Wiki source code of Water Quality Sensors

Version 45.36 by Xiaoling on 2024/08/06 11:36

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8 = 1. DR-ECK Water EC Probe =
9
10 == 1.1 Specification: ==
11
12
13 * **Power Input**: DC7~~30
14 * **Power Consumption** : < 0.5W
15 * **Interface**: RS485. 9600 Baud Rate
16 * **EC Range & Resolution:**
17 ** **ECK0.01** : 0.02 ~~ 20 μS/cm
18 ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
19 ** **ECK1.0** : 2 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
20 ** **ECK10.0** : 20 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
21 * **EC Accuracy**: ±1% FS
22 * **Temperature Measure Range**: -20 ~~ 60 °C
23 * **Temperature Accuracy: **±0.5 °C
24 * **IP Rated**: IP68
25 * **Max Pressure**: 0.6MPa
26
27
28 == 1.2 Application for Different Range ==
29
30
31 [[image:image-20240714173018-1.png]]
32
33
34 == 1.3 Wiring ==
35
36
37 [[image:image-20240720172533-1.png||height="347" width="569"]]
38
39
40 == 1.4 Mechinical Drawing ==
41
42
43 [[image:image-20240714174241-2.png]]
44
45
46 == 1.5 Installation ==
47
48
49 **Electrode installation form:**
50
51 A: Side wall installation
52
53 B: Top flange installation
54
55 C: Pipeline bend installation
56
57 D: Pipeline bend installation
58
59 E: Flow-through installation
60
61 F: Submerged installation
62
63 [[image:image-20240718190121-1.png||height="350" width="520"]]
64
65 **Several common installation methods of electrodes**
66
67 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
68
69 A. Several common incorrect installation methods
70
71 [[image:image-20240718190204-2.png||height="262" width="487"]]
72
73 **Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
74
75 [[image:image-20240718190221-3.png||height="292" width="500"]]
76
77 **Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
78
79 B. Correct installation method
80
81 [[image:image-20240718190249-4.png||height="287" width="515"]]
82
83
84 == 1.6 Maintenance ==
85
86
87 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
88 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
89 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
90 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
91
92
93 == 1.7 RS485 Commands ==
94
95
96 RS485 signal (K1 default address 0x12; K10 default address 0x11):
97 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
98
99
100 === 1.7.1 Query address ===
101
102
103 **send**
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
106 |=(% style="width: 74px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
107 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
108
109 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
110
111
112 **response**
113
114 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
115 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
116 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
117
118
119 === 1.7.2 Change address ===
120
121
122 For example: Change the address of the sensor with address 1 to 2, master → slave
123
124 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
125 |=(% style="width: 75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 54px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
126 |(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
127
128 If the sensor receives correctly, the data is returned along the original path.
129
130 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
131
132
133 === 1.7.3 Modify intercept ===
134
135
136 send
137
138 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
139 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
140 |(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
141 0X07
142 )))
143
144 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
145
146 response
147
148 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
149 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
150 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
151 0X02
152 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
153 0X8F
154 )))
155
156 === 1.7.4 Query data ===
157
158
159 Query the data (EC,temperature) of the sensor (address 11), host → slave
160
161 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
162 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
163 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
164
165 If the sensor receives correctly, the following data will be returned, slave → host
166
167 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
168 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
169 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
170
171 The address of the EC K10 sensor is 11
172
173 The query data command is 11 03 00 00 00 02 C6 9B
174
175 For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
176
177
178 Query the data (EC,temperature) of the sensor (address 11), host → slave
179
180 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
181 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
182 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
183
184 If the sensor receives correctly, the following data will be returned, slave → host
185
186 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
187 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
188 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
189
190 The address of the EC K1 sensor is 12
191
192 The query data command is 12 03 00 00 00 02 C6 A8
193
194 For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
195
196
197 === 1.7.5 Calibration Method ===
198
199
200 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
201
202 The calibration steps are as follows:
203 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
204
205 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
206 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
207 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
208 0X00
209
210 0X00
211
212 0X37
213
214 0X32
215 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
216
217 1413*10 gives 0X00003732
218
219 response
220
221 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
222 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
223 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
224
225 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
226
227 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
228 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
229 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
230 0X00
231
232 0X01
233
234 0XF7
235
236 0X20
237 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
238
239 12880*10 gives 0X01F720
240
241 response
242
243 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
244 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
245 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
246
247
248
249 = 2. DR-PH01 Water PH Sensor =
250
251 == 2.1 Specification ==
252
253
254 * **Power Input**: DC7~~30
255 * **Power Consumption** : < 0.5W
256 * **Interface**: RS485. 9600 Baud Rate
257 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
258 * **pH measurement error**:±0.15pH
259 * **Repeatability error**:±0.02pH
260 * **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃)
261 * **Temperature measurement error**: ±0.5℃
262 * **Temperature Measure Range**: -20 ~~ 60 °C
263 * **Temperature Accuracy: **±0.5 °C
264 * **IP Rated**: IP68
265 * **Max Pressure**: 0.6MPa
266
267 == 2.2 Wiring ==
268
269 [[image:image-20240720172548-2.png||height="348" width="571"]]
270
271
272 == (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) ==
273
274 [[image:image-20240714174241-2.png]]
275
276
277 == 2.4 Installation Notice ==
278
279 Do not power on while connect the cables. Double check the wiring before power on.
280
281 Installation Photo as reference:
282
283 **~ Submerged installation:**
284
285 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
286
287 [[image:image-20240718191348-6.png]]
288
289 **~ Pipeline installation:**
290
291 Connect the equipment to the pipeline through the 3/4 thread.
292
293 [[image:image-20240718191336-5.png||height="239" width="326"]]
294
295 **Sampling:**
296
297 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
298
299 **Measure the pH of the water sample:**
300
301 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
302
303
304 == 2.5 Maintenance ==
305
306
307 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
308 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
309 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
310 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
311 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
312 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
313 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
314 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
315 * (((
316 The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
317 )))
318
319 == 2.6 RS485 Commands ==
320
321 RS485 signaldefault address 0x10
322 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
323
324 === 2.6.1 Query address ===
325
326 send
327
328 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
329 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
330 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
331
332 response
333
334 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
335 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
336 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
337
338 === 2.6.2 Change address ===
339
340 For example: Change the address of the sensor with address 1 to 2, master → slave
341
342 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
343 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
344 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
345
346 If the sensor receives correctly, the data is returned along the original path.
347 Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
348
349
350 === 2.6.3 Modify intercept ===
351
352
353 send
354
355 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:570.333px" %)
356 |=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
357 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
358 0XA5
359 )))
360
361 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
362
363 response
364
365 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
366 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
367 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
368 0X00
369 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
370 0XA5
371 )))
372
373 === 2.6.4 Query data ===
374
375
376 Query the data (PH) of the sensor (address 10), host → slave
377
378 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
379 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
380 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
381
382 If the sensor receives correctly, the following data will be returned, slave → host
383
384 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
385 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
386 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
387
388 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
389
390 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
391
392 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
393
394
395 === 2.6.5 Calibration Method ===
396
397
398 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
399 The calibration steps are as follows:
400 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
401
402 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
403 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
404 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
405 0X00
406 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
407 0XF1
408 )))
409
410 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
411
412 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
413 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
414 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
415 0X00
416 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
417 0X31
418 )))
419
420 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
421
422 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
423 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
424 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
425 0X00
426 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
427 0X31
428 )))
429
430 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
431
432
433 = 3. DR-ORP1 Water ORP Sensor =
434
435
436 == 3.1 Specification ==
437
438 * **Power Input**: DC7~~30
439 * **Measuring range**:** **-1999~~1999mV
440 **Resolution**: 1mV
441 * **Interface**: RS485. 9600 Baud Rate
442 * **Measurement error**: ±3mV
443 * **Stability**: ≤2mv/24 hours
444 * **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH
445 * **IP Rated**: IP68
446 * **Max Pressure**: 0.6MPa
447
448 == 3.2 Wiring ==
449
450 [[image:image-20240720172620-3.png||height="378" width="620"]]
451
452
453 == 3.3 Mechinical Drawing ==
454
455 [[image:image-20240714174241-2.png]]
456
457 == 3.4 Installation Notice ==
458
459 Do not power on while connect the cables. Double check the wiring before power on.
460
461 Installation Photo as reference:
462
463 **~ Submerged installation:**
464
465 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
466
467 [[image:image-20240718191348-6.png]]
468
469 **~ Pipeline installation:**
470
471 Connect the equipment to the pipeline through the 3/4 thread.
472
473 [[image:image-20240718191336-5.png||height="239" width="326"]]
474
475
476 == 3.5 Maintenance ==
477
478
479 (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
480
481 (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
482
483 (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
484
485 (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
486
487 (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
488
489 (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
490
491 (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
492
493 (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
494
495 (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
496
497 == 3.6 RS485 Commands ==
498
499
500 RS485 signaldefault address 0x13
501 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
502
503 === 3.6.1 Query address ===
504
505 send
506
507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
508 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
509 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
510
511 response
512
513 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
514 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
515 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
516
517 === 3.6.2 Change address ===
518
519 For example: Change the address of the sensor with address 1 to 2, master → slave
520
521 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
522 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
523 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
524
525 If the sensor receives correctly, the data is returned along the original path.
526 Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
527
528
529 === 3.6.3 Modify intercept ===
530
531 send
532
533 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
534 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
535 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
536 0X96
537 )))
538
539 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
540
541 response
542
543 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
544 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
545 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
546 0X00
547 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
548 0X96
549 )))
550
551 === 3.6.4 Query data ===
552
553
554 Query the data (ORP) of the sensor (address 13), host → slave
555
556 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
557 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
558 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
559
560 If the sensor receives correctly, the following data will be returned, slave → host
561
562 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
563 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
564 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
565
566 The query data command is 13 03 00 00 00 01 87 78
567
568 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
569
570 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
571
572
573 === 3.6.5 Calibration Method ===
574
575 This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
576 (1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
577 enter the following calibration command, and the 86mV point calibration is completed;
578
579 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
580 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
581 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
582 0X00
583 )))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
584 0X03
585 )))
586
587 Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
588
589 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
590 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
591 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
592 0X00
593 )))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
594 0XC3
595 )))
596
597 = 4. DR-DO1 Dissolved Oxygen Sensor =
598
599
600
601 == 4.1 Specification ==
602
603
604 * **Measuring range**: 0-20mg/L, 0-50℃
605 * **Accuracy**: 3%, ±0.5℃
606 * **Resolution**: 0.01 mg/L, 0.01℃
607 * **Maximum operating pressure**: 6 bar
608 * **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
609 * **Power supply voltage**: 5-24V DC
610 * **Working environment**: temperature 0-60℃; humidity <95%RH
611 * **Power consumption**: ≤0.5W
612
613 == 4.2 wiring ==
614
615 [[image:image-20240720172632-4.png||height="390" width="640"]]
616
617
618 == (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals ==
619
620 [[image:image-20240718195414-8.png||height="100" width="575"]]
621
622
623 == 4.4 Mechinical Drawing ==
624
625
626 [[image:image-20240719155308-1.png||height="226" width="527"]]
627
628
629 == 4.5 Instructions for use and maintenance ==
630
631 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
632 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
633
634 == 4.6 RS485 Commands ==
635
636 RS485 signaldefault address 0x14
637 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
638
639 === 4.6.1 Query address ===
640
641 send
642
643 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
644 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
645 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
646
647 If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
648
649
650 response
651
652 Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
653 Register 1 data high and register 1 data low indicate the sensor version
654
655 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
656 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
657 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
658
659 === 4.6.2 Change address ===
660
661 For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
662
663 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %)
664 |=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
665 |(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
666
667 response
668
669 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
670 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
671 |(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
672
673 === 4.6.3 Query data ===
674
675
676 Query the data (dissolved oxygen) of the sensor (address 14), host → slave
677
678 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
679 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
680 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
681
682 If the sensor receives correctly, the following data will be returned, slave → host
683
684 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
685 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
686 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
687
688 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
689
690 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
691
692
693 Query the data (temperature) of the sensor (address 14), host → slave
694
695 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
696 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
697 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
698
699 If the sensor receives correctly, the following data will be returned, slave → host
700
701 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
702 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
703 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
704
705 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
706
707 Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃
708
709
710 = 5. DR-TS1 Water Turbidity Sensor =
711
712
713
714 == (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification ==
715
716 * **Measuring range**: 0.1~1000.0NTU
717 * **Accuracy**: ±5%
718 * **Resolution**: 0.1NTU
719 * **Stability**: ≤3mV/24 hours
720 * **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
721 * **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA)
722 * **Working environment**: temperature 0~60℃; humidity ≤95%RH
723 * **Power consumption**: ≤0.5W
724
725 == 5.2 wiring ==
726
727 [[image:image-20240720172640-5.png||height="387" width="635"]]
728
729
730 == 5.3 Impedance requirements for current signals ==
731
732 [[image:image-20240718195414-8.png||height="100" width="575"]]
733
734
735 == 5.4 Mechinical Drawing ==
736
737 [[image:image-20240718195058-7.png||height="305" width="593"]]
738
739
740 == 5.5 Instructions for use and maintenance ==
741
742 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
743 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
744
745 == 5.6 RS485 Commands ==
746
747
748 RS485 signaldefault address 0x15
749 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
750
751 === 5.6.1 Query address ===
752
753 send
754
755 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
756 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
757 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
758
759 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
760
761
762 response
763
764 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
765 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
766 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
767
768 === 5.6.2 Change address ===
769
770 For example: Change the address of the sensor with address 1 to 2, master → slave
771
772 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
773 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
774 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
775
776 If the sensor receives correctly, the data is returned along the original path.
777 Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
778
779 === 5.6.3 Query data ===
780
781
782 Query the data (turbidity) of the sensor (address 15), host → slave
783
784 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
785 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
786 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
787
788 If the sensor receives correctly, the following data will be returned, slave → host
789
790 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
791 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
792 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
793
794 The query data command is 15 03 00 00 00 01 87 1E
795
796 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
797
798 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0