Wiki source code of Water Quality Sensors

Version 71.6 by Karry Zhuang on 2025/07/16 09:19

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8 = 1. DR-EC Water EC Probe =
9
10 == 1.1 Specification: ==
11
12
13 * **Power Input**: DC7~~30
14
15 * **Power Consumption** : < 0.5W
16
17 * **Interface**: RS485. 9600 Baud Rate
18
19 * **EC Range & Resolution:**
20 ** **ECK1.0** : 0 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
21 ** **ECK10.0** : 10 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
22 ** **EC200.0** : 1 ~~ 200,000 μS/cm  Resolution: 1 μS/cm
23 * **EC Accuracy**: ±1% FS
24 * **Salinity measurement range**
25 ** **EC200** :0~~70PSU Resolution: 0.1PSU
26 * **Temperature measurement range**
27 ** **ECK1/ECK10**:-20~~+60℃; Resolution: 0.1℃
28 ** **EC200** :-5~~+80℃; Resolution: 0.1℃
29 * **Temperature Accuracy: **±0.5 °C
30 *
31 * **Working environment:**
32 ** Ambient Temperature: 0–60°C
33 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
34 ** ECK200.0 Continuous monitoring of cross-section water quality, aquaculture, sewage treatment, environmental protection, pharmaceuticals, food, tap water, seawater and other high conductivity environments
35 * **IP Rated**: IP68
36 * **Max Pressure**: 0.6MPa
37
38 == 1.2 Application for Different Range ==
39
40
41 [[image:image-20240714173018-1.png]]
42
43
44 == 1.3 Wiring ==
45
46
47 [[image:image-20241129142314-1.png||height="352" width="1108"]]
48
49
50 == 1.4 Mechinical Drawing ==
51
52 ECK1 and ECK10  ECK200
53
54
55 [[image:image-20240714174241-2.png]] [[image:1752564223905-283.png||height="399" width="160"]]
56
57
58 == 1.5 Installation ==
59
60
61 **Electrode installation form:**
62
63 A: Side wall installation
64
65 B: Top flange installation
66
67 C: Pipeline bend installation
68
69 D: Pipeline bend installation
70
71 E: Flow-through installation
72
73 F: Submerged installation
74
75 [[image:image-20240718190121-1.png||height="350" width="520"]]
76
77 **Several common installation methods of electrodes**
78
79 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
80
81 A. Several common incorrect installation methods
82
83 [[image:image-20240718190204-2.png||height="262" width="487"]]
84
85 **Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
86
87 [[image:image-20240718190221-3.png||height="292" width="500"]]
88
89 **Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
90
91 B. Correct installation method
92
93 [[image:image-20240718190249-4.png||height="287" width="515"]]
94
95
96 == 1.6 Maintenance ==
97
98
99 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
100
101 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
102
103 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
104
105 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
106
107 == 1.7 RS485 Commands ==
108
109
110 RS485 signal (K1 default address 0x12; K10 default address 0x11):
111 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
112
113
114 === 1.7.1 Query address ===
115
116
117 **send:**
118
119 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
120 |=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
121 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
122
123 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
124
125
126 **response:**
127
128 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
129 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
130 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
131
132
133
134 === 1.7.2 Change address ===
135
136
137 For example: Change the address of the sensor with address 1 to 2, master → slave
138
139 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
140 |=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
141 |(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
142
143 If the sensor receives correctly, the data is returned along the original path.
144
145 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
146
147
148 === 1.7.3 Modify intercept ===
149
150
151 **send:**
152
153 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
154 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
155 |(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
156 0X07
157 )))
158
159 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
160
161 **response:**
162
163 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
164 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
165 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
166 0X02
167 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
168 0X8F
169 )))
170
171 === 1.7.4 Query data ===
172
173
174 Query the data (EC,temperature) of the sensor (address 11), host → slave
175
176 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
177 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
178 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
179
180 If the sensor receives correctly, the following data will be returned, slave → host
181
182 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
183 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
184 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
185
186 The address of the EC K10 sensor is 11
187
188 The query data command is 11 03 00 00 00 02 C6 9B
189
190 **For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
191
192
193 Query the data (EC,temperature) of the sensor (address 11), host → slave
194
195 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
196 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
197 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
198
199 If the sensor receives correctly, the following data will be returned, slave → host
200
201 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
202 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
203 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
204
205 The address of the EC K1 sensor is 12
206
207 The query data command is 12 03 00 00 00 02 C6 A8
208
209 **For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
210
211
212 ECK200
213
214 === 1.7.5 Calibration Method ===
215
216 ECK1 and ECK10.0
217
218 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
219
220 (% style="color:blue" %)**The calibration steps are as follows:**
221
222 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
223
224 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
225 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
226 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
227 0X00
228 0X00
229 0X37
230 0X32
231 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
232
233 1413*10 gives 0X00003732
234
235 **response:**
236
237 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
238 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
239 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
240
241 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
242
243 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
244 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
245 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
246 0X00
247 0X01
248 0XF7
249 0X20
250 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
251
252 12880*10 gives 0X01F720
253
254 **response:**
255
256 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
257 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
258 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
259
260
261
262 ECK200.0
263
264 For the device with address 01, use 1413uS/cm standard solution to calibrate the first point. Send frame: 1413. Convert hexadecimal to 585. Write 0001, 00 00, 0585 to 0x0120, 0x0121, 0x0122 respectively.
265
266 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
267 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
268 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
269 0X00
270 0X01
271 0X00
272 0X00
273 0X05
274 0X85
275 )))|(% style="width:1px" %)0X1c|(% style="width:1px" %)(((
276 (((
277 0X25
278 )))
279 )))
280
281 **response:**
282
283 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
284 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
285 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
286 0X80
287 )))|(% style="width:60px" %)0X3e(((
288
289 )))
290
291 Use 111310uS/cm standard solution to calibrate the second point and send the frame: 111310 is converted into hexadecimal 1b2ce, and 0002, 0001,b2 ce are written to 0x0120, 0x0121, and 0x0122 respectively.
292
293 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
294 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
295 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
296 0X00
297 0X02
298 0X00
299 0X01
300 0Xb2
301 0Xce
302 )))|(% style="width:1px" %)0X3e|(% style="width:1px" %)(((
303 (((
304 0X22
305 )))
306 )))
307
308 **response:**
309
310 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
311 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
312 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
313 0X80
314 )))|(% style="width:60px" %)0X3e
315
316 = 2. DR-PH01 Water PH Sensor =
317
318 == 2.1 Specification ==
319
320
321 * **Power Input**: DC7~~30
322
323 * **Power Consumption** : < 0.5W
324
325 * **Interface**: RS485. 9600 Baud Rate
326
327 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
328
329 * **pH measurement error**: ±0.15pH
330
331 * **Repeatability error**: ±0.02pH
332
333 * **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
334
335 * **Temperature measurement error**: ±0.5°C
336
337 * **Working environment:**
338 ** Ambient Temperature: 0–60°C
339 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
340
341 * **Temperature Accuracy: **±0.5 °C
342
343 * **IP Rated**: IP68
344
345 * **Max Pressure**: 0.6MPa
346
347 == 2.2 Wiring ==
348
349
350 [[image:image-20240720172548-2.png||height="348" width="571"]]
351
352
353 == 2.3 Mechinical Drawing ==
354
355
356 [[image:image-20240714174241-2.png]]
357
358
359 == 2.4 Installation Notice ==
360
361
362 Do not power on while connect the cables. Double check the wiring before power on.
363
364 Installation Photo as reference:
365
366 (% style="color:blue" %)**Submerged installation:**
367
368 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
369
370 [[image:image-20240718191348-6.png]]
371
372 (% style="color:blue" %)**Pipeline installation:**
373
374 Connect the equipment to the pipeline through the 3/4 thread.
375
376 [[image:image-20240718191336-5.png||height="239" width="326"]]
377
378 (% style="color:blue" %)**Sampling:**
379
380 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
381
382 (% style="color:blue" %)**Measure the pH of the water sample:**
383
384 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
385
386
387 == 2.5 Maintenance ==
388
389
390 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
391
392 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
393
394 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
395
396 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
397
398 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
399
400 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
401
402 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
403
404 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
405
406 * The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
407
408 == 2.6 RS485 Commands ==
409
410
411 RS485 signaldefault address 0x10
412 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
413
414
415 === 2.6.1 Query address ===
416
417
418 **send:**
419
420 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
421 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
422 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
423
424 **response:**
425
426 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
427 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
428 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
429
430 === 2.6.2 Change address ===
431
432
433 For example: Change the address of the sensor with address 1 to 2, master → slave
434
435 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
436 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
437 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
438
439 If the sensor receives correctly, the data is returned along the original path.
440
441 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
442
443
444 === 2.6.3 Modify intercept ===
445
446
447 **send:**
448
449 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
450 |=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
451 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
452 0XA5
453 )))
454
455 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
456
457 **response:**
458
459 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
460 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
461 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
462 0X00
463 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
464 0XA5
465 )))
466
467 === 2.6.4 Query data ===
468
469
470 Query the data (PH) of the sensor (address 10), host → slave
471
472 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
473 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
474 |(% style="width:99px" %)0X10|(% style="width:74px" %)0X03|(% style="width:75px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
475
476 If the sensor receives correctly, the following data will be returned, slave → host
477
478 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
479 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
480 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
481
482 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
483
484 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
485
486 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
487
488
489 === 2.6.5 Calibration Method ===
490
491
492 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
493
494 (% style="color:blue" %)**The calibration steps are as follows:**
495
496 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
497
498 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
499 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
500 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
501 0X00
502 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
503 0XF1
504 )))
505
506 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
507
508 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
509 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
510 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
511 0X00
512 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
513 0X31
514 )))
515
516 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
517
518 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
519 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
520 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
521 0X00
522 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
523 0X31
524 )))
525
526 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
527
528
529 = 3. DR-ORP1 Water ORP Sensor =
530
531 == 3.1 Specification ==
532
533
534 * **Power Input**: DC7~~30
535
536 * **Measuring range**:** **-1999~~1999mV
537
538 * **Resolution**: 1mV
539
540 * **Interface**: RS485. 9600 Baud Rate
541
542 * **Measurement error**: ±3mV
543
544 * **Stability**: ≤2mv/24 hours
545
546 * **Working environment:**
547 ** Ambient Temperature: 0–60°C
548 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
549
550 * **IP Rated**: IP68
551
552 * **Max Pressure**: 0.6MPa
553
554 == 3.2 Wiring ==
555
556
557 [[image:image-20240720172620-3.png||height="378" width="620"]]
558
559
560 == 3.3 Mechinical Drawing ==
561
562
563 [[image:image-20240714174241-2.png]]
564
565
566 == 3.4 Installation Notice ==
567
568
569 Do not power on while connect the cables. Double check the wiring before power on.
570
571 **Installation Photo as reference:**
572
573 (% style="color:blue" %)** Submerged installation:**
574
575 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
576
577 [[image:image-20240718191348-6.png]]
578
579 (% style="color:blue" %)** Pipeline installation:**
580
581 Connect the equipment to the pipeline through the 3/4 thread.
582
583 [[image:image-20240718191336-5.png||height="239" width="326"]]
584
585
586 == 3.5 Maintenance ==
587
588
589 (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
590
591 (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
592
593 (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
594
595 (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
596
597 (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
598
599 (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
600
601 (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
602
603 (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
604
605 (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
606
607
608 == 3.6 RS485 Commands ==
609
610
611 RS485 signaldefault address 0x13
612 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
613
614
615 === 3.6.1 Query address ===
616
617
618 **send:**
619
620 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
621 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
622 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
623
624 **response:**
625
626 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
627 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
628 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
629
630 === 3.6.2 Change address ===
631
632
633 For example: Change the address of the sensor with address 1 to 2, master → slave
634
635 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
636 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
637 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
638
639 If the sensor receives correctly, the data is returned along the original path.
640
641 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
642
643
644 === 3.6.3 Modify intercept ===
645
646
647 **send:**
648
649 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
650 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
651 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
652 0X96
653 )))
654
655 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
656
657 **response:**
658
659 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
660 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
661 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
662 0X00
663 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
664 0X96
665 )))
666
667 === 3.6.4 Query data ===
668
669
670 Query the data (ORP) of the sensor (address 13), host → slave
671
672 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
673 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
674 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
675
676 If the sensor receives correctly, the following data will be returned, slave → host
677
678 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
679 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
680 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
681
682 The query data command is 13 03 00 00 00 01 87 78
683
684 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
685
686 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
687
688
689 === 3.6.5 Calibration Method ===
690
691
692 This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
693 (1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
694 enter the following calibration command, and the 86mV point calibration is completed;
695
696 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
697 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
698 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
699 0X00
700 )))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
701 0X03
702 )))
703
704 Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
705
706 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
707 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
708 |(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
709 0X00
710 )))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
711 0XC3
712 )))
713
714 = 4. DR-DO1 Dissolved Oxygen Sensor =
715
716 == 4.1 Specification ==
717
718
719 * **Measuring range**: 0-20mg/L, 0–50℃
720
721 * **Accuracy**: 3%, ±0.5℃
722
723 * **Resolution**: 0.01 mg/L, 0.01℃
724
725 * **Maximum operating pressure**: 6 bar
726
727 * **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
728
729 * **Power supply voltage**: 5-24V DC
730
731 * **Working environment:**
732 ** Ambient Temperature: 0–60°C
733 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
734
735 * **Power consumption**: ≤0.5W
736
737 == 4.2 wiring ==
738
739
740 [[image:image-20240720172632-4.png||height="390" width="640"]]
741
742
743 == 4.3 Impedance requirements for current signals ==
744
745
746 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
747 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
748 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
749
750 == 4.4 Mechinical Drawing ==
751
752
753 [[image:image-20240719155308-1.png||height="226" width="527"]]
754
755
756 == 4.5 Instructions for use and maintenance ==
757
758
759 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
760
761 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
762
763 == 4.6 RS485 Commands ==
764
765
766 RS485 signaldefault address 0x14
767 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
768
769
770 === 4.6.1 Query address ===
771
772
773 **send:**
774
775 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
776 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
777 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
778
779 If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
780
781
782 **response:**
783
784 Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
785 Register 1 data high and register 1 data low indicate the sensor version
786
787 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
788 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
789 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
790
791 === 4.6.2 Change address ===
792
793
794 For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
795
796 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
797 |=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
798 |(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
799
800 **response:**
801
802 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
803 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
804 |(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
805
806 === 4.6.3 Query data ===
807
808
809 Query the data (dissolved oxygen) of the sensor (address 14), host → slave
810
811 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
812 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
813 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
814
815 If the sensor receives correctly, the following data will be returned, slave → host
816
817 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
818 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
819 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
820
821 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
822
823 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
824
825
826 Query the data (temperature) of the sensor (address 14), host → slave
827
828 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
829 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
830 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
831
832 If the sensor receives correctly, the following data will be returned, slave → host
833
834 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
835 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
836 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
837
838 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
839
840 Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
841
842
843 = 5. DR-TS1 Water Turbidity Sensor =
844
845 == 5.1 Specification ==
846
847
848 * **Measuring range**: 0.1~~1000.0NTU
849
850 * **Accuracy**: ±5%
851
852 * **Resolution**: 0.1NTU
853
854 * **Stability**: ≤3mV/24 hours
855
856 * **Output signal**: RS485 (standard Modbus-RTU protocol, device default address: 01)
857
858 * **Power supply voltage**: 5~~24V DC (when output signal is RS485), 12~~24V DC (when output signal is 4~~20mA)
859
860 * **Working environment:**
861 ** Ambient Temperature: 0–60°C
862 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
863
864 * **Power consumption**: ≤ 0.5W
865
866 == 5.2 wiring ==
867
868
869 [[image:image-20240720172640-5.png||height="387" width="635"]]
870
871
872 == 5.3 Impedance requirements for current signals ==
873
874
875 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
876 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
877 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
878
879 == 5.4 Mechinical Drawing ==
880
881
882 [[image:image-20240718195058-7.png||height="305" width="593"]]
883
884
885 == 5.5 Instructions for use and maintenance ==
886
887
888 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
889
890 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
891
892 == 5.6 RS485 Commands ==
893
894
895 RS485 signaldefault address 0x15
896 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
897
898
899 === 5.6.1 Query address ===
900
901
902 **send:**
903
904 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
905 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
906 |(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
907
908 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
909
910
911 **response:**
912
913 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
914 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
915 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
916
917 === 5.6.2 Change address ===
918
919
920 For example: Change the address of the sensor with address 1 to 2, master → slave
921
922 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
923 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
924 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
925
926 If the sensor receives correctly, the data is returned along the original path.
927
928 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
929
930
931 === 5.6.3 Query data ===
932
933
934 Query the data (turbidity) of the sensor (address 15), host → slave
935
936 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
937 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
938 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
939
940 If the sensor receives correctly, the following data will be returned, slave → host
941
942 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
943 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
944 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
945
946 The query data command is 15 03 00 00 00 01 87 1E
947
948 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
949
950 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
951
952
953 = 6. DR-CL Water CL Probe =
954
955 == 6.1 Specification: ==
956
957 * **Power Input**: DC7~~30
958
959 * **Power Consumption** : 0.19W
960
961 * **Interface**: RS485. 9600 Baud Rate
962
963 * **CL Range & Resolution:**
964 ** **CL2ML:**0-2mg/L
965 ** **CL10ML:**0-10mg/L
966 ** **Resolution:**0.01mg/L
967
968 * **CL Accuracy**: ±5% FS
969 * **Temperature Accuracy: **±0.5 °C
970 * **Working environment:**
971 ** Ambient Temperature: 0–50°C
972 ** pH:4-9
973 ** Flow rate: 30L/h~~60L/h (flow tank installation)
974 * **IP Rated**: IP68
975
976 * **Max Pressure**: 0.6MPa
977
978 == 6.2 Wiring ==
979
980 [[image:image-20240720172548-2.png||height="348" width="571"]]
981
982 == 6.3 Mechinical Drawing ==
983
984 [[image:1752573238705-910.png||height="694" width="278"]]
985
986 == 6.4 Installation ==
987
988 Flow-through installation: Use the matching flow slot for installation. The device and the flow slot are installed tightly.
989
990 The measuring end is completely immersed in the measured liquid to ensure a steady flow rate without bubbles.
991
992 It is recommended that the flow rate be controlled at 30-60Lh to ensure the accuracy of the test.
993
994 [[image:1752573643879-991.png||height="360" width="343"]]
995
996 == 6.5 Maintenance ==
997
998 * The device itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible!
999 * After using the electrode, please clean the electrode head with clean water and cover it with a protective cover.
1000 * When measuring the device, the measured liquid should flow and the flow rate should be uniform, and there should be no bubbles attached to the measuring end of the device.
1001 * If the electrode diaphragm is attached with dirt and mineral components, the sensitivity will be reduced, and it may not be possible to perform sufficient measurement. Please ensure that the platinum ring is clean.
1002 * The platinum induction ring of a good residual chlorine electrode should always be kept clean and bright. If the platinum ring of the electrode becomes rough or covered with pollutants after measurement, please clean it according to the following method: (For reference) Inorganic pollution: immerse the electrode in 0.1mol/L dilute hydrochloric acid for 15 minutes, gently wipe the platinum ring of the residual chlorine electrode with a cotton swab, and then wash it with tap water.
1003 * Organic or oil pollution: immerse the electrode in tap water with a small amount of detergent, such as dishwashing liquid, and thoroughly clean the sensing surface of the electrode sensor. Gently wipe the platinum ring of the electrode with a cotton swab, then rinse with tap water, and the cleaning is complete. If the platinum ring of the electrode has formed an oxide film, please use toothpaste or 1000-grit fine sandpaper to properly polish the sensing surface, and then clean it with tap water. The platinum ring is connected to the glass, so please handle it carefully when polishing.
1004 The electrode has a service life of about one year, and a new electrode should be replaced in time after aging.
1005 * Before the cable plug and the device plug are locked, do not put the plug part into water.
1006
1007
1008
1009 == 6.6 RS485 Commands ==
1010
1011 RS485 signal 
1012 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
1013
1014
1015 == 6.7 Query data ==
1016
1017 Example 1: Read the current residual chlorine concentration of the device with address 01
1018
1019 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1020 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1021 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X01|(% style="width:72px" %)(((
1022 0X84
1023 )))|(% style="width:77px" %)0X0A
1024
1025 **response:**
1026
1027 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1028 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Valid Bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1029 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X03|(% style="width:110px" %)0X02|(% style="width:94px" %)0X03 0X16|(% style="width:72px" %)(((
1030 0X39
1031 )))|(% style="width:77px" %)0X7A
1032
1033 Calculation of residual chlorine concentration: 316H (hexadecimal) = 790 => residual chlorine = 7.90
1034
1035
1036 Example 2: Set the deviation value for the current residual chlorine value of the device with address 01 to correct the value and send the frame: (If the current residual gas value output by the device is 7.90, the value needs to be corrected to 8.00, the difference is 8.00-7.90-0.100.1*100=10=>41200000 (floating point number), write 41200000 to the contents of the two registers)
1037
1038 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
1039 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register number|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Byte number|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register content|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
1040 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X12|(% style="width:126px" %)0X00 0X02|(% style="width:85px" %)0X04|(% style="width:1px" %)0X4120 0X0000|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
1041
1042 **response:**
1043
1044 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1045 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Register address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register number|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1046 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X10|(% style="width:110px" %)0X01 0X12|(% style="width:94px" %)0X00 0X02|(% style="width:72px" %)(((
1047 0XE5
1048 )))|(% style="width:77px" %)0X0D
1049
1050
1051
1052 = 7.  Water Quality Sensor Datasheet =
1053
1054 * **[[Water Quality Sensor Transmitter Datasheet>>https://www.dropbox.com/scl/fi/9tofocmgapkbddshznumn/Datasheet_WQS-xB-WQS-xS_Water-Quality-Sensor-Transmitter.pdf?rlkey=wxua12ur9swk30rkqnh2boo9z&st=axga6epf&dl=0]]**