Changes for page Water Quality Sensors

Last modified by Karry Zhuang on 2025/07/25 09:38

From version 60.7
edited by Karry Zhuang
on 2025/07/15 15:39
Change comment: There is no comment for this version
To version 26.1
edited by Karry Zhuang
on 2024/07/18 19:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -3,39 +3,26 @@
3 3  {{toc/}}
4 4  
5 5  
6 -
7 -
8 8  = 1. DR-ECK Water EC Probe =
9 9  
10 10  == 1.1 Specification: ==
11 11  
12 -
13 13  * **Power Input**: DC7~~30
14 -
15 15  * **Power Consumption** : < 0.5W
16 -
17 17  * **Interface**: RS485. 9600 Baud Rate
18 -
19 19  * **EC Range & Resolution:**
20 20  ** **ECK0.01** : 0.02 ~~ 20 μS/cm
21 21  ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
22 -** **ECK1.0** : 0 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
23 -** **ECK10.0** : 10 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
24 -** **ECK200.0** : 1 ~~ 200,000 μS/cm  Resolution: 1 μS/cm
25 -
16 +** **ECK1.0** : 2 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
17 +** **ECK10.0** : 20 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
26 26  * **EC Accuracy**: ±1% FS
19 +* **Temperature Measure Range**: -20 ~~ 60 °C
27 27  * **Temperature Accuracy: **±0.5 °C
28 -* **Working environment:**
29 -** Ambient Temperature: 0–60°C
30 -** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
31 -** ECK200.0 Continuous monitoring of cross-section water quality, aquaculture, sewage treatment, environmental protection, pharmaceuticals, food, tap water, seawater and other high conductivity environments
32 32  * **IP Rated**: IP68
33 -
34 34  * **Max Pressure**: 0.6MPa
35 35  
36 36  == 1.2 Application for Different Range ==
37 37  
38 -
39 39  [[image:image-20240714173018-1.png]]
40 40  
41 41  
... ... @@ -42,33 +42,27 @@
42 42  == 1.3 Wiring ==
43 43  
44 44  
45 -[[image:image-20241129142314-1.png||height="352" width="1108"]]
46 -
47 -
48 48  == 1.4 Mechinical Drawing ==
49 49  
50 - ECK1 and ECK10  ECK200
34 +[[image:image-20240714174241-2.png]]
51 51  
52 52  
53 -[[image:image-20240714174241-2.png]] [[image:1752564223905-283.png||height="399" width="160"]]
54 -
55 -
56 56  == 1.5 Installation ==
57 57  
58 58  
59 -**Electrode installation form:**
40 +**Electrode installation form**
60 60  
61 -A: Side wall installation
42 +A:Side wall installation
62 62  
63 -B: Top flange installation
44 +B:Top flange installation
64 64  
65 -C: Pipeline bend installation
46 +C:Pipeline bend installation
66 66  
67 -D: Pipeline bend installation
48 +D:Pipeline bend installation
68 68  
69 -E: Flow-through installation
50 +E:Flow-through installation
70 70  
71 -F: Submerged installation
52 +F:Submerged installation
72 72  
73 73  [[image:image-20240718190121-1.png||height="350" width="520"]]
74 74  
... ... @@ -80,11 +80,11 @@
80 80  
81 81  [[image:image-20240718190204-2.png||height="262" width="487"]]
82 82  
83 -**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
64 +Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
84 84  
85 85  [[image:image-20240718190221-3.png||height="292" width="500"]]
86 86  
87 -**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
68 +Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
88 88  
89 89  B. Correct installation method
90 90  
... ... @@ -91,15 +91,12 @@
91 91  [[image:image-20240718190249-4.png||height="287" width="515"]]
92 92  
93 93  
94 -== 1.6 Maintenance ==
75 +== 1.6 Maintain ==
95 95  
96 96  
97 97  * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
98 -
99 99  * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
100 -
101 101  * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
102 -
103 103  * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
104 104  
105 105  == 1.7 RS485 Commands ==
... ... @@ -111,99 +111,70 @@
111 111  
112 112  === 1.7.1 Query address ===
113 113  
114 -ECK1 and ECK10
92 +send
115 115  
116 -**send:**
94 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
95 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
96 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
117 117  
118 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
119 -|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
120 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
121 -
122 122  If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
123 123  
124 124  
125 -**response:**
101 +response
126 126  
127 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
128 -|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
129 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
103 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
104 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
105 +|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
130 130  
131 131  === 1.7.2 Change address ===
132 132  
133 -
134 134  For example: Change the address of the sensor with address 1 to 2, master → slave
135 135  
136 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
137 -|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
138 -|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
111 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
112 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
113 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
139 139  
140 140  If the sensor receives correctly, the data is returned along the original path.
116 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
141 141  
142 -(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
143 143  
144 -
145 145  === 1.7.3 Modify intercept ===
146 146  
147 147  
148 -**send:**
122 +send
149 149  
150 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
151 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
152 -|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
153 -0X07
124 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
125 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
126 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((
127 +0X97
154 154  )))
155 155  
156 156  Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
157 157  
158 -**response:**
132 +response
159 159  
160 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
161 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
134 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
135 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
162 162  |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
163 163  0X02
164 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
165 -0X8F
138 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)(((
139 +0XE5
166 166  )))
167 167  
168 168  === 1.7.4 Query data ===
169 169  
170 -
171 -Query the data (EC,temperature) of the sensor (address 11), host → slave
172 -
173 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
174 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
175 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
176 -
177 -If the sensor receives correctly, the following data will be returned, slave → host
178 -
179 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
180 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
181 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
182 -
183 183  The address of the EC K10 sensor is 11
184 184  
185 185  The query data command is 11 03 00 00 00 02 C6 9B
186 186  
187 -**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
148 +For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
188 188  
189 189  
190 -Query the data (EC,temperature) of the sensor (address 11), host → slave
191 -
192 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
193 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
194 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
195 -
196 -If the sensor receives correctly, the following data will be returned, slave → host
197 -
198 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
199 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
200 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
201 -
202 202  The address of the EC K1 sensor is 12
203 203  
204 204  The query data command is 12 03 00 00 00 02 C6 A8
205 205  
206 -**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
155 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
207 207  
208 208  
209 209  === 1.7.5 Calibration Method ===
... ... @@ -211,212 +211,127 @@
211 211  
212 212  This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
213 213  
214 -(% style="color:blue" %)**The calibration steps are as follows:**
215 -
163 +The calibration steps are as follows:
216 216  (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
217 217  
218 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
219 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
166 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
167 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
220 220  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
221 221  0X00
170 +
222 222  0X00
172 +
223 223  0X37
174 +
224 224  0X32
225 225  )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
226 226  
227 227  1413*10 gives 0X00003732
228 228  
229 -**response:**
180 +response
230 230  
231 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
232 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
182 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
183 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
233 233  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
234 234  
235 235  (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
236 236  
237 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
238 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
188 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
189 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
239 239  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
240 240  0X00
192 +
241 241  0X01
194 +
242 242  0XF7
196 +
243 243  0X20
244 244  )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
245 245  
246 246  12880*10 gives 0X01F720
247 247  
248 -**response:**
202 +response
249 249  
250 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
251 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
204 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
205 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
252 252  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
253 253  
208 +
209 +
254 254  = 2. DR-PH01 Water PH Sensor =
255 255  
256 -== 2.1 Specification ==
257 257  
213 +== 2.1 Specification:[[Edit>>url:http://wiki.dragino.com/xwiki/bin/edit/Main/Water%20Quality%20Sensors/WebHome?section=2]] ==
258 258  
259 259  * **Power Input**: DC7~~30
260 -
261 261  * **Power Consumption** : < 0.5W
262 -
263 263  * **Interface**: RS485. 9600 Baud Rate
264 -
265 265  * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
266 -
267 -* **pH measurement error**: ±0.15pH
268 -
269 -* **Repeatability error**: ±0.02pH
270 -
271 -* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
272 -
273 -* **Temperature measurement error**: ±0.5°C
274 -
275 -* **Working environment:**
276 -** Ambient Temperature: 0–60°C
277 -** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
278 -
219 +* **pH measurement error**:±0.15pH
220 +* **Repeatability error**:±0.02pH
221 +* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃)
222 +* **Temperature measurement error**: ±0.5℃
223 +* **Temperature Measure Range**: -20 ~~ 60 °C
279 279  * **Temperature Accuracy: **±0.5 °C
280 -
281 281  * **IP Rated**: IP68
282 -
283 283  * **Max Pressure**: 0.6MPa
284 284  
228 +
285 285  == 2.2 Wiring ==
286 286  
287 287  
288 -[[image:image-20240720172548-2.png||height="348" width="571"]]
232 +== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) ==
289 289  
290 -
291 -== 2.3 Mechinical Drawing ==
292 -
293 -
294 294  [[image:image-20240714174241-2.png]]
295 295  
296 296  
297 297  == 2.4 Installation Notice ==
298 298  
299 -
300 300  Do not power on while connect the cables. Double check the wiring before power on.
301 301  
302 302  Installation Photo as reference:
303 303  
304 -(% style="color:blue" %)**Submerged installation:**
243 +**~ Submerged installation:**
305 305  
306 306  The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
307 307  
308 308  [[image:image-20240718191348-6.png]]
309 309  
310 -(% style="color:blue" %)**Pipeline installation:**
249 +**~ Pipeline installation:**
311 311  
312 312  Connect the equipment to the pipeline through the 3/4 thread.
313 313  
314 314  [[image:image-20240718191336-5.png||height="239" width="326"]]
315 315  
316 -(% style="color:blue" %)**Sampling:**
255 +**Sampling:**
317 317  
318 318  Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
319 319  
320 -(% style="color:blue" %)**Measure the pH of the water sample:**
259 +**Measure the pH of the water sample:**
321 321  
322 322  First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
323 323  
324 324  
325 -== 2.5 Maintenance ==
264 +=== 2.5 Maintenance ===
326 326  
327 327  
328 328  * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
329 -
330 330  * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
331 -
332 332  * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
333 -
334 334  * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
335 -
336 336  * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
337 -
338 338  * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
339 -
340 340  * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
341 -
342 342  * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
275 +* (((
276 +The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
277 +)))
343 343  
344 -* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
345 -
346 346  == 2.6 RS485 Commands ==
347 347  
348 348  
349 -RS485 signaldefault address 0x10
350 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
282 +The address of the pH  sensor is 10
351 351  
352 -
353 -=== 2.6.1 Query address ===
354 -
355 -
356 -**send:**
357 -
358 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
359 -|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
360 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
361 -
362 -**response:**
363 -
364 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
365 -|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
366 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
367 -
368 -=== 2.6.2 Change address ===
369 -
370 -
371 -For example: Change the address of the sensor with address 1 to 2, master → slave
372 -
373 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
374 -|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
375 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
376 -
377 -If the sensor receives correctly, the data is returned along the original path.
378 -
379 -(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
380 -
381 -
382 -=== 2.6.3 Modify intercept ===
383 -
384 -
385 -**send:**
386 -
387 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
388 -|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
389 -|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
390 -0XA5
391 -)))
392 -
393 -Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
394 -
395 -**response:**
396 -
397 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
398 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
399 -|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
400 -0X00
401 -)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
402 -0XA5
403 -)))
404 -
405 -=== 2.6.4 Query data ===
406 -
407 -
408 -Query the data (PH) of the sensor (address 10), host → slave
409 -
410 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
411 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
412 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
413 -
414 -If the sensor receives correctly, the following data will be returned, slave → host
415 -
416 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
417 -|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
418 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
419 -
420 420  The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
421 421  
422 422  For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
... ... @@ -424,199 +424,13 @@
424 424  02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
425 425  
426 426  
427 -=== 2.6.5 Calibration Method ===
428 -
429 -
430 -This device uses three-point calibration, and three known pH standard solutions need to be prepared.
431 -
432 -(% style="color:blue" %)**The calibration steps are as follows:**
433 -
434 -(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
435 -
436 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
437 -|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
438 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
439 -0X00
440 -)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
441 -0XF1
442 -)))
443 -
444 -(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
445 -
446 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
447 -|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
448 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
449 -0X00
450 -)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
451 -0X31
452 -)))
453 -
454 -(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
455 -
456 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
457 -|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
458 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
459 -0X00
460 -)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
461 -0X31
462 -)))
463 -
464 -After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
465 -
466 -
467 467  = 3. DR-ORP1 Water ORP Sensor =
468 468  
469 -== 3.1 Specification ==
293 +== 3.7 RS485 Commands ==
470 470  
471 471  
472 -* **Power Input**: DC7~~30
296 +The address of the ORP sensor is 13
473 473  
474 -* **Measuring range**:** **-1999~~1999mV
475 -
476 -* **Resolution**: 1mV
477 -
478 -* **Interface**: RS485. 9600 Baud Rate
479 -
480 -* **Measurement error**: ±3mV
481 -
482 -* **Stability**: ≤2mv/24 hours
483 -
484 -* **Working environment:**
485 -** Ambient Temperature: 0–60°C
486 -** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
487 -
488 -* **IP Rated**: IP68
489 -
490 -* **Max Pressure**: 0.6MPa
491 -
492 -== 3.2 Wiring ==
493 -
494 -
495 -[[image:image-20240720172620-3.png||height="378" width="620"]]
496 -
497 -
498 -== 3.3 Mechinical Drawing ==
499 -
500 -
501 -[[image:image-20240714174241-2.png]]
502 -
503 -
504 -== 3.4 Installation Notice ==
505 -
506 -
507 -Do not power on while connect the cables. Double check the wiring before power on.
508 -
509 -**Installation Photo as reference:**
510 -
511 -(% style="color:blue" %)** Submerged installation:**
512 -
513 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
514 -
515 -[[image:image-20240718191348-6.png]]
516 -
517 -(% style="color:blue" %)** Pipeline installation:**
518 -
519 -Connect the equipment to the pipeline through the 3/4 thread.
520 -
521 -[[image:image-20240718191336-5.png||height="239" width="326"]]
522 -
523 -
524 -== 3.5 Maintenance ==
525 -
526 -
527 -(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
528 -
529 -(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
530 -
531 -(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
532 -
533 -(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
534 -
535 -(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
536 -
537 -(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
538 -
539 -(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
540 -
541 -(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
542 -
543 -(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
544 -
545 -
546 -== 3.6 RS485 Commands ==
547 -
548 -
549 -RS485 signaldefault address 0x13
550 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
551 -
552 -
553 -=== 3.6.1 Query address ===
554 -
555 -
556 -**send:**
557 -
558 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
559 -|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
560 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
561 -
562 -**response:**
563 -
564 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
565 -|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
566 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
567 -
568 -=== 3.6.2 Change address ===
569 -
570 -
571 -For example: Change the address of the sensor with address 1 to 2, master → slave
572 -
573 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
574 -|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
575 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
576 -
577 -If the sensor receives correctly, the data is returned along the original path.
578 -
579 -(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
580 -
581 -
582 -=== 3.6.3 Modify intercept ===
583 -
584 -
585 -**send:**
586 -
587 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
588 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
589 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
590 -0X96
591 -)))
592 -
593 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
594 -
595 -**response:**
596 -
597 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
598 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
599 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
600 -0X00
601 -)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
602 -0X96
603 -)))
604 -
605 -=== 3.6.4 Query data ===
606 -
607 -
608 -Query the data (ORP) of the sensor (address 13), host → slave
609 -
610 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
611 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
612 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
613 -
614 -If the sensor receives correctly, the following data will be returned, slave → host
615 -
616 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
617 -|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
618 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
619 -
620 620  The query data command is 13 03 00 00 00 01 87 78
621 621  
622 622  For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
... ... @@ -624,271 +624,29 @@
624 624  02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
625 625  
626 626  
627 -=== 3.6.5 Calibration Method ===
628 -
629 -
630 -This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
631 -(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
632 -enter the following calibration command, and the 86mV point calibration is completed;
633 -
634 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
635 -|=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
636 -|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
637 -0X00
638 -)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
639 -0X03
640 -)))
641 -
642 -Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
643 -
644 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
645 -|=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
646 -|(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
647 -0X00
648 -)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
649 -0XC3
650 -)))
651 -
652 652  = 4. DR-DO1 Dissolved Oxygen Sensor =
653 653  
654 -== 4.1 Specification ==
307 +== 4.7 RS485 Commands ==
655 655  
656 656  
657 -* **Measuring range**: 0-20mg/L, 0–50℃
310 +The address of the dissolved oxygen sensor is 14
658 658  
659 -* **Accuracy**: 3%, ±0.5℃
312 +The query data command is 14 03 00 14 00 01 C6 CB
660 660  
661 -* **Resolution**: 0.01 mg/L, 0.01℃
662 -
663 -* **Maximum operating pressure**: 6 bar
664 -
665 -* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
666 -
667 -* **Power supply voltage**: 5-24V DC
668 -
669 -* **Working environment:**
670 -** Ambient Temperature: 0–60°C
671 -** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
672 -
673 -* **Power consumption**: ≤0.5W
674 -
675 -== 4.2 wiring ==
676 -
677 -
678 -[[image:image-20240720172632-4.png||height="390" width="640"]]
679 -
680 -
681 -== 4.3 Impedance requirements for current signals ==
682 -
683 -
684 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
685 -|(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
686 -|(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
687 -
688 -== 4.4 Mechinical Drawing ==
689 -
690 -
691 -[[image:image-20240719155308-1.png||height="226" width="527"]]
692 -
693 -
694 -== 4.5 Instructions for use and maintenance ==
695 -
696 -
697 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
698 -
699 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
700 -
701 -== 4.6 RS485 Commands ==
702 -
703 -
704 -RS485 signaldefault address 0x14
705 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
706 -
707 -
708 -=== 4.6.1 Query address ===
709 -
710 -
711 -**send:**
712 -
713 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
714 -|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
715 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
716 -
717 -If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
718 -
719 -
720 -**response:**
721 -
722 -Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
723 -Register 1 data high and register 1 data low indicate the sensor version
724 -
725 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
726 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
727 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
728 -
729 -=== 4.6.2 Change address ===
730 -
731 -
732 -For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
733 -
734 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
735 -|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
736 -|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
737 -
738 -**response:**
739 -
740 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
741 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
742 -|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
743 -
744 -=== 4.6.3 Query data ===
745 -
746 -
747 -Query the data (dissolved oxygen) of the sensor (address 14), host → slave
748 -
749 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
750 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
751 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
752 -
753 -If the sensor receives correctly, the following data will be returned, slave → host
754 -
755 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
756 -|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
757 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
758 -
759 759  After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
760 760  
761 761  Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
762 762  
763 763  
764 -Query the data (temperature) of the sensor (address 14), host → slave
765 -
766 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
767 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
768 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
769 -
770 -If the sensor receives correctly, the following data will be returned, slave → host
771 -
772 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
773 -|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
774 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
775 -
776 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
777 -
778 -Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
779 -
780 -
781 781  = 5. DR-TS1 Water Turbidity Sensor =
782 782  
783 -== 5.1 Specification ==
321 +== 5.7 RS485 Commands ==
784 784  
785 785  
786 -* **Measuring range**: 0.1~~1000.0NTU
324 +The address of the dissolved oxygen sensor is 15
787 787  
788 -* **Accuracy**: ±5%
789 -
790 -* **Resolution**: 0.1NTU
791 -
792 -* **Stability**: ≤3mV/24 hours
793 -
794 -* **Output signal**: RS485 (standard Modbus-RTU protocol, device default address: 01)
795 -
796 -* **Power supply voltage**: 5~~24V DC (when output signal is RS485), 12~~24V DC (when output signal is 4~~20mA)
797 -
798 -* **Working environment:**
799 -** Ambient Temperature: 0–60°C
800 -** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
801 -
802 -* **Power consumption**: ≤ 0.5W
803 -
804 -== 5.2 wiring ==
805 -
806 -
807 -[[image:image-20240720172640-5.png||height="387" width="635"]]
808 -
809 -
810 -== 5.3 Impedance requirements for current signals ==
811 -
812 -
813 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
814 -|(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
815 -|(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
816 -
817 -== 5.4 Mechinical Drawing ==
818 -
819 -
820 -[[image:image-20240718195058-7.png||height="305" width="593"]]
821 -
822 -
823 -== 5.5 Instructions for use and maintenance ==
824 -
825 -
826 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
827 -
828 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
829 -
830 -== 5.6 RS485 Commands ==
831 -
832 -
833 -RS485 signaldefault address 0x15
834 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
835 -
836 -
837 -=== 5.6.1 Query address ===
838 -
839 -
840 -**send:**
841 -
842 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
843 -|=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
844 -|(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
845 -
846 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
847 -
848 -
849 -**response:**
850 -
851 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
852 -|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
853 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
854 -
855 -=== 5.6.2 Change address ===
856 -
857 -
858 -For example: Change the address of the sensor with address 1 to 2, master → slave
859 -
860 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
861 -|=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
862 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
863 -
864 -If the sensor receives correctly, the data is returned along the original path.
865 -
866 -(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
867 -
868 -
869 -=== 5.6.3 Query data ===
870 -
871 -
872 -Query the data (turbidity) of the sensor (address 15), host → slave
873 -
874 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
875 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
876 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
877 -
878 -If the sensor receives correctly, the following data will be returned, slave → host
879 -
880 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
881 -|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
882 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
883 -
884 884  The query data command is 15 03 00 00 00 01 87 1E
885 885  
886 886  For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
887 887  
888 888  02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
889 -
890 -
891 -= 6.  Water Quality Sensor Datasheet =
892 -
893 -
894 -* **[[Water Quality Sensor Transmitter Datasheet>>https://www.dropbox.com/scl/fi/9tofocmgapkbddshznumn/Datasheet_WQS-xB-WQS-xS_Water-Quality-Sensor-Transmitter.pdf?rlkey=wxua12ur9swk30rkqnh2boo9z&st=axga6epf&dl=0]]**
1752564223905-283.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -144.4 KB
Content
image-20240718195058-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -97.6 KB
Content
image-20240718195414-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -13.5 KB
Content
image-20240719155308-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -57.4 KB
Content
image-20240720172533-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172548-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172620-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172632-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172640-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20241129142314-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.2 MB
Content