Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6 = 1. DR-ECK Water EC Probe =
7
8 == 1.1 Specification: ==
9
10 * **Power Input**: DC7~~30
11 * **Power Consumption** : < 0.5W
12 * **Interface**: RS485. 9600 Baud Rate
13 * **EC Range & Resolution:**
14 ** **ECK0.01** : 0.02 ~~ 20 μS/cm
15 ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
16 ** **ECK1.0** : 2 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
17 ** **ECK10.0** : 20 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
18 * **EC Accuracy**: ±1% FS
19 * **Temperature Measure Range**: -20 ~~ 60 °C
20 * **Temperature Accuracy: **±0.5 °C
21 * **IP Rated**: IP68
22 * **Max Pressure**: 0.6MPa
23
24 == 1.2 Application for Different Range ==
25
26 [[image:image-20240714173018-1.png]]
27
28
29 == 1.3 Wiring ==
30
31
32 == 1.4 Mechinical Drawing ==
33
34 [[image:image-20240714174241-2.png]]
35
36
37 == 1.5 Installation ==
38
39
40 **Electrode installation form**
41
42 A:Side wall installation
43
44 B:Top flange installation
45
46 C:Pipeline bend installation
47
48 D:Pipeline bend installation
49
50 E:Flow-through installation
51
52 F:Submerged installation
53
54 [[image:image-20240716104537-2.png||height="475" width="706"]]
55
56 **Several common installation methods of electrodes**
57
58 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
59
60 A. Several common incorrect installation methods
61
62 [[image:image-20240717103452-1.png||height="320" width="610"]]
63
64 Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
65
66
67 [[image:image-20240716105124-4.png||height="326" width="569"]]
68
69 Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
70
71 B. Correct installation method
72
73 [[image:image-20240716105318-5.png||height="330" width="594"]]
74
75
76 == 1.6 Maintain ==
77
78
79 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
80 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
81 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
82 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
83 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
84 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
85 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
86 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
87 * (((
88 The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
89 )))
90
91 == 1.7 RS485 Commands ==
92
93
94 RS485 signal (K1 default address 0x12; K10 default address 0x11):
95 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
96
97
98 === 1.7.1 Query address ===
99
100 send
101
102 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
103 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
104 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
105
106 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
107
108
109 response
110
111 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
112 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
113 |(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
114
115 === 1.7.2 Change address ===
116
117 For example: Change the address of the sensor with address 1 to 2, master → slave
118
119 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
120 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
121 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
122
123 If the sensor receives correctly, the data is returned along the original path.
124 Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
125
126
127 === 1.7.3 Modify intercept ===
128
129
130 send
131
132 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
133 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
134 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((
135 0X97
136 )))
137
138 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
139
140 response
141
142 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
143 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
144 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
145 0X02
146 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)(((
147 0XE5
148 )))
149
150 === 1.7.4 Query data ===
151
152 The address of the EC K10 sensor is 11
153
154 The query data command is 11 03 00 00 00 02 C6 9B
155
156 For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
157
158
159 The address of the EC K1 sensor is 12
160
161 The query data command is 12 03 00 00 00 02 C6 A8
162
163 For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
164
165
166 === 1.7.5 Calibration Method ===
167
168
169 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
170
171 The calibration steps are as follows:
172 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
173
174 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
175 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
176 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
177 0X00
178
179 0X00
180
181 0X37
182
183 0X32
184 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
185
186 1413*10 gives 0X00003732
187
188 response
189
190 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
191 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
192 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
193
194 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
195
196 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
197 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
198 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
199 0X00
200
201 0X01
202
203 0XF7
204
205 0X20
206 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
207
208 12880*10 gives 0X01F720
209
210 response
211
212 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
213 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
214 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
215
216
217 = 2. DR-PH01 Water PH Sensor =
218
219 == 2.7 RS485 Commands ==
220
221
222 The address of the pH  sensor is 10
223
224 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
225
226 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
227
228 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
229
230
231 = 3. DR-ORP1 Water ORP Sensor =
232
233 == 3.7 RS485 Commands ==
234
235
236 The address of the ORP sensor is 13
237
238 The query data command is 13 03 00 00 00 01 87 78
239
240 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
241
242 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
243
244
245 = 4. DR-DO1 Dissolved Oxygen Sensor =
246
247 == 4.7 RS485 Commands ==
248
249
250 The address of the dissolved oxygen sensor is 14
251
252 The query data command is 14 03 00 14 00 01 C6 CB
253
254 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
255
256 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
257
258
259 = 5. DR-TS1 Water Turbidity Sensor =
260
261 == 5.7 RS485 Commands ==
262
263
264 The address of the dissolved oxygen sensor is 15
265
266 The query data command is 15 03 00 00 00 01 87 1E
267
268 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
269
270 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
271
272
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0