Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6 = 1. DR-ECK Water EC Probe =
7
8 == 1.1 Specification: ==
9
10 * **Power Input**: DC7~~30
11 * **Power Consumption** : < 0.5W
12 * **Interface**: RS485. 9600 Baud Rate
13 * **EC Range & Resolution:**
14 ** **ECK0.01** : 0.02 ~~ 20 μS/cm
15 ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
16 ** **ECK1.0** : 2 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
17 ** **ECK10.0** : 20 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
18 * **EC Accuracy**: ±1% FS
19 * **Temperature Measure Range**: -20 ~~ 60 °C
20 * **Temperature Accuracy: **±0.5 °C
21 * **IP Rated**: IP68
22 * **Max Pressure**: 0.6MPa
23
24 == 1.2 Application for Different Range ==
25
26 [[image:image-20240714173018-1.png]]
27
28
29 == 1.3 Wiring ==
30
31
32 == 1.4 Mechinical Drawing ==
33
34 [[image:image-20240714174241-2.png]]
35
36
37 == 1.5 Installation ==
38
39
40 **Electrode installation form**
41
42 A:Side wall installation
43
44 B:Top flange installation
45
46 C:Pipeline bend installation
47
48 D:Pipeline bend installation
49
50 E:Flow-through installation
51
52 F:Submerged installation
53
54 [[image:image-20240718190121-1.png||height="350" width="520"]]
55
56 **Several common installation methods of electrodes**
57
58 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
59
60 A. Several common incorrect installation methods
61
62 [[image:image-20240718190204-2.png||height="262" width="487"]]
63
64 Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
65
66 [[image:image-20240718190221-3.png||height="292" width="500"]]
67
68 Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
69
70 B. Correct installation method
71
72 [[image:image-20240718190249-4.png||height="287" width="515"]]
73
74
75 == 1.6 Maintain ==
76
77
78 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
79 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
80 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
81 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
82
83 == 1.7 RS485 Commands ==
84
85
86 RS485 signal (K1 default address 0x12; K10 default address 0x11):
87 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
88
89
90 === 1.7.1 Query address ===
91
92 send
93
94 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
95 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
96 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
97
98 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
99
100
101 response
102
103 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
104 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
105 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
106
107 === 1.7.2 Change address ===
108
109 For example: Change the address of the sensor with address 1 to 2, master → slave
110
111 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
112 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
113 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
114
115 If the sensor receives correctly, the data is returned along the original path.
116 Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
117
118
119 === 1.7.3 Modify intercept ===
120
121
122 send
123
124 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
125 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
126 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
127 0X07
128 )))
129
130 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
131
132 response
133
134 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
135 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
136 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
137 0X02
138 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
139 0X8F
140 )))
141
142 === 1.7.4 Query data ===
143
144 The address of the EC K10 sensor is 11
145
146 The query data command is 11 03 00 00 00 02 C6 9B
147
148 For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
149
150
151 The address of the EC K1 sensor is 12
152
153 The query data command is 12 03 00 00 00 02 C6 A8
154
155 For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
156
157
158 === 1.7.5 Calibration Method ===
159
160
161 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
162
163 The calibration steps are as follows:
164 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
165
166 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
167 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
168 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
169 0X00
170
171 0X00
172
173 0X37
174
175 0X32
176 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
177
178 1413*10 gives 0X00003732
179
180 response
181
182 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
183 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
184 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
185
186 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
187
188 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
189 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
190 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
191 0X00
192
193 0X01
194
195 0XF7
196
197 0X20
198 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
199
200 12880*10 gives 0X01F720
201
202 response
203
204 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
205 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
206 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
207
208 = 2. DR-PH01 Water PH Sensor =
209
210
211 == 2.1 Specification ==
212
213 * **Power Input**: DC7~~30
214 * **Power Consumption** : < 0.5W
215 * **Interface**: RS485. 9600 Baud Rate
216 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
217 * **pH measurement error**:±0.15pH
218 * **Repeatability error**:±0.02pH
219 * **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃)
220 * **Temperature measurement error**: ±0.5℃
221 * **Temperature Measure Range**: -20 ~~ 60 °C
222 * **Temperature Accuracy: **±0.5 °C
223 * **IP Rated**: IP68
224 * **Max Pressure**: 0.6MPa
225
226 == 2.2 Wiring ==
227
228
229 == (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) ==
230
231 [[image:image-20240714174241-2.png]]
232
233
234 == 2.4 Installation Notice ==
235
236 Do not power on while connect the cables. Double check the wiring before power on.
237
238 Installation Photo as reference:
239
240 **~ Submerged installation:**
241
242 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
243
244 [[image:image-20240718191348-6.png]]
245
246 **~ Pipeline installation:**
247
248 Connect the equipment to the pipeline through the 3/4 thread.
249
250 [[image:image-20240718191336-5.png||height="239" width="326"]]
251
252 **Sampling:**
253
254 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
255
256 **Measure the pH of the water sample:**
257
258 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
259
260
261 === 2.5 Maintenance ===
262
263
264 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
265 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
266 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
267 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
268 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
269 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
270 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
271 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
272 * (((
273 The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
274 )))
275
276 == 2.6 RS485 Commands ==
277
278 RS485 signaldefault address 0x10
279 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
280
281 === 2.6.1 Query data ===
282
283 send
284
285 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
286 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
287 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
288
289 response
290
291 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
292 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
293 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
294
295 === 2.6.2 Change address ===
296
297 For example: Change the address of the sensor with address 1 to 2, master → slave
298
299 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
300 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
301 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
302
303 If the sensor receives correctly, the data is returned along the original path.
304 Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
305
306
307 === 2.6.3 Modify intercept ===
308
309
310 send
311
312 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
313 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
314 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
315 0XA5
316 )))
317
318 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
319
320 response
321
322 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
323 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
324 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
325 0X00
326 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
327 0XA5
328 )))
329
330 === 2.6.4 Query data ===
331
332
333 The address of the pH  sensor is 10
334
335 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
336
337 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
338
339 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
340
341
342 === 2.6.5 Calibration Method ===
343
344
345 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
346 The calibration steps are as follows:
347 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
348
349 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
350 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
351 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
352 0X00
353 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
354 0XF1
355 )))
356
357 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
358
359 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
360 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
361 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
362 0X00
363 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
364 0X31
365 )))
366
367 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
368
369 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
370 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
371 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
372 0X00
373 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
374 0X31
375 )))
376
377 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
378
379
380 = 3. DR-ORP1 Water ORP Sensor =
381
382
383
384 == 3.1 Specification ==
385
386 * **Power Input**: DC7~~30
387 * **Power Consumption** : < 0.5W
388 * **Interface**: RS485. 9600 Baud Rate
389 * **Measurement error**: ±3mV
390 * **Stability**: ≤2mv/24 hours
391 * **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH
392 * **IP Rated**: IP68
393 * **Max Pressure**: 0.6MPa
394
395 == 3.2 Wiring ==
396
397
398 == 3.3 Mechinical Drawing ==
399
400 [[image:image-20240714174241-2.png]]
401
402 == 3.4 Installation Notice ==
403
404 Do not power on while connect the cables. Double check the wiring before power on.
405
406 Installation Photo as reference:
407
408 **~ Submerged installation:**
409
410 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
411
412 [[image:image-20240718191348-6.png]]
413
414 **~ Pipeline installation:**
415
416 Connect the equipment to the pipeline through the 3/4 thread.
417
418 [[image:image-20240718191336-5.png||height="239" width="326"]]
419
420
421 == 3.7 RS485 Commands ==
422
423
424 The address of the ORP sensor is 13
425
426 The query data command is 13 03 00 00 00 01 87 78
427
428 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
429
430 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
431
432
433 = 4. DR-DO1 Dissolved Oxygen Sensor =
434
435 == 4.7 RS485 Commands ==
436
437
438 The address of the dissolved oxygen sensor is 14
439
440 The query data command is 14 03 00 14 00 01 C6 CB
441
442 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
443
444 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
445
446
447 = 5. DR-TS1 Water Turbidity Sensor =
448
449 == 5.7 RS485 Commands ==
450
451
452 The address of the dissolved oxygen sensor is 15
453
454 The query data command is 15 03 00 00 00 01 87 1E
455
456 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
457
458 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0