Wiki source code of Water Quality Sensors

Version 72.18 by Karry Zhuang on 2025/07/16 09:58

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8 = 1. DR-EC Water EC Probe =
9
10 == 1.1 Specification: ==
11
12
13 * **Power Input**: DC7~~30
14
15 * **Power Consumption** : < 0.5W
16
17 * **Interface**: RS485. 9600 Baud Rate
18
19 * **EC Range & Resolution:**
20 ** **ECK1.0 :** 0 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
21 ** **ECK10.0 : **10 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
22 ** **EC200 : **1 ~~ 200,000 μS/cm  Resolution: 1 μS/cm
23 * **EC Accuracy**: ±1% FS
24 * **Salinity measurement range**
25 ** **EC200 :**0~~70PSU Resolution: 0.1PSU
26 * **Temperature measurement range**
27 ** **ECK1/ECK10:**-20~~+60℃; Resolution: 0.1℃
28 ** **EC200 :**-5~~+80℃; Resolution: 0.1℃
29 * **Temperature Accuracy: **±0.5 °C
30 * **Temperature compensation range**
31 ** **ECK1/ECK10:**0~~+60℃ (default compensation temperature 25℃)
32 ** **EC200:**-5~~+80℃ (default compensation temperature 25℃)
33 * **Temperature compensation coefficient:**Default 0.2
34 * **Working environment:**
35 ** Ambient Temperature: 0–60°C
36 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
37 ** ECK200 Continuous monitoring of cross-section water quality, aquaculture, sewage treatment, environmental protection, pharmaceuticals, food, tap water, seawater and other high conductivity environments
38 * **IP Rated**: IP68
39 * **Max Pressure**: 0.6MPa
40
41 == 1.2 Application for Different Range ==
42
43
44 [[image:image-20240714173018-1.png]]
45
46
47 == 1.3 Wiring ==
48
49
50 [[image:image-20241129142314-1.png||height="352" width="1108"]]
51
52
53 == 1.4 Mechinical Drawing ==
54
55 ECK1 and ECK10  EC200
56
57
58 [[image:image-20240714174241-2.png]] [[image:1752564223905-283.png||height="399" width="160"]]
59
60
61 == 1.5 Installation ==
62
63
64 **Electrode installation form:**
65
66 A: Side wall installation
67
68 B: Top flange installation
69
70 C: Pipeline bend installation
71
72 D: Pipeline bend installation
73
74 E: Flow-through installation
75
76 F: Submerged installation
77
78 [[image:image-20240718190121-1.png||height="350" width="520"]]
79
80 **Several common installation methods of electrodes**
81
82 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
83
84 A. Several common incorrect installation methods
85
86 [[image:image-20240718190204-2.png||height="262" width="487"]]
87
88 **Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
89
90 [[image:image-20240718190221-3.png||height="292" width="500"]]
91
92 **Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
93
94 B. Correct installation method
95
96 [[image:image-20240718190249-4.png||height="287" width="515"]]
97
98
99 == 1.6 Maintenance ==
100
101
102 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
103
104 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
105
106 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
107
108 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
109
110 == 1.7 RS485 Commands ==
111
112
113 RS485 signal (K1 default address 0x12; K10 default address 0x11):
114 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
115
116 **The following commands are by default for ECK1/ECK10. Please note that EC200 has different commands.**
117
118 (% style="color:red" %)**ery.**
119
120 === 1.7.1 Query address ===
121
122
123 **send:**
124
125 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
126 |=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
127 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
128
129 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
130
131
132 **response:**
133
134 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
135 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
136 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
137
138
139
140 === 1.7.2 Change address ===
141
142
143 For example: Change the address of the sensor with address 1 to 2, master → slave
144
145 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
146 |=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
147 |(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
148
149 If the sensor receives correctly, the data is returned along the original path.
150
151 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
152
153
154 === 1.7.3 Modify intercept ===
155
156
157 **send:**
158
159 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
160 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
161 |(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
162 0X07
163 )))
164
165 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
166
167 **response:**
168
169 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
170 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
171 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
172 0X02
173 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
174 0X8F
175 )))
176
177 === 1.7.4 Query data ===
178
179
180 Query the data (EC,temperature) of the sensor (address 11), host → slave
181
182 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
183 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
184 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
185
186 If the sensor receives correctly, the following data will be returned, slave → host
187
188 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
189 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
190 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
191
192 The address of the EC K10 sensor is 11
193
194 The query data command is 11 03 00 00 00 02 C6 9B
195
196 **For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
197
198
199 Query the data (EC,temperature) of the sensor (address 11), host → slave
200
201 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
202 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
203 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
204
205 If the sensor receives correctly, the following data will be returned, slave → host
206
207 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
208 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
209 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
210
211 The address of the EC K1 sensor is 12
212
213 The query data command is 12 03 00 00 00 02 C6 A8
214
215 **For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
216
217
218 EC200
219
220 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
221 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
222 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X04|(% style="width:72px" %)(((
223 0XC5
224 )))|(% style="width:77px" %)0XC8
225
226 **response:**
227
228 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
229 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Number of valid bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
230 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X08|(% style="width:94px" %)(((
231 0X00 0X00  0X1E 0XEF 0X01 0X14 0X00 0X2B
232 )))|(% style="width:72px" %)(((
233 0X42
234 )))|(% style="width:77px" %)0X59
235
236 Conductivity calculation: 0X1EEF=7919=>Conductivity=7919μS/cm
237 Temperature calculation: 0X0114=276=>Temperature=27.6℃
238 Salinity calculation: 0X002b=43=>Salinity=4.3PSU
239
240
241
242
243
244 === 1.7.5 Calibration Method ===
245
246 ECK1 and ECK10.0
247
248 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
249
250 (% style="color:blue" %)**The calibration steps are as follows:**
251
252 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
253
254 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
255 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
256 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
257 0X00
258 0X00
259 0X37
260 0X32
261 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
262
263 1413*10 gives 0X00003732
264
265 **response:**
266
267 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
268 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
269 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
270
271 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
272
273 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
274 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
275 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
276 0X00
277 0X01
278 0XF7
279 0X20
280 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
281
282 12880*10 gives 0X01F720
283
284 **response:**
285
286 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
287 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
288 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
289
290
291
292 EC200
293
294 For the device with address 01, use 1413uS/cm standard solution to calibrate the first point. Send frame: 1413. Convert hexadecimal to 585. Write 0001, 00 00, 0585 to 0x0120, 0x0121, 0x0122 respectively.
295
296 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
297 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
298 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
299 0X00
300 0X01
301 0X00
302 0X00
303 0X05
304 0X85
305 )))|(% style="width:1px" %)0X1c|(% style="width:1px" %)(((
306 (((
307 0X25
308 )))
309 )))
310
311 **response:**
312
313 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
314 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
315 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
316 0X80
317 )))|(% style="width:60px" %)0X3e(((
318
319 )))
320
321 Use 111310uS/cm standard solution to calibrate the second point and send the frame: 111310 is converted into hexadecimal 1b2ce, and 0002, 0001,b2 ce are written to 0x0120, 0x0121, and 0x0122 respectively.
322
323 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
324 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
325 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
326 0X00
327 0X02
328 0X00
329 0X01
330 0Xb2
331 0Xce
332 )))|(% style="width:1px" %)0X3e|(% style="width:1px" %)(((
333 (((
334 0X22
335 )))
336 )))
337
338 **response:**
339
340 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
341 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
342 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
343 0X80
344 )))|(% style="width:60px" %)0X3e
345
346 = 2. DR-PH01 Water PH Sensor =
347
348 == 2.1 Specification ==
349
350
351 * **Power Input**: DC7~~30
352
353 * **Power Consumption** : < 0.5W
354
355 * **Interface**: RS485. 9600 Baud Rate
356
357 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
358
359 * **pH measurement error**: ±0.15pH
360
361 * **Repeatability error**: ±0.02pH
362
363 * **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
364
365 * **Temperature measurement error**: ±0.5°C
366
367 * **Working environment:**
368 ** Ambient Temperature: 0–60°C
369 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
370
371 * **Temperature Accuracy: **±0.5 °C
372
373 * **IP Rated**: IP68
374
375 * **Max Pressure**: 0.6MPa
376
377 == 2.2 Wiring ==
378
379
380 [[image:image-20240720172548-2.png||height="348" width="571"]]
381
382
383 == 2.3 Mechinical Drawing ==
384
385
386 [[image:image-20240714174241-2.png]]
387
388
389 == 2.4 Installation Notice ==
390
391
392 Do not power on while connect the cables. Double check the wiring before power on.
393
394 Installation Photo as reference:
395
396 (% style="color:blue" %)**Submerged installation:**
397
398 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
399
400 [[image:image-20240718191348-6.png]]
401
402 (% style="color:blue" %)**Pipeline installation:**
403
404 Connect the equipment to the pipeline through the 3/4 thread.
405
406 [[image:image-20240718191336-5.png||height="239" width="326"]]
407
408 (% style="color:blue" %)**Sampling:**
409
410 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
411
412 (% style="color:blue" %)**Measure the pH of the water sample:**
413
414 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
415
416
417 == 2.5 Maintenance ==
418
419
420 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
421
422 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
423
424 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
425
426 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
427
428 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
429
430 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
431
432 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
433
434 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
435
436 * The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
437
438 == 2.6 RS485 Commands ==
439
440
441 RS485 signaldefault address 0x10
442 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
443
444
445 === 2.6.1 Query address ===
446
447
448 **send:**
449
450 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
451 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
452 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
453
454 **response:**
455
456 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
457 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
458 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
459
460 === 2.6.2 Change address ===
461
462
463 For example: Change the address of the sensor with address 1 to 2, master → slave
464
465 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
466 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
467 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
468
469 If the sensor receives correctly, the data is returned along the original path.
470
471 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
472
473
474 === 2.6.3 Modify intercept ===
475
476
477 **send:**
478
479 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
480 |=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
481 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
482 0XA5
483 )))
484
485 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
486
487 **response:**
488
489 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
490 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
491 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
492 0X00
493 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
494 0XA5
495 )))
496
497 === 2.6.4 Query data ===
498
499
500 Query the data (PH) of the sensor (address 10), host → slave
501
502 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
503 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
504 |(% style="width:99px" %)0X10|(% style="width:74px" %)0X03|(% style="width:75px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
505
506 If the sensor receives correctly, the following data will be returned, slave → host
507
508 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
509 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
510 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
511
512 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
513
514 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
515
516 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
517
518
519 === 2.6.5 Calibration Method ===
520
521
522 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
523
524 (% style="color:blue" %)**The calibration steps are as follows:**
525
526 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
527
528 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
529 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
530 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
531 0X00
532 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
533 0XF1
534 )))
535
536 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
537
538 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
539 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
540 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
541 0X00
542 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
543 0X31
544 )))
545
546 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
547
548 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
549 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
550 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
551 0X00
552 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
553 0X31
554 )))
555
556 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
557
558
559 = 3. DR-ORP1 Water ORP Sensor =
560
561 == 3.1 Specification ==
562
563
564 * **Power Input**: DC7~~30
565
566 * **Measuring range**:** **-1999~~1999mV
567
568 * **Resolution**: 1mV
569
570 * **Interface**: RS485. 9600 Baud Rate
571
572 * **Measurement error**: ±3mV
573
574 * **Stability**: ≤2mv/24 hours
575
576 * **Working environment:**
577 ** Ambient Temperature: 0–60°C
578 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
579
580 * **IP Rated**: IP68
581
582 * **Max Pressure**: 0.6MPa
583
584 == 3.2 Wiring ==
585
586
587 [[image:image-20240720172620-3.png||height="378" width="620"]]
588
589
590 == 3.3 Mechinical Drawing ==
591
592
593 [[image:image-20240714174241-2.png]]
594
595
596 == 3.4 Installation Notice ==
597
598
599 Do not power on while connect the cables. Double check the wiring before power on.
600
601 **Installation Photo as reference:**
602
603 (% style="color:blue" %)** Submerged installation:**
604
605 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
606
607 [[image:image-20240718191348-6.png]]
608
609 (% style="color:blue" %)** Pipeline installation:**
610
611 Connect the equipment to the pipeline through the 3/4 thread.
612
613 [[image:image-20240718191336-5.png||height="239" width="326"]]
614
615
616 == 3.5 Maintenance ==
617
618
619 (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
620
621 (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
622
623 (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
624
625 (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
626
627 (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
628
629 (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
630
631 (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
632
633 (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
634
635 (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
636
637
638 == 3.6 RS485 Commands ==
639
640
641 RS485 signaldefault address 0x13
642 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
643
644
645 === 3.6.1 Query address ===
646
647
648 **send:**
649
650 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
651 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
652 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
653
654 **response:**
655
656 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
657 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
658 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
659
660 === 3.6.2 Change address ===
661
662
663 For example: Change the address of the sensor with address 1 to 2, master → slave
664
665 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
666 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
667 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
668
669 If the sensor receives correctly, the data is returned along the original path.
670
671 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
672
673
674 === 3.6.3 Modify intercept ===
675
676
677 **send:**
678
679 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
680 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
681 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
682 0X96
683 )))
684
685 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
686
687 **response:**
688
689 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
690 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
691 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
692 0X00
693 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
694 0X96
695 )))
696
697 === 3.6.4 Query data ===
698
699
700 Query the data (ORP) of the sensor (address 13), host → slave
701
702 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
703 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
704 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
705
706 If the sensor receives correctly, the following data will be returned, slave → host
707
708 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
709 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
710 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
711
712 The query data command is 13 03 00 00 00 01 87 78
713
714 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
715
716 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
717
718
719 === 3.6.5 Calibration Method ===
720
721
722 This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
723 (1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
724 enter the following calibration command, and the 86mV point calibration is completed;
725
726 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
727 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
728 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
729 0X00
730 )))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
731 0X03
732 )))
733
734 Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
735
736 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
737 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
738 |(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
739 0X00
740 )))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
741 0XC3
742 )))
743
744 = 4. DR-DO1 Dissolved Oxygen Sensor =
745
746 == 4.1 Specification ==
747
748
749 * **Measuring range**: 0-20mg/L, 0–50℃
750
751 * **Accuracy**: 3%, ±0.5℃
752
753 * **Resolution**: 0.01 mg/L, 0.01℃
754
755 * **Maximum operating pressure**: 6 bar
756
757 * **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
758
759 * **Power supply voltage**: 5-24V DC
760
761 * **Working environment:**
762 ** Ambient Temperature: 0–60°C
763 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
764
765 * **Power consumption**: ≤0.5W
766
767 == 4.2 wiring ==
768
769
770 [[image:image-20240720172632-4.png||height="390" width="640"]]
771
772
773 == 4.3 Impedance requirements for current signals ==
774
775
776 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
777 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
778 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
779
780 == 4.4 Mechinical Drawing ==
781
782
783 [[image:image-20240719155308-1.png||height="226" width="527"]]
784
785
786 == 4.5 Instructions for use and maintenance ==
787
788
789 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
790
791 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
792
793 == 4.6 RS485 Commands ==
794
795
796 RS485 signaldefault address 0x14
797 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
798
799
800 === 4.6.1 Query address ===
801
802
803 **send:**
804
805 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
806 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
807 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
808
809 If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
810
811
812 **response:**
813
814 Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
815 Register 1 data high and register 1 data low indicate the sensor version
816
817 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
818 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
819 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
820
821 === 4.6.2 Change address ===
822
823
824 For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
825
826 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
827 |=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
828 |(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
829
830 **response:**
831
832 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
833 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
834 |(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
835
836 === 4.6.3 Query data ===
837
838
839 Query the data (dissolved oxygen) of the sensor (address 14), host → slave
840
841 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
842 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
843 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
844
845 If the sensor receives correctly, the following data will be returned, slave → host
846
847 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
848 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
849 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
850
851 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
852
853 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
854
855
856 Query the data (temperature) of the sensor (address 14), host → slave
857
858 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
859 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
860 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
861
862 If the sensor receives correctly, the following data will be returned, slave → host
863
864 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
865 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
866 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
867
868 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
869
870 Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
871
872
873 = 5. DR-TS1 Water Turbidity Sensor =
874
875 == 5.1 Specification ==
876
877
878 * **Measuring range**: 0.1~~1000.0NTU
879
880 * **Accuracy**: ±5%
881
882 * **Resolution**: 0.1NTU
883
884 * **Stability**: ≤3mV/24 hours
885
886 * **Output signal**: RS485 (standard Modbus-RTU protocol, device default address: 01)
887
888 * **Power supply voltage**: 5~~24V DC (when output signal is RS485), 12~~24V DC (when output signal is 4~~20mA)
889
890 * **Working environment:**
891 ** Ambient Temperature: 0–60°C
892 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
893
894 * **Power consumption**: ≤ 0.5W
895
896 == 5.2 wiring ==
897
898
899 [[image:image-20240720172640-5.png||height="387" width="635"]]
900
901
902 == 5.3 Impedance requirements for current signals ==
903
904
905 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
906 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
907 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
908
909 == 5.4 Mechinical Drawing ==
910
911
912 [[image:image-20240718195058-7.png||height="305" width="593"]]
913
914
915 == 5.5 Instructions for use and maintenance ==
916
917
918 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
919
920 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
921
922 == 5.6 RS485 Commands ==
923
924
925 RS485 signaldefault address 0x15
926 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
927
928
929 === 5.6.1 Query address ===
930
931
932 **send:**
933
934 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
935 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
936 |(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
937
938 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
939
940
941 **response:**
942
943 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
944 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
945 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
946
947 === 5.6.2 Change address ===
948
949
950 For example: Change the address of the sensor with address 1 to 2, master → slave
951
952 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
953 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
954 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
955
956 If the sensor receives correctly, the data is returned along the original path.
957
958 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
959
960
961 === 5.6.3 Query data ===
962
963
964 Query the data (turbidity) of the sensor (address 15), host → slave
965
966 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
967 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
968 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
969
970 If the sensor receives correctly, the following data will be returned, slave → host
971
972 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
973 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
974 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
975
976 The query data command is 15 03 00 00 00 01 87 1E
977
978 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
979
980 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
981
982
983 = 6. DR-CL Water CL Probe =
984
985 == 6.1 Specification: ==
986
987 * **Power Input**: DC7~~30
988
989 * **Power Consumption** : 0.19W
990
991 * **Interface**: RS485. 9600 Baud Rate
992
993 * **CL Range & Resolution:**
994 ** **CL2ML:**0-2mg/L
995 ** **CL10ML:**0-10mg/L
996 ** **Resolution:**0.01mg/L
997
998 * **CL Accuracy**: ±5% FS
999 * **Temperature Accuracy: **±0.5 °C
1000 * **Working environment:**
1001 ** Ambient Temperature: 0–50°C
1002 ** pH:4-9
1003 ** Flow rate: 30L/h~~60L/h (flow tank installation)
1004 * **IP Rated**: IP68
1005
1006 * **Max Pressure**: 0.6MPa
1007
1008 == 6.2 Wiring ==
1009
1010 [[image:image-20240720172548-2.png||height="348" width="571"]]
1011
1012 == 6.3 Mechinical Drawing ==
1013
1014 [[image:1752573238705-910.png||height="694" width="278"]]
1015
1016 == 6.4 Installation ==
1017
1018 Flow-through installation: Use the matching flow slot for installation. The device and the flow slot are installed tightly.
1019
1020 The measuring end is completely immersed in the measured liquid to ensure a steady flow rate without bubbles.
1021
1022 It is recommended that the flow rate be controlled at 30-60Lh to ensure the accuracy of the test.
1023
1024 [[image:1752573643879-991.png||height="360" width="343"]]
1025
1026 == 6.5 Maintenance ==
1027
1028 * The device itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible!
1029 * After using the electrode, please clean the electrode head with clean water and cover it with a protective cover.
1030 * When measuring the device, the measured liquid should flow and the flow rate should be uniform, and there should be no bubbles attached to the measuring end of the device.
1031 * If the electrode diaphragm is attached with dirt and mineral components, the sensitivity will be reduced, and it may not be possible to perform sufficient measurement. Please ensure that the platinum ring is clean.
1032 * The platinum induction ring of a good residual chlorine electrode should always be kept clean and bright. If the platinum ring of the electrode becomes rough or covered with pollutants after measurement, please clean it according to the following method: (For reference) Inorganic pollution: immerse the electrode in 0.1mol/L dilute hydrochloric acid for 15 minutes, gently wipe the platinum ring of the residual chlorine electrode with a cotton swab, and then wash it with tap water.
1033 * Organic or oil pollution: immerse the electrode in tap water with a small amount of detergent, such as dishwashing liquid, and thoroughly clean the sensing surface of the electrode sensor. Gently wipe the platinum ring of the electrode with a cotton swab, then rinse with tap water, and the cleaning is complete. If the platinum ring of the electrode has formed an oxide film, please use toothpaste or 1000-grit fine sandpaper to properly polish the sensing surface, and then clean it with tap water. The platinum ring is connected to the glass, so please handle it carefully when polishing.
1034 The electrode has a service life of about one year, and a new electrode should be replaced in time after aging.
1035 * Before the cable plug and the device plug are locked, do not put the plug part into water.
1036
1037
1038
1039 == 6.6 RS485 Commands ==
1040
1041 RS485 signal 
1042 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
1043
1044
1045 == 6.7 Query data ==
1046
1047 Example 1: Read the current residual chlorine concentration of the device with address 01
1048
1049 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1050 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1051 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X01|(% style="width:72px" %)(((
1052 0X84
1053 )))|(% style="width:77px" %)0X0A
1054
1055 **response:**
1056
1057 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1058 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Valid Bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1059 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X03|(% style="width:110px" %)0X02|(% style="width:94px" %)0X03 0X16|(% style="width:72px" %)(((
1060 0X39
1061 )))|(% style="width:77px" %)0X7A
1062
1063 Calculation of residual chlorine concentration: 316H (hexadecimal) = 790 => residual chlorine = 7.90
1064
1065
1066 Example 2: Set the deviation value for the current residual chlorine value of the device with address 01 to correct the value and send the frame: (If the current residual gas value output by the device is 7.90, the value needs to be corrected to 8.00, the difference is 8.00-7.90-0.100.1*100=10=>41200000 (floating point number), write 41200000 to the contents of the two registers)
1067
1068 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
1069 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register number|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Byte number|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register content|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
1070 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X12|(% style="width:126px" %)0X00 0X02|(% style="width:85px" %)0X04|(% style="width:1px" %)0X4120 0X0000|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
1071
1072 **response:**
1073
1074 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1075 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Register address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register number|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1076 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X10|(% style="width:110px" %)0X01 0X12|(% style="width:94px" %)0X00 0X02|(% style="width:72px" %)(((
1077 0XE5
1078 )))|(% style="width:77px" %)0X0D
1079
1080
1081
1082 = 7.  Water Quality Sensor Datasheet =
1083
1084 * **[[Water Quality Sensor Transmitter Datasheet>>https://www.dropbox.com/scl/fi/9tofocmgapkbddshznumn/Datasheet_WQS-xB-WQS-xS_Water-Quality-Sensor-Transmitter.pdf?rlkey=wxua12ur9swk30rkqnh2boo9z&st=axga6epf&dl=0]]**