 **response:**
933
934 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
935 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
936 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
937
938 === 5.6.2 Change address ===
939
940
941 For example: Change the address of the sensor with address 1 to 2, master → slave
942
943 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
944 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
945 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
946
947 If the sensor receives correctly, the data is returned along the original path.
948
949 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
950
951
952 === 5.6.3 Query data ===
953
954
955 Query the data (turbidity) of the sensor (address 15), host → slave
956
957 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
958 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
959 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
960
961 If the sensor receives correctly, the following data will be returned, slave → host
962
963 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
964 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
965 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
966
967 The query data command is 15 03 00 00 00 01 87 1E
968
969 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
970
971 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
972
973
974 = 6. DR-CL Water CL Probe =
975
976 == 6.1 Specification: ==
977
978 * **Power Input**: DC7~~30
979
980 * **Power Consumption** : 0.19W
981
982 * **Interface**: RS485. 9600 Baud Rate
983
984 * **CL Range & Resolution:**
985 ** **CL2ML:**0-2mg/L
986 ** **CL10ML:**0-10mg/L
987 ** **Resolution:**0.01mg/L
988
989 * **CL Accuracy**: ±5% FS
990 * **Temperature Accuracy: **±0.5 °C
991 * **Working environment:**
992 ** Ambient Temperature: 0–50°C
993 ** pH:4-9
994 ** Flow rate: 30L/h~~60L/h (flow tank installation)
995 * **IP Rated**: IP68
996
997 * **Max Pressure**: 0.6MPa
998
999 == 6.2 Wiring ==
1000
1001 [[image:image-20240720172548-2.png||height="348" width="571"]]
1002
1003 == 6.3 Mechinical Drawing ==
1004
1005 [[image:1752573238705-910.png||height="694" width="278"]]
1006
1007 == 6.4 Installation ==
1008
1009 Flow-through installation: Use the matching flow slot for installation. The device and the flow slot are installed tightly.
1010
1011 The measuring end is completely immersed in the measured liquid to ensure a steady flow rate without bubbles.
1012
1013 It is recommended that the flow rate be controlled at 30-60Lh to ensure the accuracy of the test.
1014
1015 [[image:1752573643879-991.png||height="360" width="343"]]
1016
1017 == 6.5 Maintenance ==
1018
1019 * The device itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible!
1020 * After using the electrode, please clean the electrode head with clean water and cover it with a protective cover.
1021 * When measuring the device, the measured liquid should flow and the flow rate should be uniform, and there should be no bubbles attached to the measuring end of the device.
1022 * If the electrode diaphragm is attached with dirt and mineral components, the sensitivity will be reduced, and it may not be possible to perform sufficient measurement. Please ensure that the platinum ring is clean.
1023 * The platinum induction ring of a good residual chlorine electrode should always be kept clean and bright. If the platinum ring of the electrode becomes rough or covered with pollutants after measurement, please clean it according to the following method: (For reference) Inorganic pollution: immerse the electrode in 0.1mol/L dilute hydrochloric acid for 15 minutes, gently wipe the platinum ring of the residual chlorine electrode with a cotton swab, and then wash it with tap water.
1024 * Organic or oil pollution: immerse the electrode in tap water with a small amount of detergent, such as dishwashing liquid, and thoroughly clean the sensing surface of the electrode sensor. Gently wipe the platinum ring of the electrode with a cotton swab, then rinse with tap water, and the cleaning is complete. If the platinum ring of the electrode has formed an oxide film, please use toothpaste or 1000-grit fine sandpaper to properly polish the sensing surface, and then clean it with tap water. The platinum ring is connected to the glass, so please handle it carefully when polishing.
1025 The electrode has a service life of about one year, and a new electrode should be replaced in time after aging.
1026 * Before the cable plug and the device plug are locked, do not put the plug part into water.
1027
1028
1029
1030 == 6.6 RS485 Commands ==
1031
1032 RS485 signal 
1033 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
1034
1035
1036 == 6.7 Query data ==
1037
1038 Example 1: Read the current residual chlorine concentration of the device with address 01
1039
1040 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1041 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1042 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X01|(% style="width:72px" %)(((
1043 0X84
1044 )))|(% style="width:77px" %)0X0A
1045
1046 **response:**
1047
1048 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1049 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Valid Bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1050 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X03|(% style="width:110px" %)0X02|(% style="width:94px" %)0X03 0X16|(% style="width:72px" %)(((
1051 0X39
1052 )))|(% style="width:77px" %)0X7A
1053
1054 Calculation of residual chlorine concentration: 316H (hexadecimal) = 790 => residual chlorine = 7.90
1055
1056
1057 Example 2: Set the deviation value for the current residual chlorine value of the device with address 01 to correct the value and send the frame: (If the current residual gas value output by the device is 7.90, the value needs to be corrected to 8.00, the difference is 8.00-7.90-0.100.1*100=10=>41200000 (floating point number), write 41200000 to the contents of the two registers)
1058
1059 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
1060 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register number|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Byte number|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register content|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
1061 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X12|(% style="width:126px" %)0X00 0X02|(% style="width:85px" %)0X04|(% style="width:1px" %)0X4120 0X0000|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
1062
1063 **response:**
1064
1065 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1066 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Register address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register number|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1067 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X10|(% style="width:110px" %)0X01 0X12|(% style="width:94px" %)0X00 0X02|(% style="width:72px" %)(((
1068 0XE5
1069 )))|(% style="width:77px" %)0X0D
1070
1071
1072
1073 = 7.  Water Quality Sensor Datasheet =
1074
1075 * **[[Water Quality Sensor Transmitter Datasheet>>https://www.dropbox.com/scl/fi/9tofocmgapkbddshznumn/Datasheet_WQS-xB-WQS-xS_Water-Quality-Sensor-Transmitter.pdf?rlkey=wxua12ur9swk30rkqnh2boo9z&st=axga6epf&dl=0]]**